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ABSTRACT:
There are no serum biomarkers for the accurate diagnosis of clear cell renal cell 

carcinoma (ccRCC). Diagnosis and decision of nephrectomy rely on imaging which is 
not always accurate. Non-invasive diagnostic biomarkers are urgently required. In 
this study, we preformed quantitative proteomics analysis on a total of 199 patients 
including 30 matched pairs of normal kidney and ccRCC using isobaric tags for 
relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to identify 
differentially expressed proteins. We found 55 proteins significantly dysregulated 
in ccRCC compared to normal kidney tissue. 54 were previously reported to play a 
role in carcinogenesis, and 39 are secreted proteins. Dysregulation of alpha-enolase 
(ENO1), L-lactate dehydrogenase A chain (LDHA), heat shock protein beta-1 (HSPB1/
Hsp27), and 10 kDa heat shock protein, mitochondrial (HSPE1) was confirmed in two 
independent sets of patients by western blot and immunohistochemistry. Pathway 
analysis, validated by PCR, showed glucose metabolism is altered in ccRCC compared 
to normal kidney tissue. In addition, we examined the utility of Hsp27 as biomarker in 
serum and urine. In ccRCC patients, Hsp27 was elevated in the urine and serum and 
high serum Hsp27 was associated with high grade (Grade 3-4) tumors. These data 
together identify potential diagnostic biomarkers for ccRCC and shed new light on 
the molecular mechanisms that are dysregulated and contribute to the pathogenesis 
of ccRCC. Hsp27 is a promising diagnostic marker for ccRCC although further large-
scale studies are required. Also, molecular profiling may help pave the road to the 
discovery of new therapies.  
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common 
neoplasm in the adult kidney, with an increasing incidence 
over the past 20 years[1]. About 80% of RCCs are of 
the clear-cell type (ccRCC). Early diagnosis of RCC is 
associated with favorable prognosis (5-year survival rate ~ 
85%). Unfortunately, RCC is often asymptotic, with about 
30% of patients diagnosed at the metastatic stage when the 
prospects for cure are dismal (5-year survival rate ~9%)
[2]. Traditional manifestations of pain, mass and hematuria 
are ineffective for early diagnosis[3]. The diagnosis of 
RCC, and the subsequent resection of the kidney are based 
on imaging findings, which are not always accurate. There 
are currently no serum biomarkers available to confirm the 
identity of renal masses, whether benign or malignant. A 
non-invasive test in serum or urine will have a significant 
impact on patient management.  

Few chromosomal abnormalities have been 
documented in RCC, including VHL mutation (3p-), 
5q21+ (70%), and 14q- (41%)[4;5]. The pathogenesis of 
RCC is, however, not yet fully elucidated. Understanding 
tumor biology at the molecular level is essential in order 
to improve treatment[6;7]. 

Proteomics combined with mass spectrometry (MS) 
offers great promise for unveiling the complex molecular 
events of tumorigenesis and identification of cancer 
biomarkers. Tissue proteomics is a promising alternative 
strategy for the discovery and identification of tumor 
markers. A major advantage of tissues proteomics is that 
relevant proteins are much more abundant. Additionally, 
the link between proteins that are differentially expressed 

in diseased tissue with the disease itself is stronger than 
serum. 

In this study, we performed quantitative proteomic 
analysis using isobaric tags for relative and absolute 
quantitation (iTRAQ) labeling and LC-MS to identify 
proteins that are dysregulated in ccRCC compared to 
normal kidney. We identified a number of proteins that 
can distinguish between tumor and normal tissues. We 
verified the dysregulated expression of four of the most 
interesting proteins on two independent sets of tissue using 
both western blot and immunohistochemistry. Also, these 
proteins showed to have the ability to distinguish between 
normal and cancer tissue with accuracy. Identified secreted 
proteins may serve as diagnostic makers. Furthermore, 
using pathway analysis and protein-protein analysis, we 
elucidated the potential involvement of these proteins in 
RCC pathogenesis and identified key pathways that are 
dysregulated in RCC. We also examined the use of Hsp27 
as a biomarker in the serum and urine and its prognostic 
utility.

RESULTS

Identification of dysregulated proteins between 
ccRCC and normal tissues

A schematic of the work flow is shown in 
Supplementary Figure 1. A total of 40 samples were 
analyzed in the discovery phase. Briefly, equal amounts of 
protein from each tissue type were digested with trypsin, 

Table 1: A list of 55 proteins significantly dysregulated in ccRCC compared to normal kidney tissue samples as identified by 
quantitative proteomic analysis 

Protein 
Symbol C1    C2    C3    C4    C5 C7 C8 C9  C10 C6 N1    N2    N3    N4    N5  N6 N7 N8 N9  N10 

