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ABSTRACT
Although the majority of papillary thyroid cancer (PTC) is indolent, a subset 

of PTC behaves aggressively despite the best available treatment. A major clinical 
challenge is to reliably distinguish early on between those patients who need 
aggressive treatment from those who do not. Using a large cohort of PTC samples 
obtained from The Cancer Genome Atlas (TCGA), we analyzed the association between 
disease progression and multiple forms of genomic data, such as transcriptome, 
somatic mutations, and somatic copy number alterations, and found that genes related 
to FOXM1 signaling pathway were significantly associated with PTC progression. 
Integrative genomic modeling was performed, controlling for demographic and 
clinical characteristics, which included patient age, gender, TNM stages, histological 
subtypes, and history of other malignancy, using a leave-one-out elastic net model 
and 10-fold cross validation. For each subject, the model from the remaining subjects 
was used to determine the risk index, defined as a linear combination of the clinical 
and genomic variables from the elastic net model, and the stability of the risk index 
distribution was assessed through 2,000 bootstrap resampling. We developed a novel 
approach to combine genomic alterations and patient-related clinical factors that 
delineates the subset of patients who have more aggressive disease from those whose 
tumors are indolent and likely will require less aggressive treatment and surveillance 
(p = 4.62 × 10–10, log-rank test). Our results suggest that risk index modeling that 
combines genomic alterations with current staging systems provides an opportunity 
for more effective anticipation of disease prognosis and therefore enhanced precision 
management of PTC. 

INTRODUCTION

It is anticipated that more than 64,300 Americans 
will be diagnosed with thyroid cancer in 2016 [1]; nearly 
90% will have papillary thyroid cancer (PTC). PTC 
is the fastest increasing cancer in men and women in 
the U.S.; it is already the most common cancer among 
women ≤ 35 years, and the incidence and aggressiveness 
of this malignancy increase with patient age. With the 
aging of the U.S. population, it is anticipated that the 

observed increase in incidence of nearly 3-fold over the 
past 30 years will only continue [2]; in part, this is due 
to increased use of diagnostic imaging modalities, such 
as CT, PET, MRI, and ultrasound [3]. Almost the entire 
change has been attributed to an increase in the incidence 
specifically of PTC that has been observed across all age 
groups [4], with an increase of more than 150% over the 
last decade alone. 

Fortunately, PTC is usually indolent and can be 
effectively treated with surgical resection, often combined 
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with radioiodine therapy. Although treatment is usually 
curative, with an overall 5-year survival rate of about 
95%, survival drops precipitously in the setting of locally 
advanced, metastatic, and/or radioiodine-refractory 
disease; indeed, the five-year survival rate for patients 
with Stage IV disease is just 50%, and thyroid cancer-
related mortality among men has increased at a higher 
rate in the U.S. than for any other cancer. Recurrence rates 
have been reported to be as high as 20–30%, and more 
than 10% of patients die as a result of disease progression 
[5, 6]. Some patient-related factors such as advanced 
age at diagnosis, larger tumor size, cervical lymph node 
metastases, extrathyroidal extension, and lymphovascular 
invasion have been associated with an increased risk of 
disease progression at a population level, but they lack 
the precision to perfectly tailor surveillance and treatment 
strategies and anticipate prognosis [7].

In thyroid cancer, as in other malignancies, molecular 
markers have emerged as an adjunct that can be used to 
potentially guide precision medicine. Thyrotropin (TSH) 
is the major growth factor and regulator of the thyroid, 
and serum TSH concentration is associated with the risk 
of cancer in a thyroid nodule [8, 9]. Serum thyroglobulin 
(Tg) level doubling time is used to anticipate the rate of 
progression (i.e. the shorter the doubling time, the faster 
the rate of progression) [10]. However, serum Tg has 
limited sensitivity for the detection of micro-metastases, 
and it is not found to be elevated in a substantial minority 
of patients with advanced disease and in those patients who 
have anti-thyroglobulin antibodies [11]. 

Identification of somatic mutations has been 
widely investigated as an adjunct that may help resolve 
the diagnostic uncertainty. Testing of BRAF V600E has 
been extensively studied in relation to predicting risk 
of recurrence of PTC and mortality [12]; results to date 
have been inconsistent [13]. The association between 
BRAF V600E and negative prognostic clinicopathologic 
features alone is unlikely to alter postoperative treatment 
decisions when histologic tumor variables also are 
available. Commercially available genomic tests such 
as the Veracyte Afirma® gene expression classifier, 
Asuragen miRInform™ thyroid panel, and ThyroSeq 
offer claims of improved diagnostic sensitivity and 
specificity of fine needle aspiration (FNA) for evaluation 
of thyroid nodules and the risk of thyroid cancer in the 
setting of indeterminate cytology. However, none of these 
panels provide the opportunity to predict or monitor the 
progression of PTC. To this end, novel baseline prognostic 
factors that could be added to risk stratification algorithms 
are required.

