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ABSTRACT
Genome-wide association studies and meta-analyses implicated that increased 

risk of developing Alzheimer’s diseases (AD) has been associated with the ABCA7, 
APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, 
HLA-DRB4, INPP5D, MEF2C, MS4A4A, MS4A4E, MS4A6E, NME8, PICALM, PLD3, PTK2B, 
RIN3, SLC24A4, SORL1, and ZCWPW1 genes. In this study, we assessed whether 
single nucleotide polymorphisms (SNPs) within these 27 AD-associated genes are 
linked with cognitive aging independently and/or through complex interactions in 
an older Taiwanese population. We also analyzed the interactions between lifestyle 
and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects 
aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State 
Examination (MMSE) scores were performed for all subjects to evaluate cognitive 
functions. Out of the 588 SNPs tested in this study, only the association between 
CASS4-rs911159 and cognitive aging persisted significantly (P = 2.2 x 10-5) after 
Bonferroni correction. Our data also showed a nominal association of cognitive aging 
with the SNPs in six more key AD-associated genes, including EPHA1-rs10952552, 
FERMT2-rs4901317, MEF2C-rs9293506, PLD3-rs11672825, RIN3-rs1885747, and 
SLC24A4-rs67063100 (P = 0.0018~0.0097). Additionally, we found the interactions 
among CASS4-rs911159, EPHA-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, 
or SLC24A4-rs67063100 on cognitive aging (P = 0.004~0.035). Moreover, our analysis 
suggested the interactions of SLC24A4-rs67063100 or MEF2C-rs9293506 with lifestyle 
such as alcohol consumption, smoking status, physical activity, or social support on 
cognitive aging (P = 0.008~0.041). Our study indicates that the AD-associated genes 
may contribute to the risk of cognitive aging independently as well as through gene-
gene and gene-lifestyle interactions.
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INTRODUCTION

Cognitive aging is considered as a gradual 
and ongoing process of change in cognitive capacity 
with advancing age [1]. It is worth mentioning that 
cognitive aging may increase the likelihood of several 
neurodegenerative disorders, such as mild cognitive 
impairment, dementia, and Alzheimer’s diseases 
(AD) since prior work has estimated that rates of 
neurodegenerative disorders increase exponentially with 
age [2]. With ever-increasing elder populations not only 
in affluent societies but also in developing countries, the 
pervasiveness of neurodegenerative disorders has turned 
out to be a mammoth public health issue [3]. In this 
regard, biomarkers have become increasingly essential to 
grasp the biology of cognitive aging [4]. The search for 
biomarkers for cognitive aging has been active, and the 
same biomarkers for AD are also commonly employed in 
cognitive aging research due to a high prevalence of AD 
in the older adults [5].

Several genome-wide association studies (GWAS) 
indicated that single nucleotide polymorphisms (SNPs) 
within 11 genes are associated with AD risk, including 
the ATP binding cassette subfamily A member 7 
(ABCA7), apolipoprotein E (APOE), bridging integrator 
1 (BIN1), CD2 associated protein (CD2AP), CD33 
molecule (CD33), clusterin (CLU), complement C3b/C4b 
receptor 1 (CR1), EPH receptor A1 (EPHA1), membrane 
spanning 4-domains A4A (MS4A4A), membrane 
spanning 4-domains A4E (MS4A4E), membrane spanning 
4-domains A6E (MS4A6E), and phosphatidylinositol 
binding clathrin assembly protein (PICALM) genes [6-
10]. The subsequent meta-analysis of GWAS studies (n 
= 74,046) by Lambert et al. further tracked down 14 AD 
risk genes, including the Cas scaffolding protein family 
member 4 (CASS4), CUGBP Elav-like family member 1 
(CELF1), desmoglein 2 (DSG2), fermitin family member 2 
(FERMT2), major histocompatibility complex class II DR 
beta 1 (HLA-DRB1), major histocompatibility complex 
class II DR beta 4 (HLA-DRB4), inositol polyphosphate-
5-phosphatase D (INPP5D), myocyte enhancer factor 2C 
(MEF2C), NME/NM23 family member 8 (NME8), protein 
tyrosine kinase 2 beta (PTK2B), Ras and Rab interactor 
3 (RIN3), solute carrier family 24 member 4 (SLC24A4), 
sortilin related receptor 1 (SORL1), zinc finger CW-
type and PWWP domain containing 1 (ZCWPW1) [11]. 
Additionally, Cruchaga et al. performed whole-exome 
sequencing and identified the phospholipase D family 
member 3 (PLD3) gene as an AD risk gene [12]. Recent 
epistasis studies further indicated that the CLU-MS4A4E 
[13, 14] and CD33-MS4A4E [13] gene-gene interactions 
may have a major impact in modulating AD susceptibility. 
By using the established AD-associated genes, Chibnik et 
al. also found an association of cognitive decline with the 
CR1 rs6656401 SNP, but not with the CLU rs11136000 
and PICALM rs7110631 SNPs [15]. Moreover, 

Nettiksimmons et al. utilized the AD-associated genes 
and demonstrated that the ABCA7 rs3764650 and CD33 
rs3865444 SNPs were associated with cognitive decline 
in the female cohort of Caucasian older adults, but not in 
the male cohort [16].

While several encouraging findings on the 
relationship between the AD-associated genes and 
cognitive aging have emerged, to our knowledge, human 
data is scarce in terms of single nucleotide polymorphisms 
(SNPs). Moreover, lifestyle factors such as alcohol 
consumption, smoking status, physical activity, and 
social support have not received as much attention as 
genetic factors in cognitive aging research, and thus the 
interplay between the AD-associated genes and lifestyle 
should be thoroughly investigated. Given that gene-
gene and gene-lifestyle interactions may play a key role 
in the development of cognitive aging, we hypothesized 
that the AD-associated genes may contribute to the 
etiology of cognitive aging independently and/or through 
complex interactions. The gene panel encompasses 27 
aforementioned AD-associated genes (Supplementary 
Table 1), including the ABCA7, APOE, BIN1, CASS4, 
CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, 
FERMT2, HLA-DRB1, HLA-DRB4, INPP5D, MEF2C, 
MS4A4A, MS4A4E, MS4A6E, NME8, PICALM, PLD3, 
PTK2B, RIN3, SLC24A4, SORL1, and ZCWPW1 genes.

RESULTS

Table 1 describes the demographic and clinical 
characteristics of the study population, including 
634 subjects. The median MMSE score was 27 and 
interquartile range was 25-29.

First, we investigated the association between 
cognitive aging and 27 AD-associated genes. Among the 
588 SNPs assessed in this study (Supplementary Table 
S1), there were 63 SNPs in the 17 AD-associated genes 
showing an evidence of association (P < 0.05) with MMSE 
scores as shown in Table 2. However, only the association 
of the CASS4 rs911159 SNP with MMSE scores reached 
a significance after Bonferroni correction, where the 
three separate genetic models were taken into account (P 
< 0.05/(586 x 3) = 2.8 x 10-5). As demonstrated in Table 
2, the CASS4 rs911159 SNP indicated an association 
with MMSE scores among subjects after adjustment of 
covariates such as age, gender, and education for genetic 
models, including the additive model (P = 2.2 x 10-5) and 
recessive model (P = 2.2 x 10-5).