AHNAK 1.52 1.73 1.40 1.36 1.12 1.73 1.35 1.66 1.58 0.84 0.90 0.89 0.89 0.99 1.18 0.82 1.21 1.00 1.05 1.23

ENO1 1.94 2.69 1.86 2.05 1.45 1.87 1.62 1.94 2.35 0.94 1.07 0.74 0.90 0.89 1.11 0.79 1.18 1.01 1.07 0.91

HSPB1 2.30 3.51 2.14 2.24 1.37 2.92 1.53 3.01 2.33 0.81 1.14 0.88 1.11 0.98 0.69 0.83 1.29 0.64 1.20 1.09

LDHA 1.94 2.64 2.97 3.60 2.55 4.93 3.92 3.20 4.12 0.78 0.53 1.07 0.80 1.03 0.97 0.63 1.13 0.99 1.04 0.97

ALDOA 1.72 1.51 1.16 1.15 1.33 2.36 1.46 1.74 1.87 0.82 0.81 0.73 0.87 0.98 1.21 0.71 1.08 0.95 1.00 1.09

ANXA2 2.41 2.16 2.23 1.31 1.59 2.80 1.93 0.95 1.11 0.98 0.73 1.22 1.04

ANXA4 3.19 3.27 3.80 1.95 2.11 5.79 3.05 5.44 3.70 0.96 0.66 0.92 0.96 0.82 0.66 0.64 0.83 0.98 0.96

ANXA5 1.62 1.82 1.52 2.36 1.12 1.83 1.73 1.60 2.27 0.82 0.84 0.99 0.88 0.94 1.38 0.68 1.15 0.97 1.05 0.95

CNDP2 1.53 1.56 2.01 1.42 1.34 2.30 1.30 2.51 1.91 1.01 1.11 0.90 0.93 1.02 0.90 0.86 0.93 0.94 1.09 0.97

CRYAB 2.20 3.83 2.34 1.84 0.90 3.65 1.33 2.59 1.99 1.59 0.53 1.42 0.85 0.56 0.50 1.27 0.57 1.12 1.24

GAPDH 1.37 1.68 1.67 1.45 1.10 1.89 1.83 1.91 2.12 0.87 0.96 0.83 0.93 0.90 0.77 0.72 0.98 0.87 0.95 0.95

MIF 2.07 2.71 3.97 2.30 2.47 1.69 2.32 1.23 1.54 1.04 1.14 0.82 0.92 0.96 0.90

PGK1 1.93 2.60 2.14 1.68 1.34 1.52 1.47 1.63 2.21 1.02 0.89 0.91 0.98 1.00 1.02 0.81 1.04 0.94 0.99 1.11

PKM2 2.73 3.47 2.38 2.88 4.18 1.73 0.78 0.97 0.70 0.63 1.12 0.87 0.98

TPI1 1.69 2.11 1.54 1.44 1.41 2.10 1.69 2.17 1.68 0.97 0.99 0.78 0.93 1.05 1.04 0.87 1.11 0.93 0.99 0.95
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HSPE1 0.72 0.54 0.45 0.22 0.50 0.50 0.51 0.44 1.21 1.31 0.90 1.25 0.93 0.85 0.96 1.19 0.94 0.89 0.97