The Cancer Genome Atlas (TCGA) data provide 
a unique opportunity to enable different and potentially 
complementary forms of analysis of cancer phenotypes 
given the comprehensive nature of the datasets generated 
in this effort. In this study, using multiple forms of 
genomic measurement of the same set of PTC samples 

obtained from TCGA, a subset of genes was identified for 
which expression, mutations or copy number alterations 
in primary PTC samples were associated with PTC 
progression. We demonstrated a risk index model strategy 
which combines genomic alterations with current staging 
systems, thereby providing an opportunity to delineate the 
subset of patients who have more aggressive disease from 
those whose tumors are indolent and likely will require 
less aggressive treatment and surveillance.

RESULTS

To characterize the features of primary PTC that 
were associated with disease progression, we down-loaded 
genomic data for 505 primary thyroid tumor samples from 
TCGA. The clinical and pathologic characteristics of these 
samples are summarized in Supplementary Table 1. The 
median follow-up of the cohort was 30.6 months (range, 
1–169.4 months). Among these samples, 60 (8.4%) had 
disease progression by the time of last follow-up, and the 
median duration between diagnosis and the first progression 
event was 17.4 months (Supplementary Figure 1). 

PTC progression-associated oncogenic signaling

To assess oncogenic signaling that was associated 
with PTC progression, we performed both GeneSet 
analysis and Functional Enrichment analysis using 
PTC transcriptomes measured by RNAseq (Figure 1). 
Because preoperative medical therapy (e.g. radioactive 
iodine or small molecule therapy) could affect the gene 
expression profile of the primary tumor, we focused on 
those PTC samples that did not receive neoadjuvant 
treatment. Since PTC is usually treated initially with 
surgery, only 4 samples were lost due to this exclusion 
criterion. To identify PTC progression-associated gene 
expressions and pathway signaling that were independent 
of clinical confounding factors, we conducted a series of 
Cox Proportional-Hazards Regression (COXPH) survival 
analyses. First, we generated a gene expression matrix 
of 16205 genes. After further adjusting p-values from 
the COXPH by the Benjamini-Hochberg Procedure, we 
identified 38 genes whose expression was significantly 
associated with PTC progression (BH Adjusted p-value 
< 0.05, Figure 2A, Supplementary Table 2). Functional 
enrichment analysis revealed 5 signaling pathways 
that were highly enriched in high risk PTC (Adjusted 
p-value < 1 × 10–6, Figure 1). Particularly, 24 of these 
38 genes were related to the FOXM1 signaling pathway 
(Figure 2B, Supplementary Table 3). 

Second, sample-level enrichment scores for a total 
of 645 gene-sets/pathways were generated from gene 
expression data using gene set analysis (GSA) software. 
Statistically significant pathways were identified from a 
COXPH model that accounted for several clinical variables 
as described in the methods section. Our method identified 
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5 pathways (p-value < 0.0005, COXPH, Figure 1) that 
were significantly associated with PTC progression, a 
list that includes FOXM1 signaling pathway. In thyroid 
tumors, it has been reported that FOXM1 promotes the 
pathogenesis of PTC [14] and the invasive phenotype 
of anaplastic thyroid carcinoma [15]. In this study, we 
found that FOXM1 signaling was significantly associated 
with PTC progression, regardless of tumor stage and 
histological subtypes, indicating that the expression of 
genes related to FOXM1 signaling in the primary tumor 
might confer the potential for PTC progression.

Recurrently altered genes and their association 
with PTC progression

Somatic mutations in 424 PTC samples were 
measured by whole exome DNA sequencing. Among 9996 
non-silent somatic mutations [NSSM, including non-silent 
Somatic single nucleotide variants and InDel (insertions 
or deletions of a few basepairs)], we determined that 201 
(2%) NSSM were recurrently detected in 3 or more samples 

(Supplementary Figure 2). Because individual genes 
can be affected by multiple NSSM, we further measured 
the distribution of mutated genes that were affected by 
NSSM. Among 6437 mutated genes, we found that 829 
(12.9%) mutated genes were recurrently detected in 3 or 
more samples (Supplementary Figure 2). We performed 
a series of COXPH progression-free survival analyses, 
and identified 9 recurrently detected NSSM and 33 
recurrently detected mutated genes that were significantly 
associated with PTC progression, and the associations were 
independent of clinical confounding factors (p < 0.05,  
COXPH; Figure 3, Supplementary Tables 4 and 5). 
Oncologic pathway analyses revealed that PTC progression-
associated mutated genes affect multiple molecular 
functions, biological processes, and cellular components of 
PTC, such as protein binding, cellular response to stimuli, 
and cell-cell junctions, by which they might be involved in 
PTC progression (Supplementary Table 6).