Furthermore, the distribution of APOE alleles (ε2, 
ε3, and ε4) in our sample was 6.2%, 82.7%, and 11.1%, 
respectively (Supplementary Table S2A). Additionally, 
we found that the presence of the APOE ε4 allele had 
no significant effects in MMSE scores (Supplementary 
Table S2B). We also examined whether the genetic load 
of APOE ε4 (that is, non-carrier, heterozygous, and 
homozygous for the ε4 allele) has a significant impact in 
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Table 2: Linear regression models of associations between the MMSE scores and 17 selective AD-related genes, which 
have an evidence of association (P < 0.05).

Additive model Recessive model Dominant model

Gene CHR SNP A1 A2 MAF BETA SE P BETA SE P BETA SE P

CASS4 20 rs11698292 C T 0.13 -1.50 0.53 0.0051 -3.00 1.06 0.0051 -0.16 0.26 0.5446 

rs17365060 G A 0.15 -1.09 0.43 0.0114 -2.17 0.86 0.0118 -0.19 0.25 0.4350 

rs6069746 C T 0.16 -1.21 0.43 0.0051 -2.37 0.86 0.0060 -0.33 0.25 0.1917 

rs911159 A G 0.15 -2.13 0.50 2.2 x 10-5 -4.24 0.99 2.2 x 10-5 -0.25 0.25 0.3264 

CD2AP 6 rs1485785 C T 0.40 -0.16 0.17 0.3285 0.03 0.30 0.9296 -0.53 0.24 0.0259 

rs28360587 G T 0.39 -0.16 0.17 0.3361 0.04 0.30 0.8859 -0.55 0.24 0.0212 

rs9357542 G A 0.30 -0.27 0.20 0.1837 -0.28 0.38 0.4709 -0.53 0.22 0.0182 

CD33 19 rs1354106 G T 0.23 0.49 0.30 0.1041 0.81 0.60 0.1791 0.54 0.23 0.0198 

rs1803254 C G 0.31 0.21 0.21 0.3331 0.17 0.41 0.6759 0.50 0.22 0.0258 

CR1 1 rs12033963 A G 0.23 0.44 0.27 0.0998 0.73 0.53 0.1654 0.47 0.23 0.0430 

rs12034383 A G 0.37 -0.19 0.18 0.2753 -0.13 0.33 0.6941 -0.48 0.23 0.0357 

EPHA1 7 rs10952552 A G 0.22 0.72 0.24 0.0026 1.47 0.47 0.0018 0.15 0.23 0.5023 

FERMT2 14 rs4901317 C T 0.05 -2.34 0.81 0.0041 -4.62 1.63 0.0047 -0.85 0.35 0.0155 

MEF2C 5 rs11949307 T G 0.18 -0.74 0.37 0.0466 -1.54 0.74 0.0374 0.07 0.24 0.7665 

rs770463 T C 0.35 -0.32 0.18 0.0706 -0.77 0.33 0.0206 0.05 0.23 0.8429 

rs7737567 T C 0.12 -1.22 0.58 0.0360 -2.39 1.16 0.0393 -0.27 0.26 0.2992 

rs9293506 T C 0.12 -1.43 0.54 0.0081 -2.80 1.07 0.0092 -0.33 0.26 0.2157 

MS4A4A 11 rs12283601 A G 0.28 -0.42 0.21 0.0401 -0.70 0.40 0.0794 -0.44 0.22 0.0495 

rs1365246 C T 0.17 -0.23 0.35 0.5189 -0.30 0.70 0.6639 -0.53 0.25 0.0368 

rs7104122 C G 0.17 -0.28 0.33 0.3938 -0.43 0.66 0.5143 -0.51 0.25 0.0402 

MS4A4E 11 rs4939320 C T 0.31 0.35 0.19 0.0612 0.52 0.36 0.1484 0.47 0.23 0.0419 

rs607639 A G 0.16 -0.79 0.37 0.0318 -1.47 0.74 0.0461 -0.56 0.25 0.0263 

rs650853 T C 0.16 -0.71 0.36 0.0464 -1.32 0.71 0.0657 -0.55 0.25 0.0309 

rs662674 A G 0.16 -0.74 0.38 0.0544 -1.37 0.76 0.0734 -0.51 0.25 0.0439 

rs718376 A G 0.31 0.35 0.18 0.0562 0.49 0.35 0.1567 0.50 0.22 0.0268 

MS4A6E 11 rs11230281 C A 0.49 -0.19 0.16 0.2208 -0.52 0.26 0.0448 0.01 0.26 0.9815 

rs2289612 A C 0.38 -0.33 0.17 0.0571 -0.38 0.32 0.2365 -0.57 0.23 0.0128 

Table 1: Demographic and clinical characteristics of study subjects.
 Characteristic Overall

No. of subjects, n 634
Mean age ± SD, years 64.2±2.9
Male, %/Female, % 50.16/49.84
Married, % 82.01
Living alone, % 8.51
Any physical activity, % 63.72
Current alcohol drinker, % 5.52
Current smoker, % 6.46
High school graduate, % 59.30
MMSE score, median (IQR) 27 (25–29)

IQR = interquartile range, MMSE = Mini-Mental State Examination, SD = standard deviation. 
Data are presented as mean ± standard deviation.
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MMSE scores. Our results revealed that MMSE scores 
were associated with neither APOE ε4 homozygotes nor 
heterozygotes (Supplementary Table S2B).

Then, we identified a nominal association of 
MMSE scores with 12 more SNPs, including CASS4 

(rs11698292, rs6069746), EPHA1 rs10952552, FERMT2 
rs4901317, MEF2C rs9293506, PLD3 rs11672825, RIN3 
rs1885747, and SLC24A4 (rs12435024, rs10431740, 
rs61977311, rs67063100, rs12434016) (Table 2). For 
further investigation in the subsequent analyses, we 

rs2289614 C G 0.10 0.44 0.47 0.3481 0.80 0.95 0.3989 0.61 0.29 0.0399 

PICALM 11 rs11234495 T C 0.50 -0.25 0.16 0.1150 -0.13 0.26 0.6105 -0.54 0.26 0.0391 