ACAA2 0.70 0.54 0.73 0.37 0.31 0.65 0.39 0.51 1.07 1.23 0.95 1.16 1.24 0.94 0.68 0.84 0.97 1.05 0.90 1.33

ACADM 0.34 0.34 0.43 0.28 0.46 0.44 0.56 0.37 0.59 1.27 1.15 0.91 1.18 0.93 0.73 1.05 1.20 0.96 0.95 1.00

ACAT1  0.68 0.51 0.24 0.33 0.33 0.34 0.50 1.19 1.21 1.35 1.14 0.96 0.76 0.96 0.97 0.92 0.87 1.11

ACO2 0.53 0.60 0.77 0.38 0.52 0.59 0.57 0.63 0.76 1.20 0.95 0.85 1.19 0.94 0.85 1.01 1.15 0.93 0.99 1.06

ACSF2 0.62 0.61 0.50 0.48 0.42 1.17 1.08 1.03 1.06

ACY1 0.31 0.48 0.32 0.16 0.23 0.20 0.36 0.29 0.37 1.05 1.47 0.82 0.90 0.89 1.02 0.86 1.11 0.92 0.81 1.06

AKR1A1 0.36 0.40 1.10 0.52 0.38 0.57 0.55 0.56 0.96 0.84 1.00 1.12 1.16 1.01 0.71 0.62 1.14 0.88 0.98 1.15

ALDH2 0.37 0.43 0.27 0.38 0.42 0.49 0.41 0.45 1.14 1.23 0.97 1.23 0.93 0.70 1.02 1.16 0.79 0.83 1.04

ALDH4A1  0.27 0.26 0.19 0.32 0.38 0.45 1.17 1.06 0.94 1.43 0.90 0.44 0.91 0.92 0.89 0.88 0.99

ALDH6A1 0.28 0.30 0.24 0.21 0.25 0.30 0.30 0.26 0.49 1.34 1.14 0.98 1.27 0.91 0.75 0.94 1.23 0.96 0.82 1.07

ALDOB 0.47 0.71 0.43 0.43 0.64 0.42 0.47 0.35 0.53 1.14 0.94 1.10 1.34 1.15 0.44 0.95 0.96 0.78 1.06 1.05

ASS1  0.19 0.15 0.18 0.17 0.31 0.19 0.37 1.16 1.12 0.80 1.14 0.89 0.42 0.81 0.87 0.80 1.01 1.10

ATP5A1  0.60 0.37 0.40 0.63 0.59 0.60 0.72 1.15 0.91 1.15 0.98 1.05 0.90 1.40 0.90 1.15 1.10

BDH2  0.56 0.50 0.37 0.48 0.55 0.39 0.89 0.94 1.27 0.89 0.94 0.89 0.78 1.08 0.85 0.82 1.13

BHMT  0.69 0.59 0.39 0.37 0.57 0.61 1.16 1.67 0.95 1.25 0.78 0.52 1.02 0.72

CAT 0.57 0.61 0.41 0.82 0.40 0.52 0.47 0.73 1.09 1.17 0.89 0.96 0.95 0.86 1.13 0.94 0.99

CTSB 0.45 0.35 0.53 0.50 0.52 0.71 0.75 0.91 0.80 0.74 0.55 1.09 1.21 1.02

CYCS 0.43 0.64 0.43 0.61 0.61 0.53 0.56 0.91 1.25 1.74 0.88 0.91 1.26 0.90 1.30 0.68 0.74 1.02

DDC  0.51 0.20 0.40 0.36 0.38 0.73 0.69 0.92 0.98 0.66 1.10 0.91 0.50 0.70 0.83 0.89 0.77 1.03

ECHS1  0.37 0.28 0.33 0.34 0.31 0.54 1.21 1.04 1.34 1.33 0.96 0.69 1.04 1.15 1.02 0.95 1.14

ETFB 0.63 0.42 0.26 0.18 0.41 0.60 1.18 0.72 0.97 0.77 1.06 1.09

FBP1  0.57 0.35 0.33 0.57 0.60 1.16 0.89 1.46 0.86 0.68 0.88 1.05 0.81 0.92 1.00

GATM    0.32 0.31 0.40 0.45 0.53 0.19 0.55 1.18 1.08 1.09 0.93 0.48 0.96 0.91 0.93 0.91 0.96

GOT2  0.56 0.32 0.39 0.46 0.80 0.50 1.07 0.81 1.31 1.09 0.97 1.04 0.93 1.18 0.89 0.87

GPD1  0.47 0.19 0.23 0.40 0.44 0.51 0.61 1.12 1.07 0.72 1.19 1.05 0.54 0.94 0.96 1.12 1.08 0.96

HADH  0.32 0.28 0.37 0.40 0.37 0.61 1.27 1.16 0.99 1.19 0.95 0.85 0.96 1.09 0.88 0.90 1.03

HNRNPA2B1 0.44 0.65 0.29 0.49 0.41 0.59 0.43 0.37 0.47 0.80 0.94 0.76 0.87 1.11 1.35 1.29 1.02 1.11 1.04

IDH2 0.47 0.38 0.35 0.25 0.47 0.49 0.54 0.58 0.53 1.11 1.33 0.93 1.00 0.90 1.45 0.94 1.37 0.84 0.86 1.18

K4 0.59 0.46 0.36 0.57 0.45 0.47 0.75 0.65 1.16 1.18 0.74 1.25 1.18 0.59 1.02 1.32 0.99 1.18 1.09

KHK 0.48 0.60 0.89 0.56 0.57 0.62 0.61 1.05 1.11 1.02 0.87 1.14 1.05 0.63 0.94 1.05 0.94 0.89 0.99

LDHB 0.41 0.46 0.64 0.63 0.32 0.59 0.60 0.60 0.73 0.94 0.94 1.05 1.01 0.92 0.92 0.82 1.07 0.87 0.94 1.15

MDH2 0.64 0.50 0.67 0.33 0.39 0.54 0.59 0.51 0.59 1.08 1.06 1.20 1.12 0.94 1.06 0.88 1.07 0.90 0.77 0.98

PCK2 0.52 0.42 0.29 0.20 0.24 0.31 0.27 0.45 1.24 1.22 1.05 1.61 0.96 0.41 1.05 0.94 0.89 0.89 1.05

PRDX3  0.30 0.21 0.35 0.52 0.46 0.41 0.55 1.17 1.04 0.65 1.09 0.95 1.12 0.95 1.08 0.89 0.89 1.03

SELENBP1  0.68 0.50 0.50 0.32 0.36 0.42 0.38 0.72 1.07 0.95 0.94 0.93 0.98 0.98 1.23 1.01 0.84 1.04

SORD 0.54 0.34 0.30 0.31 0.32 0.99 1.08 0.95 1.16 0.87 0.69 0.86 1.12 0.96 0.91 0.92

SPD1 0.61 0.54 0.55 0.29 0.29 0.46 0.50 0.50 0.73 1.26 1.10 0.91 1.26 0.92 0.85 0.88 1.04 0.96 0.96 1.22

TAGLN 0.97 0.28 0.34 0.70 0.59 1.43 0.34 0.48 0.61 0.69 0.57 0.89 0.88 1.16 0.75 1.57 1.31 0.91 1.06

TP5B           0.65 0.39 0.58 0.62 0.51 0.88 1.23 0.62 1.25 0.96 1.17 0.95 1.31 0.84 0.97 1.03

Footnote: C = cancer, N = normal. Protein symbols were used according to UniProtKB. For a full name of protein and its accession number see Supple-
mentary Table 3.
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labeled with iTRAQ and combined. Samples were then 
separated by off-line SCX liquid chromatography and 
analyzed by RP LC-MS. We identified a total of 1591 non-
redundant proteins with local false discovery rate (FDR) < 
5% (Supplementary Table 5); 345 of these proteins were 
reliably quantified (Supplementary Table 6). Fifty five 
proteins fulfilled our criteria for dysregulation between 
ccRCC and normal (see materials section, Supplementary 
Table 7): 15 were upregulated (iTRAQ ratios of ≥1.5) and 

40 were downregulated (iTRAQ ratios of ≤0.67). Table 
1 shows a heat map of the 55 significantly dysregulated 
proteins.  

Unsupervised clustering was performed on the 55 
significantly dysregulated proteins.  The samples clustered 
into two main groups: one that contained 9 of 10 ccRCC 
samples; and second included all normal samples and one 
cancer sample (Figure 1). The difference in expressions 
of dysregulated proteins between ccRCC and normal 

Figure 1: Hierarchical clustering analysis of dysregulated proteins between ccRCC and normal kidney tissues. 
Clustering analysis was performed based on 345 proteins for which quantitative information was available. The samples clustered into two 
main groups: one that contained the 9 of 10 ccRCC samples (C1-C5, C7-C10); and second contained all normal samples (N1-N10) plus 
one cancer sample; C6. The difference in expressions of dysregulated proteins between ccRCC and normal kidney samples was statistically 
significant (p<0.001). 
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kidney was statistically significant (p<0.001). To verify 
our analysis, we performed control clustering based on 
345 quantified proteins excluding the 55 significantly 
dysregulated proteins. As expected, cancer and normal 
samples didn’t cluster into distinct groups (p>0.5; 
Supplementary Figure 2). 