Consistent with a previous study published by 
TCGA research network [16], the most commonly mutated 
gene that was affected by NSSM in PTC was BRAF 

Figure 1: Pathway analyses of PTC progression associated signaling. Both Functional enrichment and GeneSet analyses were 
conducted to identify signaling pathways that were associated with PTC progression.
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(57.7%), followed by FLG (9.3%), NRAS (7.9%), and 
TTN (7.2%). However, none of these commonly mutated 
genes were significantly associated with PTC progression 
(Figure 3), as a large proportion of patients with these 
commonly detected mutated genes did not experience 
disease progression. On the other hand, rare mutated genes 
were highly enriched in the primary tumors obtained from 

patients who experienced disease progression after initial 
treatment (Figure 3, Supplementary Tables 4 and 5). Our 
finding that only a subset of patients with BRAF mutations 
are at high risk of disease progression suggests that the 
role of mutated BRAF in promoting PTC progression 
may require secondary genomic alteration to modify 
the process. Although these rare NSSMs or InDels only 

Figure 2: Distribution of genes whose expression was significantly associated with PTC progression. (A) Heatmap shows 
the expression distribution of 38 PTC progression-associated genes among 505 THCA samples. The association between gene expression 
and PTC progression was assessed by COXPH survival analysis using 399 PTC samples for which a complete set of clinical data was 
available. The p-value of COXPH survival analysis was further adjusted by the Benjamini-Hochberg (B–H) procedure. (B) Protein-protein 
interaction plot obtained using STRING (version 10.0) for the speci_ed proteins in FOXM1 pathway. Black lines connecting the nodes 
indicate predicted interactions based on observed patterns of simultaneous expression of genes while the blue lines are known interactions 
from protein databases.
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affect a small fraction of the overall patient population, 
the collection of these rare mutations could be clinically 
significant in predicting disease outcome. 

Another form of genomic alteration is somatic copy 
number alterations (CNAs) that can quantitatively affect 
clinical phenotype and disease outcome [17, 18]. Cox-
regression progression-free survival analysis revealed 95 
copy number regions that were significantly associated 
with PTC progression (p < 0.0001, Figure 4), and 44 of 
these regions were independent of clinical confounding 
factors (p < 0.05, COXPH; Supplementary Table 7). 
Among these 44 identified copy number regions, 35 of 
38 copy number gain regions that were associated with 
PTC progression resided within chromosome 2q, and all 
PTC progression-associated LOH or deletion regions were 
located on chromosome 11q (Supplementary Table 7).  
It has been reported that gain in 2q and loss in 11q 
is involved in the progression from benign follicular 
adenomas to follicular carcinomas [19, 20], while 
gain in chromosome 2q also is linked to tumorigenesis 
in non-medullary thyroid cancer [21]. Oncologic 

pathway analyses revealed that genes within those PTC 
progression-associated SCNA regions were related to 
protein or DNA binding, catalytic activity, metabolic 
process and response to stimulus, as well as intracellular 
or extracellular region parts (Supplementary Table 8). 

An integrative risk index of PTC progression

As described in the Methods section, we developed 
a CRI (Clinical Risk Index) model and the C+GRI 
(Clinical plus Genomic Risk Index) model of PTC 
progression using elastic net regression and a leave-one-
out cross validation procedure, and carried out internal 
validation of the model using 2,000 bootstrap resampling 
(Supplementary Tables 9 and 10). Risk index modeling 
that combines genomic alterations with clinical and 
pathological factors provides more effective prediction of 
PTC disease progression compared to AJCC staging and 
the predictive model using clinical factors alone (Figure 5),  
based on a comparison of AIC (Akaike Information 
Criterion). The AIC for the AJCC stage model is 491.01, 

Figure 3: Distributions of PTC progression-associated, non-silent somatic mutations and mutated genes. Scatterplots 
show the distribution of NSSM and mutated genes among 430 primary PTC samples. The association of non-silent mutations or mutated 
genes and PTC progression was assessed by COXPH survival analysis using 399 PTC samples for which a complete set of clinical data 
was available.
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for the CRI model is 478.65, and for the C+GRI model is 
462.72. The lowest AIC for the C+GRI model indicates 
superiority of this model over the comparator models. The 
bootstrap average AUC for the CRI model ranged from 0.67 
to 0.68 and for the C+GRI model from 0.72 to 0.74. The 
average bootstrap AUC difference, (d = AUCC+GRI–AUCCRI) 
for 1, 3, and 5 years, with 95% bootstrap confidence 
intervals, are 0.054 (0.009–0.107), 0.057 (0.008, 0.111), and 
0.057 (0.009, 0.111), demonstrating that the C+GRI model 
provides a significant improvement in predicting risk over 
the proposed CRI model (Supplementary Table 11).