rs592314 A G 0.33 0.40 0.20 0.0426 0.89 0.38 0.0187 0.00 0.22 0.9974 

rs669556 C T 0.33 0.40 0.20 0.0473 0.86 0.38 0.0261 0.04 0.23 0.8591 

PLD3 19 rs11672825 T G 0.50 0.38 0.16 0.0160 0.34 0.26 0.1928 0.68 0.25 0.0071 

rs4490097 A C 0.47 0.28 0.16 0.0828 0.27 0.27 0.3329 0.49 0.25 0.0488 

rs7507651 T G 0.47 0.30 0.16 0.0600 0.27 0.27 0.3177 0.54 0.25 0.0278 

PTK2B 8 rs10109834 C A 0.16 0.75 0.36 0.0372 1.51 0.71 0.0346 0.09 0.25 0.7298 

RIN3 14 rs10467865 G A 0.22 0.31 0.26 0.2216 0.46 0.50 0.3673 0.50 0.23 0.0294 

rs11627032 C T 0.28 -0.34 0.22 0.1285 -0.49 0.44 0.2603 -0.47 0.22 0.0349 

rs12884739 A G 0.41 0.19 0.16 0.2369 0.57 0.29 0.0500 -0.14 0.23 0.5464 

rs1885747 G A 0.18 -0.90 0.35 0.0097 -1.69 0.69 0.0150 -0.49 0.24 0.0399 

rs4904957 A G 0.38 -0.20 0.18 0.2496 -0.05 0.33 0.8781 -0.59 0.23 0.0103 

rs4904960 C T 0.38 0.38 0.18 0.0329 0.69 0.32 0.0346 0.26 0.23 0.2626 

rs8012413 A G 0.14 -0.01 0.35 0.9853 0.15 0.70 0.8283 -0.56 0.25 0.0245 

rs8017311 A G 0.35 0.43 0.18 0.0166 0.72 0.34 0.0320 0.40 0.23 0.0771 

rs9323880 T C 0.22 0.42 0.26 0.1081 0.70 0.51 0.1738 0.47 0.23 0.0434 

rs943655 A C 0.32 0.42 0.19 0.0313 0.82 0.37 0.0270 0.19 0.23 0.4052 

rs9788457 C T 0.26 -0.22 0.23 0.3197 -0.23 0.44 0.6101 -0.53 0.22 0.0189 

SLC24A4 14 rs72631607 A G 0.48 0.22 0.16 0.1548 0.56 0.26 0.0321 0.03 0.25 0.9177 

rs8022236 A G 0.31 -0.31 0.22 0.1643 -0.86 0.43 0.0436 0.35 0.23 0.1360 

rs12435024 A G 0.32 -0.51 0.19 0.0065 -0.99 0.35 0.0054 -0.26 0.23 0.2517 

rs10138927 C G 0.20 -0.58 0.28 0.0378 -1.14 0.56 0.0411 -0.24 0.24 0.3164 

rs10431740 T C 0.24 -0.51 0.18 0.0055 -1.03 0.36 0.0041 -0.28 0.23 0.2292 

rs61977311 A G 0.23 -0.71 0.27 0.0099 -1.22 0.54 0.0256 -0.64 0.23 0.0049 

rs67063100 A G 0.17 -0.66 0.33 0.0447 -1.15 0.66 0.0811 -0.71 0.24 0.0038 

rs11160069 T C 0.45 -0.35 0.17 0.0380 -0.47 0.30 0.1208 -0.46 0.24 0.0537 

rs12434016 G T 0.38 -0.49 0.17 0.0041 -0.73 0.31 0.0194 -0.58 0.23 0.0127 

rs10431637 C A 0.15 -0.63 0.38 0.0998 -1.13 0.76 0.1395 -0.58 0.25 0.0199 

rs78739077 T G 0.11 -1.42 0.63 0.0253 -2.77 1.26 0.0287 -0.42 0.27 0.1273 

SORL1 11 rs3781825 C T 0.13 0.25 0.45 0.5769 0.67 0.90 0.4597 -0.63 0.26 0.0163 

rs3862605 C T 0.17 0.33 0.29 0.2521 0.55 0.58 0.3450 0.49 0.25 0.0460 

rs4631890 A G 0.30 0.30 0.21 0.1456 0.81 0.40 0.0441 -0.25 0.22 0.2666 

rs4936632 G A 0.43 -0.09 0.16 0.6016 0.25 0.29 0.3854 -0.53 0.25 0.0330 

rs661057 T C 0.45 -0.02 0.16 0.8823 0.39 0.27 0.1551 -0.51 0.24 0.0373 

ZCWPW1 7 rs5015755 T G 0.15 0.74 0.35 0.0352 1.49 0.69 0.0321 0.08 0.25 0.7478 

A1 = minor allele, A2 = major allele, AD = Alzheimer's disease, BETA = Beta coefficients, Chr = chromosome, MAF = minor 
allele frequency, MMSE = Mini-Mental State Examination, SE = standard error.
Analysis was obtained after adjustment for covariates including age, gender, and education. P values of < 0.01 are shown in 
bold.
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selected seven key SNPs in seven AD-associated genes 
with evidence of association, including CASS4 rs911159 
(P = 2.2 x 10-5), EPHA1 rs10952552 (P = 0.0018), 
FERMT2 rs4901317 (P = 0.0041), MEF2C rs9293506 
(P = 0.0081), PLD3 rs11672825 (P = 0.0071), RIN3 
rs1885747 (P = 0.0097), and SLC24A4 rs67063100 (P = 
0.0038). In addition, the genotype frequency distributions 
for the CASS4 rs911159, EPHA1 rs10952552, FERMT2 
rs4901317, MEF2C rs9293506, PLD3 rs11672825, RIN3 
rs1885747, and SLC24A4 rs67063100 SNPs were in 
accordance with the Hardy-Weinberg equilibrium among 
the subjects (P = 0.126, 0.253, 0.611, 0.271, 0.800, 0.416, 
and 0.649, respectively). 

Next, we employed categorized MMSE scores 
as an outcome (normal: MMSE score ≥ 24; cognitive 
impairment: MMSE score < 24) for gene-gene and gene-
lifestyle analysis. First, the GMDR analysis was used to 
assess the impacts of combinations between the seven 
key SNPs in cognitive aging including age, gender, and 
education as covariates. Table 3 summarizes the results 
obtained from GMDR analysis for two-way gene-gene 
interaction models with covariate adjustment. As shown in 
Table 3, there was a significant two-way model involving 
CASS4 rs911159 and SLC24A4 rs67063100 (P = 0.035), 
EPHA1 rs10952552 and SLC24A4 rs67063100 (P = 
0.016), FERMT2 rs4901317 and MEF2C rs9293506 (P 
= 0.008), FERMT2 rs4901317 and SLC24A4 rs67063100 
(P = 0.004), as well as MEF2C rs9293506 and SLC24A4 
rs67063100 (P = 0.009), indicating a potential gene-

gene interaction between CASS4 and SLC24A4, between 
EPHA1 and SLC24A4, between FERMT2 and MEF2C, 
between FERMT2 and SLC24A4, as well as between 
MEF2C and SLC24A4 in influencing cognitive aging. 