Identification of dysregulated proteins that can 
serve as serum biomarkers

Of 55 dysregulated proteins 39 (70.9%) satisfied 
one or more of the four criteria to be classified as 
“secretory” proteins (Supplementary Table 7); 5 proteins 
(9.1%) were found to be extracellular; 10 (18.2%) were 
membrane-bound;  8 (14.5%) could be released from cells 

Figure 2: Verification of protein dysregulation in ccRCC by Western blot and immunohistochemical analyses. A: 
Representative blots showing the expression of proteins in normal kidney tissues (N1, N2) and ccRCC (C1, C2). For AHNAK, ENO1, and 
HSP27,  expression was significantly higher and for HSPE1 it was significantly lower in cancer compared to normal kidney tissue. β-actin 
was used as a loading control. B: Graphical representation of the average fold change in expression of the proteins between ten ccRCCs 
and matched normal specimens as determined by densitometry (C/N). Expressions of protein in normal samples were normalized. C-J: 
Representative photomicrographs showing differential expression of ENO1, HSPB1, HSPE1 and LDHA in ccRCC compared to normal 
kidney tissue by immunohistochemistry (Original magnification × 200). 



Oncotarget511www.impactjournals.com/oncotarget

Figure 3: The involvement of dysregulated proteins in kidney cancer in metabolic pathways. A: Most of the upregulated 
proteins are enzymes which catalyze the reactions of glycolysis, citric acid cycle, metabolism and catabolism of Acetyl-CoA. ETFB 
serves as a specific electron acceptor for several dehydrogenases, including five acytyl-CoA dehydrogenases (AD), glutaryl-CoA and 
sarcosine dehydrogenase; and HSP27 forms a complex with G6PDH that increased its activity. Upregulated proteins are shown in red and 
downregulated ones in green. B: Visualization of protein-protein interactions for dysregulated proteins in ccRCC using STRING analysis. 
Dysregulated proteins were used as input for STRING and are represented as spheres of distinct colors. Blue lines represent interactions 
between proteins and the thickness of the lines display the level of confidence associated with each interaction. Our dysregulated proteins 
formed one main cluster. Within this cluster, we identified three mini-clusters which contained proteins related to cell metabolism.  C: PCR 
validation of the down-regulation of genes involved in the TCA cycle. We found that 18 of the 28 (64%) genes examined had significant 
decreased expression in ccRCC tissues when compared to normal kidney tissue. SUCLG1, p=0.003; IDH3A, p=0.026; PDHB, p<0.001; 
SUCLG2, p=0.006; SDHD, p=0.012; DLD, p=0.020; SDHB, p=0.007; PCK2, p=0.037; MDH2, p=0.043; MDH1, p<0.001; IDH2, p=0.030; 
DLST, p=0.037; FH, p=0.006; SUCLA2, p=0.001; DLAT, p<0.001; SDHC, p<0.001; IDH3B, p=0.006; IDH3G, p<0.001. D: Bar graph 
showing differential expression of Hsp27 in urine. We assayed the expression of Hsp27 by ELISA in 21 pre-operative RCC patients and 9 
individuals with no malignancy. The average expression in RCC patients was significantly higher than those with no malignancy (1.822ng/
mL vs. 0.3365ng/mL, respectively, p<0.05). 
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via the exosome pathway; 1 (1.8%) is predicted to be 
classically secreted according to the SignalP analysis; and 
SecretomeP analyses predicted that 32 (58.2%) proteins 
are likely to be non-classically secreted. 

Validation of the protein dysregulation 

Of 39 “secretory” proteins we selected the 5 
most promising for further verification as potential 
ccRCC biomarkers. The upregulated proteins ENO1 
and Hsp27 were previously documented to be involved 
in tumorigenesis. AHNAK was a promising candidate 
with no record of its involvement in other malignancies. 
The downregulated HSPE1 was also documented to be 
involved in the pathogenesis of different malignancies.

In the first step, we verified differential expressions 
of these four proteins by Western blot analysis in samples 
of the discovery cohort (Figure 2A).  The expressions of 
AHNAK, ENO1, and Hsp27 were found to be significantly 
elevated [1.68 fold (p<0.002), 1.62 fold (p<0.01), and 

1.47 fold (p<0.01), respectively] in ccRCC compared 
to matched normal tissues. HSPE1 was significantly 
downregulated in ccRCC [0.47 fold (p<0.002)], in 
agreement with our MS findings (Figure 2B). Overall, 
these results confirm our MS analysis. 

We additionally verified the dysregulation of 
ENO1, HSPB1, HSPE1, and LDHA in an independent 
cohort of patients by IHC using TMAs consisting of 85 
cases of ccRCC and matched normal kidney tissue from 
the same patient (Figure 2C-J). We found that ENO1 
immunoexpression was increased in 56 (70%) cases of 
ccRCC when compared to normal kidney tissue from 
the same patient (Supplementary Table 8), which was in 
agreement with both the MS and Western blot results. 

When we examined the expression of HSPB1/
Hsp27, 53 (69%) cases showed increased expression in 
ccRCC compared to normal matched tissues. 11 (14%) 
cases showed no significant change in expression between 
ccRCC and normal, and 13 (17%) cases showed decreased 
expression in ccRCC. The downregulation of HSPE1 
was also seen immunohistochemically as 71 (91%) 
cases of ccRCC showed decreased expression compared 
to matched normal. Only 6 (8%) cases showed similar 
expression levels between normal and cancer.  Comparable 
findings were seen for LDHA where there was increased 
expression in 76 (96%) ccRCC tissues examined. Only 
one case showed decreased expression in cancer and two 
cases (3%) showed no change in expression. The results of 
the IHC analyses are summarized in Supplementary Table 
8.

Elucidating RCC pathogenesis through 
quantitative proteomics 

Next, we wanted to elucidate the role of these 
proteins in RCC pathogenesis and identify pathways 
of carcinogenesis that can have a diagnostic and/or 
therapeutic impact. We performed UniProtKB and 
literature searches on the 55 dysregulated proteins. All 
proteins, with the exception of AHNAK, were reported 
to be involved in at least one tumorigenesis-related 

Table 3: Association between serum Hsp27 
with clinical parameters in clear cell renal 
cell carcinoma patients.

Number of patients (%)
Variables n Low Hsp27 High Hsp27 p-value
Status
     Normal 18 18 (42) 0 (0) 0.008
     ccRCC 36 25 (58) 11 (100)
Sex
     Male 23 15 (60) 8 (73) 0.464
     Female 13 10 (40) 3 (27)
Tumor Grade
     Low (1-2) 26 15 (60) 11 (100) 0.013
     High (3-4) 10 10 (40) 0 (0)
Clinical Stage
     Low (1-2) 26 15 (60) 9 (82) 0.393
     High (3) 10 10 (40) 2 (18)

 

Table 2: Involvement of dysregulated proteins in tumorigenesis-related processes.
Tumorigenesis-related processes Protein symbol

Carbohydrate and lipid metabolism

ACAA2, ACADM, ACAT1, ACO2, ACSF2, ACY1, AKR1A1, ALDH2, ALDH4A1, 
ALDH6A1, ALDOA, ALDOB, ASS1, ATP5A1, BDH2, BHMT, CAT, CNDP2, DDC, 
ECHS1, ENO1, ETFB, FBP1, GAPDH, GATM, GOT2, GPD1, HADH, HSP27, 
IDH2, K4, KHK, LDHA, LDHB, MDH2, PCK2, PGK1, SORD, TP5B, TPI1

Apoptosis ACAA2, ANXA2, ANXA4, ANXA5, CRYAB, CTSB, CYCS, ENO1, GAPDH, 
HSP27, HSPE1, LDHA, MIF, SELENBP1, SPD1

Growth and proliferation CAT, ENO1, FBP1, HNRNPA2B1, HSP27, HSPE1, LDHA, MIF, PRDX3, 
SELENBP1, SPD1

Cell cycle ENO1, HSP27, HSPE1, MIF
Hypoxia ENO1, HSP27, LDHA

Protein symbols were used according to UniProtKB. For a full protein names and accession numbers, see Supplementary Table 3.
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process (Table 2 and Supplementary Table 7). We then 
performed Gene Ontology, pathway analysis and protein-
protein interaction analyses. In agreement with recent 
reports[18-21], 40 dysregulated proteins were found 
to be involved in carbohydrate and lipid metabolism. 
28 proteins are involved in glycolysis, citric cycle, and 
Acetyl-CoA metabolism, as shown in Figure 3A. 

Fifteen proteins were found to be involved in 
apoptosis (Table 2 and Supplementary Table 7). For 
example, alpha-crystallin B chain, annexin A4, and 
macrophage migration inhibitory factor (MIF), among 
others negatively regulate the apoptotic process. Eleven 
proteins are involved in growth and proliferation. For 
instance, catalase promotes cell growth; LDHA forces 
pyruvic acid into the Krebs cycle rather than the glycolysis 
process, which inhibits cell growth. MIF negatively 
regulates cell cycle arrest. Also, silencing of ENO1 
resulted in and cell cycle arrest of gastric cancer cells.  

We also performed protein-protein interaction 
analysis and found significant protein-protein interactions 
among our dysregulated proteins. These proteins formed 
one main cluster (Figure 3B), suggesting the presence 
of many interactions within this protein set. We also 
identified three smaller clusters within the main cluster. All 
three mini-clusters were related to glucose metabolism. 
In particular, we found the largest of the mini-clusters 
contained proteins that are involved in the TCA cycle. 

Experimental validation of metabolic 
dysregulation in ccRCC

We confirmed downregulation of genes involved 
in the citric acid cycle by PCR (Figure 3C). Using PCR 
arrays, we found 18 of the 28 genes (64%) involved in the 
citric acid cycle showed significant decreased expression 
in ccRCC tissues when compared to normal kidney tissue. 
The most downregulated genes were succinate-CoA 
ligase (SUCLG1, -13.0 times fold change, p=0.003) and 
isocitrate dehydrogenase 3 (NAD+) alpha (IDH3A, -7.31 
times fold change, p=0.026). Another gene that showed 
a high degree of downregulation in ccRCC tissues was 
pyruvate dehydrogenase (PHDB, , -7.0 times fold change, 
p<0.001). 

Hsp27 is a potential biomarker in RCC

We performed a preliminary analysis to evaluate the 
potential utility of Hsp27 and ENO1 as serum and urine 
markers in ccRCC. We found significant differences in 
the levels of urinary Hsp27 between patients with ccRCC 
compared to normal individuals (average 1.822ng/mL vs. 
0.3365ng/mL, respectively (p<0.05; Figure 3D). These 
data suggest Hsp27 may be a useful diagnostic marker for 
RCC patients.  

Serum analysis showed that average Hsp27 

expression in patients with ccRCC was 2.334ng/mL 
compared to 1.233ng/mL in non-cancerous individuals. 
Using a cut-off of 2.529ng/mL (average Hsp27 expression 
of non-cancerous patient’s ± 2 SD) patients were classified 
as having high or low Hsp27 expression. Patients with 
high Hsp27 were more likely to have ccRCC (p=0.008; 
Table 3). Also, higher tumor grades (grade 3-4) were 
associated with higher Hsp27 expression (p=0.013). 