Furthermore, we utilized multivariable logistic 
regression analysis with adjustment for age, gender, and 
education to assess the two-way gene-gene interaction 
models selected by the GMDR method (Supplementary 
Table S3). Our analysis revealed that the carriers with the 
AA genotype of CASS4 rs911159 and the GG genotype of 
SLC24A4 rs67063100 had a 7.05-fold increased risk for 
cognitive aging, compared to those with the GG genotype 
of CASS4 rs911159 and the GG genotype of SLC24A4 
rs67063100 (Supplementary Table S3). Additionally, the 
carriers with the AG genotype of EPHA1 rs10952552 
and the A allele of SLC24A4 rs67063100 had a 2.26-fold 
increased risk for cognitive aging, compared to those 
with the GG genotype of EPHA1 rs10952552 and the 
GG genotype of SLC24A4 rs67063100 (Supplementary 
Table S3). Moreover, the carriers with the TT genotype 
of FERMT2 rs4901317 and the GG genotype of SLC24A4 
rs67063100 had a 0.23-fold increased risk for cognitive 
aging, compared to those with the CT genotype of 
FERMT2 rs4901317 and the A allele of SLC24A4 
rs67063100 (Supplementary Table S3). Similarly, the 
carriers with the TC genotype of MEF2C rs9293506 
and the A allele of SLC24A4 rs67063100 had a 2.79-fold 
increased risk for cognitive aging, compared to those 
with the CC genotype of MEF2C rs9293506 and the GG 

Table 3: Gene-gene interaction models identified by the GMDR method with adjustment for age, gender, and education.
Interaction model Testing accuracy (%) P value

CASS4 rs911159, EPHA1 rs10952552 52.56 0.259
CASS4 rs911159, FERMT2 rs4901317 53.57 0.139
CASS4 rs911159, MEF2C rs9293506 52.52 0.262
CASS4 rs911159, PLD3 rs11672825 55.85 0.059
CASS4 rs911159, RIN3 rs1885747 48.31 0.699

CASS4 rs911159, SLC24A4 rs67063100 56.53 0.035
EPHA1 rs10952552, FERMT2 rs4901317 46.39 0.840
EPHA1 rs10952552, MEF2C rs9293506 55.12 0.093
EPHA1 rs10952552, PLD3 rs11672825 51.36 0.361
EPHA1 rs10952552, RIN3 rs1885747 49.35 0.626

EPHA1 rs10952552, SLC24A4 rs67063100 57.69 0.016
FERMT2 rs4901317, MEF2C rs9293506 57.47 0.008
FERMT2 rs4901317, PLD3 rs11672825 49.84 0.519
FERMT2 rs4901317, RIN3 rs1885747 48.37 0.691

FERMT2 rs4901317, SLC24A4 rs67063100 58.48 0.004
MEF2C rs9293506, PLD3 rs11672825 55.02 0.104
MEF2C rs9293506, RIN3 rs1885747 49.65 0.570

MEF2C rs9293506, SLC24A4 rs67063100 58.05 0.009
PLD3 rs11672825, RIN3 rs1885747 48.96 0.600

PLD3 rs11672825, SLC24A4 rs67063100 54.65 0.142
RIN3 rs1885747, SLC24A4 rs67063100 55.34 0.085

GMDR = generalized multifactor dimensionality reduction.
P value was based on 1,000 permutations. Analysis was obtained after adjustment for covariates including age, gender, and 
education. P values of < 0.05 are shown in bold.
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genotype of SLC24A4 rs67063100 (Supplementary Table 
S3).

Furthermore, statistical power analysis revealed 
that the present study had a 99.9% power to detect gene-
gene interactions between CASS4 and SLC24A4, between 
EPHA1 and SLC24A4, between FERMT2 and SLC24A4, 
as well as between MEF2C and SLC24A4. In addition, this 
study had a 91.3% power to detect a gene-gene interaction 
between FERMT2 and MEF2C.

Moreover, Table 4 shows the GMDR analysis of 
gene-lifestyle interaction models in cognitive aging using 
age, gender, and education as covariates. As shown in 
Table 4, there was a significant two-way model involving 
SLC24A4 rs67063100 and lifestyle factors such as 
smoking (P = 0.041), alcohol consumption (P = 0.008), 
and physical activity (P = 0.038), indicating a potential 
gene-lifestyle interaction among SLC24A4 and lifestyle 
factors in influencing cognitive aging. Similarly, there was 
a significant two-way model involving MEF2C rs9293506 
and social support (P = 0.039). However, there was no 

significant two-way model involving lifestyle factors 
and other five SNPs including CASS4 rs911159, EPHA1 
rs10952552, FERMT2 rs4901317, PLD3 rs11672825, and 
RIN3 rs1885747.

DISCUSSION

Our study is the first to date to pinpoint whether the 
main effects of 588 SNPs in 27 AD-associated genes are 
significantly associated with the risk of cognitive aging 
independently and/or through gene-gene interactions 
among old Taiwanese individuals. We also looked over the 
relationship between these genes and lifestyle factors to 
investigate whether these genes confer a risk of cognitive 
aging according to its impact on gene-lifestyle interactions. 
Here, we report for the first time that several SNPs of the 
AD-associated genes including CASS4 rs911159, EPHA1 
rs10952552, FERMT2 rs4901317, MEF2C rs9293506, 
PLD3 rs11672825, RIN3 rs1885747, and SLC24A4 
rs67063100 may play an important role in the modulation 

Table 4: Gene-lifestyle interaction models identified by the GMDR method with adjustment for age, gender, and 
education.

Interaction model Testing accuracy (%) P value
CASS4 rs911159, smoking 50.85 0.416

CASS4 rs911159, alcohol consumption 52.15 0.287
CASS4 rs911159, physical activity 50.03 0.520
CASS4 rs911159, social support 52.68 0.233
EPHA1 rs10952552, smoking 52.40 0.275

EPHA1 rs10952552, alcohol consumption 52.74 0.247
EPHA1 rs10952552, physical activity 47.16 0.766
EPHA1 rs10952552, social support 53.76 0.156

FERMT2 rs4901317, smoking 50.75 0.388
FERMT2 rs4901317, alcohol consumption 50.25 0.461

FERMT2 rs4901317, physical activity 45.70 0.862
FERMT2 rs4901317, social support 50.99 0.388

MEF2C rs9293506, smoking 54.39 0.081
MEF2C rs9293506, alcohol consumption 53.75 0.147

MEF2C rs9293506, physical activity 52.53 0.282
MEF2C rs9293506, social support 55.65 0.039

PLD3 rs11672825, smoking 47.86 0.690
PLD3 rs11672825, alcohol consumption 50.39 0.449

PLD3 rs11672825, physical activity 49.04 0.598
PLD3 rs11672825, social support 49.87 0.535

RIN3 rs1885747, smoking 45.49 0.899
RIN3 rs1885747, alcohol consumption 46.39 0.838

RIN3 rs1885747, physical activity 46.13 0.857
RIN3 rs1885747, social support 47.95 0.723
SLC24A4 rs67063100, smoking 55.86 0.041

SLC24A4 rs67063100, alcohol consumption 57.64 0.008
SLC24A4 rs67063100, physical activity 56.81 0.038
SLC24A4 rs67063100, social support 54.25 0.126

GMDR = generalized multifactor dimensionality reduction.
P value was based on 1,000 permutations. Analysis was obtained after adjustment for covariates including age, gender, and 
education. P values of < 0.05 are shown in bold.
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of cognitive aging in old adults in a Taiwanese population. 
Notably, the significant association of the CASS4 rs911159 
SNP with MMSE scores persisted after correction for 
multiple testing (P < 2.8 x 10-5). Additionally, our data 
revealed that gene-gene interactions of EPHA1, MEF2C, 
and SLC24A4 may contribute to the etiology of cognitive 
aging. Our data also indicated that there were gene-
lifestyle interactions of SLC24A4 with lifestyle, such as 
smoking status, alcohol consumption, or physical activity. 
Finally, there was a gene-lifestyle interaction of MEF2C 
with social support.