We also examined the expression levels of ENO1 
in serum and urine and found that expression was higher 
in ccRCC compared to normal but the differences did not 
reach statistical significance. The average expression of 
ENO1 in the serum of RCC patients and patients with 
no malignancy was 0.0061ng/mL and 0.0057ng/mL, 
respectively. Urine samples had 0.007187 ng/mL vs. 
0.006842 ng/mL, respectively (data not shown). 

DISCUSSION

A significant challenge in ccRCC is the lack of 
tools that can distinguish between benign and malignant 
kidney masses. Imaging has limited accuracy and 
cannot be used reliably to confirm the nature of the 
lesion. This results in some patients having their kidneys 
unnecessarily removed for benign lesions. Biopsy is an 
invasive procedure with limited success and a number 
of side effects. A non-invasive urine or blood-based test 
will represent a revolutionary step in RCC diagnosis. 
We performed comprehensive quantitative proteomics 
analysis and identified promising biomarkers that can be 
further investigated as non-invasive tests for the accurate 
diagnosis of kidney cancer. We identified 55 proteins that 
are significantly dysregulated in ccRCC relative to normal 
kidney tissues (Table 1). Hierarchical clustering showed 
the ability of these proteins to distinguish between RCC 
and normal kidney tissues (Figure 1). Our results are in 
agreement with previous reports[9;18;19;22-26].

There are a number of unique aspects in our study. 
The two-dimensional liquid chromatographic approach 
employed is considered superior to 2D-PAGE. Proteins 
with molecular masses higher than 150 kDa and lower 
than 15 kDa as well as proteins with isoelectric points 
outside the range of pH 3 – 10 cannot be identified 
by 2D-gels and hydrophobic membrane proteins are 
underrepresented on 2D gels. Advanced features of 
our mass spectrometric analyses include simultaneous 
profiling of multiple admixed specimens which helps to 
eliminate artifactual differences due to differential protein 
losses during purification or separation. In addition, the 
use of four isotopic labels allows quantitative comparison 
among four different tissue samples.

Of 55 dysregulated proteins, 39 (70.9%) were 
classified as “secretory” proteins and thus have the 
potential to serve as serum/urine diagnostic biomarker for 
ccRCC. Interestingly, ENO1, LDHA, and Hsp27, AHNAK 
have been reported in other malignancies to be upregulated 
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in serum of cancer patients, compared to healthy controls: 
serum ENO1 was elevated in patients with small-cell 
lung carcinoma; and high serum LDH was linked with 
significantly poor survival of colorectal cancer[27]; high 
level of Hsp27 was present in serum from patients with 
breast cancer[28]; and serum AHNAK level was elevated 
in patients with ovarian cancer[29]. That suggests that 
upregulation of these proteins can be detected in serum of 
ccRCC patients as well. Our pilot study shows a potential 
of Hsp27 as a serum/urine biomarker. This needs to be 
validated in a larger cohort of patients.

Our results also strongly suggest that ccRCCs have 
a protein “signature” that is required for carcinogenesis. 
All 55 dysregulated proteins had previously been reported 
to be involved in tumorigenesis processes. Interestingly, 
the majority of these proteins are involved in “metabolic” 
processes (Figure 3A and Supplementary Table 7). 
Dysregulated cellular metabolism is adapted by cancer 
cells to meet the requirements of rapid cell proliferation, 
growth, negative regulation of apoptosis, survival under 
hypoxia etc. 

Our findings are comparable to earlier reports on 
functional analyses in ccRCC[30;31]. The link between 
carbohydrate metabolism and RCC is not surprising. In 
contrast to normal proliferating cells, tumor cells have to 
survive in environments with varying oxygen and nutrient 
supplies[32]. The increase in lactate dehydrogenase and 
the activation of the pyruvate kinase pathways indicate 
active anaerobic glycolysis which is a reflection of the 
hypoxic conditions known to be an integral component 
of the pathogenesis of RCC[33;34]. Also the “clear 
cell” morphology of RCC is known to result from 
the accumulation of glycogen as a result of disturbed 
carbohydrate metabolism. 

Global analysis through molecular profiling and 
pathway analysis can have significant clinical applications. 
In addition to identified new therapeutic targets, pathway-
derived metabolic products can be also used as diagnostic, 
predictive and prognostic markers[35].     

In conclusion, through quantitative proteomic 
analysis, we identified differential protein expressions that 
can distinguish between ccRCC and normal kidney tissues. 
Most of these proteins are involved in biological pathways 
pertinent to carcinogenesis. About 70% of these proteins 
can be potentially shed into serum. If the upregulation 
of the most promising proteins would be confirmed in 
serum/urine of ccRCC patients, then that would suggest 
their potential as noninvasive biomarkers for confirming 
the diagnosis of RCC, which may greatly improve patient 
management and increase overall survival. 

MATERIALS AND METHODS

Specimen preparation and protein extraction

This study included a total of 199 patients. For the 
discovery set, 40 samples (normal and cancerous tissues) 
were used. For the first validation set, we analyzed 85 
cases with matching normal and cancerous tissue from 
the same patient. Serum analysis was done using 54 
preoperative samples of RCC and 36 normal individuals. 
Urine analysis was done on 9 normal persons compared to 
21 pre-operative urines from ccRCC patients. 

ccRCC and matching normal kidney tissues from the 
same patient were obtained from nephrectomy specimens 
at St. Michael’s Hospital, Toronto, Canada within 15 min 
post-surgery and snap frozen in liquid nitrogen. As ccRCC 
is known to arise from the proximal tubules[8], the kidney 
cortex is considered a suitable representation of normal 
kidney[9]. All specimens were histologically confirmed. 
The study was approved by the Research Ethics Board of 
St. Michael’s Hospital. Relevant clinical information on 
the patients is shown in Supplementary Table 1. 