To our knowledge, our results are the first to 
raise the possibility that 4 SNPs in the CASS4 gene 
may contribute to the susceptibility for cognitive aging. 
Intriguingly, the CASS4 rs911159 SNP (P = 2.2 x 10-5) 
persisted a significant association with MMSE scores 
after Bonferroni correction. The CASS4 gene is located on 
chromosome 20q13.31 and encodes a member of the Crk-
associated substrate scaffolding protein family [17]. The 
protein encoded by the CASS4 gene has been implicated 
in the regulation of cell spreading, focal adhesion integrity, 
and focal adhesion kinase activation [17]. Furthermore, 
we speculate that the CASS4 gene may play a central 
role in the amyloid precursor protein (APP) and Tau 
protein, which are the hallmarks of AD [18]. The meta-
analysis of GWAS studies by Lambert et al. identified 
the CASS4 rs7274581 SNP as an AD risk variant [11]. 
In the following GWAS study, Beecham et al. confirmed 
an association between CASS4 rs7274581 and AD by 
using brain autopsy data [19]. On the contrary, Ruiz et 
al. suggested that the CASS4 rs7274581 polymorphism 
was unlikely to influence AD in a Spanish sample in the 
following replication study [20]. Furthermore, Rosenthal 
et al. reported a major involvement of the CASS4 
rs6024870 polymorphism in AD in another replication 
study by using the RegulomeDB database [21]. Wang 
et al. also demonstrated an association between CASS4 
rs16979934 and AD in a USA sample in a subsequent 
GWAS study [22]. Finally, it should be noted that the 
minor allele frequencies of the imputed CASS4 rs7274581, 
rs16979934, and rs6024870 SNPs are all 0% in this study 
(Supplementary Table S4). 

The second locus, the rs10952552 SNP, was 
identified at the EPHA1 gene. The EPHA1 gene is 
located on chromosome 7q34-35 and encodes a member 
of the ephrins family of tyrosine kinase receptors, 
which have been indicated in mediating developmental 
events in the nervous system [18]. Two GWAS studies 
by Naj et al. [9] and Hollingworth et al. [10] indicated 
that the EPHA1 rs11767557 SNP may contribute to the 
reduced susceptibility for AD. Moreover, the following 
meta-analysis of GWAS studies implicated that the 
EPHA1 rs11771145 may be involved with reduced AD 
susceptibility [11]. On the contrary, we failed to capture 
an association between the EPHA1 rs11771145 SNP and 
cognitive aging.

In addition, an intriguing finding was a positive 
association of cognitive aging with 11 SNPs within the 
SLC24A4 gene, especially the rs12435024, rs10431740, 
rs61977311, rs67063100, and rs12434016 SNPs. The 
SLC24A4 gene, located on chromosome 14q32.12, 
encodes a member of the potassium-dependent sodium/
calcium exchanger protein family, which might be 
connected to neurological development [23]. In a meta-
analysis study, Lambert et al. pinpointed SLC24A4 
rs10498633 as an AD risk SNP [11]; however, SLC24A4 
rs10498633 had no association with cognitive aging in our 
study.

The fourth locus, the rs4901317 SNP, was within the 
FERMT2 gene, which is located on chromosome 14q22.1. 
The corresponding protein of the FERMT2 gene has been 
previously implicated with roles in cell adhesion and Tau 
neurotoxicity [24]. The FERMT2 rs17125944 SNP has 
been reported to associate with AD susceptibility in a 
meta-analysis study [11], but FERMT2 rs17125944 had 
no association with cognitive aging in our study.

On another note, there was an association of 
cognitive aging with 3 SNPs within the PLD3 gene, 
particularly the rs11672825 SNP. The PLD3 gene, 
located on chromosome 19q13.2, encodes a member of 
the phospholipase D family of enzymes, which influence 
processing of amyloid-beta precursor protein [12]. 
Cruchaga et al. identified a rare PLD3 rs145999145 
(Val232Met) as an AD risk variant in a whole-exome 
sequencing study [12]; however, the minor allele 
frequency of the imputed PLD3 rs145999145 SNP is 0% 
in this study (Supplementary Table S4). 

We also observed an association of cognitive 
aging with 4 SNPs within the MEF2C gene, notably 
the rs9293506 SNP. The MEF2C gene, located on 
chromosome 5q14.3, encodes a member of the MADS box 
transcription enhancer factor 2 family of proteins, which 
plays a major role in hippocampal synaptic connectivity 
and thus may regulate hippocampal-dependent learning 
and memory [25]. The MEF2C rs190982 SNP has been 
demonstrated to link with AD in a meta-analysis study 
[11]. In contrast, MEF2C rs190982 showed no association 
with cognitive aging in our study.

Furthermore, our analysis indicated a positive 
association of cognitive aging with 11 SNPs within the 
RIN3 gene, especially the rs1885747 SNP. The RIN3 gene, 
located on chromosome 14q32.12, is in the vicinity of the 
SLC24A4 gene and encodes a member of the RIN family 
of Ras interaction-interference proteins, which interacts 
with the BIN1 protein that might be linked with an AD-
relevant pathological process involving APP and Tau 
pathology [26].

Remarkably, another intriguing finding was that 
we further inferred the epistatic effects between CASS4, 
EPHA1, FERMT2, MEF2C, or SLC24A4 in influencing 
cognitive aging by using the GMDR approach. To our 
knowledge, no other study has been conducted to weigh 



Oncotarget24084www.impactjournals.com/oncotarget

gene-gene interactions between these genes. Besides the 
statistical significance, the potential biological mechanism 
under the interaction models was our concern. The 
functional relevance of the interactive impact of CASS4, 
EPHA1, FERMT2, MEF2C, or SLC24A4 on cognitive 
aging remains to be elucidated. We further speculate that 
the CASS4, EPHA1, FERMT2, MEF2C, or SLC24A4 genes 
may be involved in the same pathways or pathology. Yu et 
al. found that DNA methylation in the SLC24A4 gene was 
associated with pathological AD diagnosis, suggesting that 
altered methylation in the SLC24A4 gene might involve 
Tau pathology [27]. In addition, the SLC24A4 gene is 
located next to the RIN3 gene, which interacts with the 
BIN1 gene in the Tau, APP [26], and endocytosis [28] 
pathways. By putting together the previous findings, 
the SLC24A4, FERMT2, and CASS4 genes have been 
implicated in Tau pathology [11, 26]. Similarly, the 
SLC24A4 and EPHA1 genes are involved in the pathway 
of endocytosis [18, 28]. The EPHA1 and MEF2C genes 
are also implicated in the process of immune response and 
neuroinflammation [11, 18]. Furthermore, the SLC24A4 
and CASS4 genes have been linked with the metabolism 
of APP [11, 26].

In the GMDR analysis of gene-lifestyle interactions, 
we tracked down the interplay between the SLC24A4 gene 
and lifestyle such as smoking, alcohol consumption, and 
physical activity as well as the interplay between the 
MEF2C gene and social support. It has been pointed out 
that common diseases are known to have a major genetic 
contribution, but only a small proportion of complex 
diseases overall is explained by the established candidate 
genes, suggesting that the impact of lifestyle and gene-
lifestyle interactions will be essential in future studies [13, 
29].

It is worth mentioning that the well-known MMSE, 
the most widely used screening test of cognition, can be 
easily administered in about 5 to10 minutes; however, 
it has floor and ceiling effects, reducing variability in 
the data [30]. On the other hand, a well-validated scale 
in cognitive performance is the Alzheimer’s Disease 
Assessment Scale - Cognitive section (ADAS-Cog), where 
a four-point change on ADAS-Cog has been established 
as a clinically important change in cognition [31]. But, 
ADAS-Cog takes around 40 minutes to administer, and its 
length makes ADAS-Cog unsuitable for clinical practice 
[30].

This study has both strengths and limitations. The 
main weakness was that our observations require much 
further research to pinpoint whether the present research 
findings are sustained in diverse ethnic groups [32-34]. 
Second, given that the mean age (±SD) of the sample 
was 64.2 (±2.9), our findings are not generalizable to 
much older cohorts that would be at the highest risk of 
developing neurodegenerative disorders. The outlook for 
prospective clinical trials with other ethnic populations 
is still warranted to provide a comprehensive evaluation 
of the association and interactions of the investigated 

variants with cognitive aging [35-37]. On the other hand, 
a key strength of our study was that we leveraged lifestyle 
data, which served a suitable opportunity to facilitate the 
interplay between the investigated variants and lifestyle 
factors.

CONCLUSIONS

In conclusion, we explored an extensive analysis 
of the association as well as gene-gene and gene-lifestyle 
interactions of the AD-associated genes with cognitive 
aging in older Taiwanese subjects. Overall, results from 
the current study serve to highlight that the CASS4, 
EPHA1, FERMT2, MEF2C, PLD3, RIN3, and SLC24A4 
genes may affect the prevalence of cognitive aging 
independently and/or through complex gene-gene and 
gene-lifestyle interactions. Independent replication studies 
with a much larger number of participants will likely 
demonstrate further insights into the role of the cognitive 
aging-related genes tracked down in this study.

MATERIALS AND METHODS

Study population

This study incorporated Taiwanese Han Chinese 
subjects from the Taiwan Biobank [38-40]. The study 
cohort consisted of 634 participants. Ethical approval for 
the study was granted by the Internal Review Board of 
the Taiwan Biobank before conducting the study. Each 
subject signed the approved informed consent form. All 
experiments were performed in accordance with relevant 
guidelines and regulations.

Education was defined based on whether or not high 
school was attended. Current alcohol drinker was defined 
as currently drinking 150 ml of alcohol per week for more 
than six months. Current smoker was defined as currently 
smoking for more than six months. Physical activity was 
defined by the amount of exercise activity for more than 
three times and more than 30 minutes each time in each 
week. Social support was assessed based on marital status 
and whether or not living alone.

Cognitive assessment

Global cognitive assessment was performed using 
the 30-point Mini-Mental State Examination (MMSE), 
which includes questions based on five domains such as 
orientation, registration, attention and calculation, recall, 
and language. We analyzed MMSE as a continuous 
outcome, as well as according to categories based on 
previously defined MMSE thresholds [30]: MMSE 
score ≥ 24 (normal) and MMSE score < 24 (cognitive 
impairment).
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Genotyping

DNA was isolated from blood samples using a 
QIAamp DNA blood kit following the manufacturer’s 
instructions (Qiagen, Valencia, CA, USA). The quality of 
the isolated genomic DNA was evaluated using agarose 
gel electrophoresis, and the quantity was determined by 
spectrophotometry [41, 42]. SNP genotyping was carried 
out using the custom Taiwan BioBank chips and run on 
the Axiom Genome-Wide Array Plate System (Affymetrix, 
Santa Clara, CA, USA). The SNP panel covered variants 
from the following 27 AD-associated genes: ABCA7, 
APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, 
CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, HLA-DRB4, 
INPP5D, MEF2C, MS4A4A, MS4A4E, MS4A6E, NME8, 
PICALM, PLD3, PTK2B, RIN3, SLC24A4, SORL1, and 
ZCWPW1.

In addition, APOE variants (ε2, ε3, and ε4) were 
derived from rs7412 and rs4420638, where rs4420638, a 
proxy for APOE rs429358, was used to impute rs429358 
[43].

Moreover, we leveraged MACH [44] to carry out 
genotype imputation with 20 iterations of the Markov 
sampler, 200 states, and 1000 genomes reference panel. 
MACH employs a Markov Chain algorithm to impute 
missing genotypes by using haplotypes as templates [44].

Statistical analysis

In this study, we weighed the association of the 
investigated SNP with MMSE scores by a general linear 
model using age, gender, education as covariates [45, 
46]. The genotype frequencies were assessed for Hardy-
Weinberg equilibrium using a χ2 goodness-of-fit test with 
1 degree of freedom (i.e. the number of genotypes minus 
the number of alleles). Multiple testing was adjusted by 
the Bonferroni correction. The criterion for significance 
was set at P < 0.05 for all tests. Data are presented as the 
mean ± standard deviation.

To investigate gene-gene and gene-lifestyle 
interactions, we leveraged the generalized multifactor 
dimensionality reduction (GMDR) method [47]. We 
tested two-way interactions using 10-fold cross-validation. 
The GMDR software provides some output parameters, 
including the testing accuracy and empirical P values, 
to assess each selected interaction. Furthermore, the 
testing accuracy is a measure of the degree to which the 
interaction accurately predicts case-control status with 
scores between 50% (implying that the model predicts 
no better than chance) and 100% (implying perfect 
prediction). Moreover, we provided age, gender, education 
as covariates for gene-gene and gene-lifestyle interaction 
models in our interaction analyses. Permutation testing 
obtains empirical P values of prediction accuracy as a 
benchmark based on 1,000 shuffles.

Based on the effect sizes in this study, the power to 
detect gene-gene interactions was evaluated by QUANTO 
software (http://biostats.usc.edu/Quanto.html).