Tissues were prepared as described 
previously[10;11]. Briefly, tissues were homogenized 
in a protease-inhibitor cocktail (Roche). Cell debris was 
separated and clear supernatant was used for analysis. A 
reference sample was prepared from a pool of 30 normal 
kidney tissues. Protein concentrations were determined 
using the Bradford assay (Sigma-Aldrich, St. Louis, USA) 
[11;12]. 

iTRAQ sample labeling and strong cation 
exchange (SCX) chromatography

For iTRAQ LC-MS analysis, 100 µg of sample 
were denatured, disulfide bonds were reduced, and the 
cysteine residues were blocked as per the iTRAQ protocol 
(Applied Biosystems, Foster City, CA) and digested with 
trypsin. Samples were then labeled with the iTRAQ tags 
(Supplementary Table 2). Labeling of the reference sample 
was randomized for each set to eliminate any potential 
bias associated with a particular iTRAQ reporter tag. 
Samples were then dried using a vacuum centrifuge. 

The iTRAQ sets were dissolved in 1.7 mL of Buffer 
A (Supplementary Table 3) and filtered using a 0.45-µm 
syringe filter (Millipore, Cambridge, ON, Canada). Each 
set was then separated by off-line SCX chromatography 
using an HP1050 HPLC instrument (Agilent, Palo Alto, 
CA). Separation was performed using a linear binary 
gradient over 1 h. Buffer C was used to strip the column 
after the run. A total of 30 SCX fractions were collected 
per iTRAQ set. These fractions were dried using a vacuum 
centrifuge. 
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Reverse phase (RP) LC-MS

The SCX fractions were analyzed in triplicate 
using a Nanobore LC system (LC Packings, Amsterdam, 
Netherlands) and a QSTAR Pulsar mass spectrometer 
(Applied Biosystems/MDS SCIEX, Foster City, CA) in 
positive ion mode.  Fractions were re-dissolved in 16 µL 
of eluant A [94.9% deionized water, 5.0% methanol, and 
0.1% formic acid (pH 3)]. For subsequent fractions, the 
amount of eluant A was incremented by 2 µL over the 
preceding fraction to accommodate the increase in the 
amount of KCl. A 1-µL aliquot of the sample (~1 µg of 
total peptides) was loaded onto a C18 RP pre-column (LC 
Packings: 300 µm x 5 mm) and desalted before separation 
on an RP analytical column (75-µm x 150-mm packed in-
house with 3-µm Kromasil C18 beads with 100 Å pores, 
The Nest Group, Southborough, USA). Eluant A was used 
to load the sample onto the C18 pre-column at a flow 
rate of 25 µL min-1. After 4 min, the C18 pre-column was 
switched in-line with the RP analytical column. Separation 
was performed at 100 nL min-1 using a nonlinear binary 
gradient (Supplementary Table 4) starting with eluant 
A and transitioning to eluant B (5.0% deionized water, 
94.9% methanol, and 0.1% formic acid). 

MS data were acquired in information-dependent 
acquisition (IDA) mode using the Analyst QS 1.1 software 
(Applied Biosystems/MDS SCIEX). The LC-MS analysis 
was performed using a 1-s TOF-MS survey scan from 400 
to 1500 Da,  followed by four, 2-s product-ion scans, from 
80 to 2000 Da, of the four most-abundant ion peaks in the 
survey scan. The collision energy (CE) was automatically 
controlled by the IDA CE parameter script. Switching 
criteria were set for ions with m/z ≥ 400 and <1500, charge 
states of +2 to +4, and abundances of ≥10 counts. Using 
Analyst QS 1.1 controlled dynamic exclusion, former 
target ions were excluded for 30 s, and ions within a 100-
ppm window were ignored.  Precursor ion exclusion lists 
were used to minimize redundancy.

Bioinformatics Analysis

Protein identification by Protein Pilot

MS data of each fraction was used to identify 
proteins by searching a concatenated Swissprot/Panther 
database of 66082 distinct human protein entries (version 
June 2, 2010). The database was searched using Protein 
Pilot software, version 2.0.1 (AB SCIEX, Foster City, 
USA), which uses the Paragon algorithm[13]. Protein 
identification was performed at a confidence threshold 
of 95% (Protein Pilot Unused score ≥1.3) with MMTS 
selected as cysteine modification, with the search option 
‘emphasis on biological modifications’ checked, and with 

one of missed and/or non-specific cleavages permitted. 
Peptide and protein summaries were generated.

To minimize redundancy in subsequent iteration, 
a precursor ion exclusion list, generated in–house, was 
added to the acquisition method after each iteration 
as described previously[14]. Tolerance windows for 
exclusion were set at 100 ppm for m/z and 360 s for 
elution time. 

iTRAQ ratio re-calculation and identification of 
dysregulated proteins

To identify non-redundant proteins, data acquired 
for all 25 fractions from each iTRAQ set injected in 
triplicate were searched against a database that was 
created by concatenating the Swissprot human protein 
database and its reverse (as of June 2, 2010). Only proteins 
identified with local false discovery rate (FDR) ≤ 5% were 
considered for further analysis[15]. 

Proteins identified in seven iTRAQ sets were 
compiled and matched by accession numbers. Redundant 
proteins and peptides, and proteins identified in reverse 
sequence were removed from the list. To improve the 
confidence of protein quantitation, the mean expression 
iTRAQ ratios of the proteins were re-calculated, using a 
script written in Matlab (version 7.7.0.471), based on the 
criteria that the protein must be identified by a minimum 
of three peptides, with ≥95% confidence, and with an 
expression ratio error factor (EF) <11.1%. To enhance 
confidence in the protein quantitation even more, we 
included only 95% of all quantified proteins with the 
lowest computed EF (which corresponds to a confidence > 
0.05 in Supplementary Table 5) for further consideration. 
Proteins were considered to be dysregulated if iTRAQ 
ratios were ≥1.5 or ≤0.67 in ≥50% in ccRCC relative to 
reference samples.