ACKNOWLEDGMENTS AND GRANT 
SUPPORT

The authors extend their sincere thanks to Vita 
Genomics, Inc. for funding this research. This work was 
supported by the Ministry of Economic Affairs in Taiwan 
(SBIR Grant S099000280249-154; EL), by Taipei Veterans 
General Hospital, Taiwan (Grants VGHUST103-G1-4-1, 
V105C-008, and V105E17-002-MY2-1; SJT), and by 
Ministry of Science and Technology, Taiwan (Grant MST 
102-2314-B-002-117-MY3; PHK). In addition, we thank 
Emily Ting for English editing.

CONFLICTS OF INTEREST

The authors declare no potential conflicts of 
interests.

REFERENCES

1. Committee on the Public Health Dimensions of Cognitive 
Aging; Board on Health Sciences Policy; Institute of 
Medicine; Blazer DG, Yaffe K, Liverman CT, editors. 
Cognitive Aging: Progress in Understanding and 
Opportunities for Action. Washington, DC, USA: National 
Academies Press; 2015 Jul.

2. Katz MJ, Lipton RB, Hall CB, Zimmerman ME, Sanders 
AE, Verghese J, Dickson DW, Derby CA. Age-specific and 
sex-specific prevalence and incidence of mild cognitive 
impairment, dementia, and Alzheimer dementia in blacks 
and whites: a report from the Einstein Aging Study. 
Alzheimer Dis Assoc Disord. 2012; 26:335-43.

3. Barnes LL, Bennett DA. Alzheimer’s disease in African 
Americans: risk factors and challenges for the future. Health 
Aff (Millwood). 2014; 33:580-6.

4. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo 
JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, 
Bateman R, Cappa S, Crutch S, Engelborghs S, et al. 
Advancing research diagnostic criteria for Alzheimer’s 
disease: the IWG-2 criteria. Lancet Neurol. 2014; 13:614-
29.

5. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman 
HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, 
Knopman DS, Petersen RC, Scheltens P, Sperling RA, et 
al. A/T/N: An unbiased descriptive classification scheme for 
Alzheimer disease biomarkers. Neurology. 2016; 87:539-
47.

6. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish 
A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, 
Williams A, Jones N, Thomas C, Stretton A, et al. Genome-
wide association study identifies variants at CLU and 

http://biostats.usc.edu/Quanto.html


Oncotarget24086www.impactjournals.com/oncotarget

PICALM associated with Alzheimer’s disease. Nat Genet. 
2009; 41:1088-93.

7. Lambert JC, Heath S, Even G, Campion D, Sleegers 
K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, 
Tavernier B, Letenneur L, Bettens K, Berr C, et al. 
Genome-wide association study identifies variants at CLU 
and CR1 associated with Alzheimer’s disease. Nat Genet. 
2009; 41:1094-9.

8. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, 
Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo 
MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca 
R, et al. Genome-wide analysis of genetic loci associated 
with Alzheimer disease. JAMA. 2010; 303:1832-40.

9. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, 
Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, 
Larson EB, Bird TD, Boeve BF, et al. Common variants 
at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are 
associated with late-onset Alzheimer’s disease. Nat Genet. 
2011; 43:436-41.

10. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert 
JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa 
JS, Moskvina V, Dowzell K, Jones N, Stretton A, et al. 
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, 
CD33 and CD2AP are associated with Alzheimer’s disease. 
Nat Genet. 2011; 43:429-35.

11. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, 
Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham 
GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones 
N, et al. Meta-analysis of 74,046 individuals identifies 11 
new susceptibility loci for Alzheimer’s disease. Nat Genet. 
2013; 45:1452-8.

12. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, 
Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, Jeng 
AT, Cooper B, Skorupa T, et al. Rare coding variants in the 
phospholipase D3 gene confer risk for Alzheimer’s disease. 
Nature. 2014; 505:550-4.

13. Ebbert MT, Ridge PG, Wilson AR, Sharp AR, Bailey M, 
Norton MC, Tschanz JT, Munger RG, Corcoran CD, Kauwe 
JS. Population-based analysis of Alzheimer’s disease risk 
alleles implicates genetic interactions. Biol Psychiatry. 
2014; 75:732-7.

14. Ebbert MT, Boehme KL, Wadsworth ME, Staley LA; 
Alzheimer’s Disease Neuroimaging Initiative; Alzheimer’s 
Disease Genetics Consortium, Mukherjee S, Crane PK, 
Ridge PG, Kauwe JS. Interaction between variants in 
CLU and MS4A4E modulates Alzheimer’s disease risk. 
Alzheimers Dement. 2016; 12:121-9.

15. Chibnik LB, Shulman JM, Leurgans SE, Schneider JA, 
Wilson RS, Tran D, Aubin C, Buchman AS, Heward CB, 
Myers AJ, Hardy JA, Huentelman MJ, Corneveaux JJ, et 
al. CR1 is associated with amyloid plaque burden and age-
related cognitive decline. Ann Neurol. 2011; 69:560-9.

16. Nettiksimmons J, Tranah G, Evans DS, Yokoyama JS, 
Yaffe K. Gene-based aggregate SNP associations between 
candidate AD genes and cognitive decline. Age (Dordr). 

2016; 38:41.
17. Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou 

S, Canutescu A, Egleston BL, Golemis EA. A novel Cas 
family member, HEPL, regulates FAK and cell spreading. 
Mol Biol Cell. 2008;19:1627-36.

18. Karch CM, Goate AM. Alzheimer’s disease risk genes and 
mechanisms of disease pathogenesis. Biol Psychiatry. 2015; 
77:43-51.

19. Beecham GW, Hamilton K, Naj AC, Martin ER, 
Huentelman M, Myers AJ, Corneveaux JJ, Hardy J, 
Vonsattel JP, Younkin SG, Bennett DA, De Jager PL, 
Larson EB, et al. Genome-wide association meta-analysis 
of neuropathologic features of Alzheimer’s disease and 
related dementias. PLoS Genet. 2014; 10:e1004606.

20. Ruiz A, Heilmann S, Becker T, Hernández I, Wagner H, 
Thelen M, Mauleón A, Rosende-Roca M, Bellenguez C, Bis 
JC, Harold D, Gerrish A, Sims R, et al. Follow-up of loci 
from the International Genomics of Alzheimer’s Disease 
Project identifies TRIP4 as a novel susceptibility gene. 
Transl Psychiatry. 2014; 4:e358. 

21. Rosenthal SL, Barmada MM, Wang X, Demirci FY, 
Kamboh MI. Connecting the dots: potential of data 
integration to identify regulatory SNPs in late-onset 
Alzheimer’s disease GWAS findings. PLoS One. 2014; 
9:e95152.

22. Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky 
ST, Barmada MM, Demirci FY, Kamboh MI. Genetic 
determinants of disease progression in Alzheimer’s disease. 
J Alzheimers Dis. 2015; 43:649-55.