Clustering analysis of dysregulated proteins in 
ccRCC samples

Proteins were included in the analysis if 
quantification was available in at least 50% of the 
samples. The average iTRAQ ratios were logarithmically 
transformed, for hierarchical clustering was used the 
City-block distance method. As a control, the samples 
were hierarchically clustered based on quantified proteins 
without dysregulated proteins. Hierarchical clustering 
analysis was performed using the Cluster 3.0 software and 
the result was visualized with the TreeView software[16]. 
To assess the statistical significance of the difference 
between proteins expressions in ccRCC and normal 
kidney samples were used the Welch’s two-tailed t-test. 
Value of p<0.05 was considered as significant.
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Selection of candidate ccRCC markers 

Dysregulated proteins were selected for further 
verification if they had a documented role in tumorigenesis 
and a potential to be identified in serum. We classified a 
dysregulated protein as “secreted” if it satisfied at least one 
of the following four criteria: (1) its subcellular location is 
extracellular or membrane-bound; (2) it is non-classically 
secreted by the exosome pathway, (3) it is classically 
secreted, according to SignalP 4.0 analysis; or (4) it is non-
classically secreted, according to SecretomeP 2.0 analysis. 

Pathway and protein-protein interaction analysis

Dysregulated proteins were subjected to pathway 
analysis using Reactome and KEGG software. Predicted 
protein-protein interactions were generated and visualized 
using STRING 9.0 software[17]. Parameters used 
for species and confidence were, “homo sapiens” and 
“medium confidence (0.400),” respectively. Clusters of 
proteins were determined through confidence levels of 
surrounding protein-protein interactions. 

Western Blot analysis

20μg of total protein were separated on a 10% 
SDS-PAGE gel, transferred to a PVDF membrane, and 
probed with rabbit polyclonal antibodies to L-lactate-
dehydrogenase A (LDHA) and α-enolase (ENO1), and 
mouse monoclonal antibodies to 10kDA heat shock 
protein (HSPE1), neuroblast differentiation-associated 
protein (AHNAK), heat shock protein β1 (HSPB1/Hsp27), 
and β-actin (Abcam, Cambridge, USA) overnight at 4ºC. 
Intensity of protein staining was determined using ImageJ 
(http://rsbweb.nih.gov/ij/). Tumor samples were compared 
to normal kidney samples using the paired sample two-
tailed t-test. Value p<0.05 was considered as significant. 

Tissue microarray construction and IHC

Tissue microarray (TMA) blocks were constructed 
as described previously[14] and contained 85 cases of 
ccRCC and matched normal kidney tissue from the same 
patient. Sections were deparaffinized, hydrated in ethanol, 
pre-treated in a microwave oven for 20 min at 800 W 
in 1 L of citrate buffer (0.01 M, pH 6.0), and incubated 
with hydrogen peroxide (0.3% v/v) in PBS for 15 min. 
Sections were blocked with 10% fetal bovine serum and 
incubated with primary antibodies for Hsp27, ENO1, 
LDHA, and HSPE1 overnight at 4°C. Protein expression 
was detected with Dako LSAB+ kit (Dako Cytomation) 
and counterstained with Mayer’s hematoxylin. 

Immunoexpression was scored by assessing the 
cytoplasmic, nuclear, and membrane staining intensity 

and frequency. Intensity was scored as 0 (no expression); 
1 (weak); 2 (moderate); and 3 (strong). Frequency was 
scored as 0 (no expression); 1 (1-25%); 2 (26-50%); 3 
(51-75%); and 4 (76-100%). Cancer scores that had a 
combined sum that was ±1 from the normal score were 
not considered significant and were called “no change.”  

ELISA 

Human ELISA kits were purchased for Hsp27 
and ENO1 (AbCam) and procedures were performed 
as recommended by the manufacturer. Urine samples 
were obtained from 11 patients with primary ccRCC and 
six patients with no malignancy. Serum samples were 
analyzed for a total of 21 patients with ccRCC and 9 
patients with no malignancy. 

RT2 Glucose Metabolism Profiler Assay 

We used the Human Glucose Metabolism RT² 
Profiler™ PCR Array (SA Biosceinces) to examine the 
expression of 84 key genes involved in the regulation and 
enzymatic pathways of glucose and glycogen metabolism. 
Total RNA was extracted using the RNeasy Kit (Qiagen) 
and RNA integrity was assessed using the Agilent 2100 
Bioanalyzer (Agilent). Four matched pairs of tumor and 
normal matched kidney tissue from the same patient were 
analyzed (a total of eight samples). Briefly, cDNA was 
synthesized from 1μg total RNA using the RT2 First Strand 
Kit (SA Biosceinces) according to the manufacture’s 
protocol. Reaction mixtures were incubated at 42ºC for 
15 minutes, 95ºC for 5 minutes and held on ice until the 
PCR reaction. PCR cycling conditions were as follows: 
95ºC for 10 min, followed by 40 cycles of 95ºC for 
15 sec and 60ºC for one minute, on the Step One Plus 
(Life Technologies). Relative quantification Changes in 
expression were measured by obtaining the threshold cycle 
and normalizing to the average of three housekeeping 
genes including Hypoxanthine Phosphoribosyltransferase 
1  (HPRT1), Ribosomal Protein L13a  (RPL13A), and 
β-actin (ACTB). Fold change was calculated by 2(-ΔΔCt) 
where ΔΔCt = [CAKI-1 cells transfected with miR-215 
(Ct target-Ct control)] - [untransfected CAKI-1 cells (Ct 
target-Ct control)]. 
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