23. Larsson M, Duffy DL, Zhu G, Liu JZ, Macgregor S, McRae 
AF, Wright MJ, Sturm RA, Mackey DA, Montgomery GW, 
Martin NG, Medland SE. GWAS findings for human iris 
patterns: associations with variants in genes that influence 
normal neuronal pattern development. Am J Hum Genet. 
2011; 89:334-43.

24. Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, 
Hu Y, Devenport D, Chipendo P, Chibnik LB, Diamond 
A, Perrimon N, Brown NH, De Jager PL, Feany MB. 
Functional screening in Drosophila identifies Alzheimer’s 
disease susceptibility genes and implicates Tau-mediated 
mechanisms. Hum Mol Genet. 2014; 23:870-7.

25. Akhtar MW, Kim MS, Adachi M, Morris MJ, Qi X, 
Richardson JA, Bassel-Duby R, Olson EN, Kavalali ET, 
Monteggia LM. In vivo analysis of MEF2 transcription 
factors in synapse regulation and neuronal survival. PLoS 
One. 2012; 7:e34863.

26. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van 
Cauwenberghe C, Kolen KV, Geller F, Sottejeau Y, Harold 
D, Dourlen P, Grenier-Boley B, Kamatani Y, Delepine B, 
et al. Increased expression of BIN1 mediates Alzheimer 
genetic risk by modulating tau pathology. Mol Psychiatry. 
2013; 18:1225-34.

27. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, 
Xu J, Kozubek J, Obholzer N, Leurgans SE, Schneider 



Oncotarget24087www.impactjournals.com/oncotarget

JA, Meissner A, De Jager PL, Bennett DA. Association 
of Brain DNA methylation in SORL1, ABCA7, HLA-
DRB5, SLC24A4, and BIN1 with pathological diagnosis of 
Alzheimer disease. JAMA Neurol. 2015; 72:15-24.

28. Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu 
H, Katada T. RIN3: a novel Rab5 GEF interacting with 
amphiphysin II involved in the early endocytic pathway. J 
Cell Sci. 2003; 116:4159-68.

29. Lee SH, Harold D, Nyholt DR; ANZGene Consortium; 
International Endogene Consortium; Genetic and 
Environmental Risk for Alzheimer’s disease Consortium, 
Goddard ME, Zondervan KT, Williams J, Montgomery 
GW, Wray NR, Visscher PM. Estimation and partitioning 
of polygenic variation captured by common SNPs for 
Alzheimer’s disease, multiple sclerosis and endometriosis. 
Hum Mol Genet. 2013; 22:832-41.

30. Sheehan B. Assessment scales in dementia. Ther Adv 
Neurol Disord. 2012; 5:349-58.

31. Rockwood K, Fay S, Gorman M, Carver D, Graham JE. 
The clinical meaningfulness of ADAS-Cog changes in 
Alzheimer’s disease patients treated with donepezil in an 
open-label trial. BMC Neurol. 2007; 7:26.

32. Hsiao TJ, Hwang Y, Chang HM, Lin E. Association of the 
rs6235 variant in the proprotein convertase subtilisin/kexin 
type 1 (PCSK1) gene with obesity and related traits in a 
Taiwanese population. Gene. 2014; 533:32-7.

33. Hsiao TJ, Lin E. A common rs7903146 variant of the 
transcription factor 7 like 2 gene is associated with type 
2 diabetes mellitus and fasting glucose in a Taiwanese 
population. Diabetes Metab. (in press) doi: 10.1016/j.
diabet.2016.05.003.

34. Hsiao TJ, Lin E. Evaluation of the glutamine 27 glutamic 
acid polymorphism in the adrenoceptor beta 2 surface gene 
on obesity and metabolic phenotypes in Taiwan. J Investig 
Med. 2014; 62:310-5.

35. Lane HY, Tsai GE, Lin E. Assessing gene-gene interactions 
in pharmacogenomics. Mol Diagn Ther. 2012; 16:15-27.

36. Hsiao TJ, Lin E. Association of a common rs9939609 
variant in the fat mass and obesity-associated (FTO) gene 
with obesity and metabolic phenotypes in a Taiwanese 
population: a replication study. J Genet. 2016; 95:595-601.

37. Hsiao TJ, Lin E. A validation study of adiponectin rs266729 
gene variant with type 2 diabetes, obesity, and metabolic 
phenotypes in a Taiwanese population. Biochem Genet. 
2016; 54:830-841.

38. Fan CT, Lin JC, Lee CH. Taiwan Biobank: a project 
aiming to aid Taiwan’s transition into a biomedical island. 
Pharmacogenomics. 2008; 9:235-46.

39. Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. 
Association and interaction of APOA5, BUD13, CETP, 
LIPA and health-related behavior with metabolic syndrome 
in a Taiwanese population. Sci Rep. 2016; 6:36830.

40. Chen CH, Yang JH, Chiang CW, Hsiung CN, Wu PE, 
Chang LC, Chu HW, Chang J, Song IW, Yang SL, Chen 
YT, Liu FT, Shen CY. Population structure of Han Chinese 
in the modern Taiwanese population based on 10,000 
participants in the Taiwan Biobank project. Hum Mol 
Genet. 2016 Oct 18. [Epub ahead of print].

41. Liou YJ, Bai YM, Lin E, Chen JY, Chen TT, Hong CJ, Tsai 
SJ. Gene-gene interactions of the INSIG1 and INSIG2 in 
metabolic syndrome in schizophrenic patients treated with 
atypical antipsychotics. Pharmacogenomics J. 2012; 12:54-
61

42. Hsiao TJ, Lin E. The ENPP1 K121Q polymorphism is 
associated with type 2 diabetes and related metabolic 
phenotypes in a Taiwanese population. Mol Cell 
Endocrinol. 2016; 433:20-25.

43. Felsky D, Szeszko P, Yu L, Honer WG, De Jager PL, 
Schneider JA, Malhotra AK, Lencz T, Ikuta T, Pipitone 
J, Chakravarty MM, Lobaugh NJ, Mulsant BH, et al. The 
SORL1 gene and convergent neural risk for Alzheimer’s 
disease across the human lifespan. Mol Psychiatry. 2014; 
19:1125-32.

44. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: 
using sequence and genotype data to estimate haplotypes 
and unobserved genotypes. Genet Epidemiol. 2010; 34:816-
34.

45. Hsiao TJ, Lin E. The Pro12Ala polymorphism in the 
peroxisome proliferator-activated receptor gamma 
(PPARG) gene in relation to obesity and metabolic 
phenotypes in a Taiwanese population. Endocrine. 2015; 
48:786-93.

46. Hsiao TJ, Hwang Y, Liu CH, Chang HM, Lin E. 
Association of the C825T polymorphism in the GNB3 gene 
with obesity and metabolic phenotypes in a Taiwanese 
population. Genes Nutr. 2013; 8:137-44.

47. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li 
MD. A generalized combinatorial approach for detecting 
gene-by-gene and gene-by-environment interactions with 
application to nicotine dependence. Am J Hum Genet. 
2007; 80:1125-1137.