The C+GRI model estimated progression-free 
survival for patients in the Low risk group to be 97.8–100% 
for the entire dataset, as well as within each individual 
PTC histologic subtype, such as the Classical, Follicular, 
and Tall cell variants (Figure 6A). We found that over 90% 
of AJCC Stage 2 PTC patients had an intermediate risk of 
progression, while 46.5% of AJCC Stage 3 patients had 
an intermediate risk of PTC progression, indicating that 
a large proportion of patients with PTC in AJCC Stage 3  
had a similar disease outcome to those with AJCC Stage 2 
status. This raises the question of whether nearly half of 
Stage 3 PTC patients indeed need aggressive and potentially 
morbid treatment if their outcome is likely to be similar to 
that of patients with Stage 2 disease (Figure 6B). While the 
majority of patients with AJCC Stage 1 PTC experienced 
a low risk of disease progression, a small fraction carried 

a genomic phenotype similar to that of patients with later 
stage tumors (Figure 6B). For example, among patients who 
were aged < 45 years with M0 (AJCC Stage 1) disease, our 
risk index model using genomic alterations combined with 
clinical and pathological factors identified a small fraction 
of patients in a High risk group who had disease progression 
within 2 years of their diagnosis (Figure 5). 

A recent study from TCGA research network 
demonstrated two main drivers of PTCs BRAF (primarily 
V600E) and RAS mutations - and defined 97% of PTC 
into two major subtypes, BRAF-like and RAS-like tumors 
[16]. We applied our C+GRI model to a TCGA defined 
BRAF-like and RAS-like PTC classification system, and 
defined high-risk samples as BRAF-like or RAS-like 
(Figure 6). The results in Figure 5 demonstrate that the 
C+GRI model provides new information outside existing 
known prognostic factors (eg stage), and also defines high 
risk groups that may be amenable to therapeutic options 
targeting these mutation subtypes.

DISCUSSION

In this study, we demonstrate a novel risk index 
modeling approach that utilizes clinical and pathologic 
factors as well as genomic alterations in an effort to 
augment traditional staging systems and move toward a 
more personalized system of establishing prognosis.

Figure 4: Distribution of somatic copy number alterations and their association with PTC progression. (A) Genome scans 
for somatic CNAs distribution among 489 THCA samples. (B) Genome scans for PTC progression-associated somatic CNAs. Association 
between somatic CNAs and PTC progression was assessed by Cox-regression survival analyses, and the Heatmap shows the distribution of 
p-values. “CN” represents the Cox-regression analysis performed using copy numbers (0, homozygous deletion; 1, hemizygous deletion; 
2, normal copy number; 3, low level amplification; 4, high level amplification). “Gain” represents the Cox-regression analysis focused on 
copy number gain (2, High level amplification; 1, Low level amplification; 0, all the others). “Loss” represents the Cox-regression analysis 
focused on copy number loss (-2, Both alleles deletion; 1, LOH; 0, all the others). Coefficients were examined to determine if copy number 
per se was a direct (higher copy number was associated with compromised outcome) or inverse (higher copy number was associated with 
better outcome) association.
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Although the AJCC staging system for differentiated 
thyroid cancer is widely used to stratify prognosis and 
guide therapeutic strategies, it is imperfect and indeed 
is under revision. For example, there has been debate 
recently about the appropriateness of dividing T1 tumors 
into T1a and T1b categories if essentially prognosis for 
all tumors < 2 cm is excellent; others have called into 
question using a patient age cut-point of 45 years to 
drive a dichotomized staging system that is unique to 
differentiated thyroid cancer among all cancer diagnoses 
[22–24]. Tumors with the same clinicopathologic stage 
may include multiple subsets with differences in response 
to treatment and overall behavior [25–28]. It is also 
important to note that some PTC patients initially respond 
to standard treatment but then suffer disease recurrence 
[29–32]. In this study, we demonstrated that large tumors 
with lymph node metastases can be associated with 
excellent outcomes, while aggressive PTC can be observed 
in patients with AJCC Stage 1 tumors. However, Tumor, 
Node and Metastasis (TNM) staging lacks granularity of 
detail with regard to demographic, clinical, pathologic, 
and genomic characteristics that potentially could better 
capture the unique behavior of individual tumors [33–35]. 
For instance, according to the AJCC staging system, 
patients who are young (age < 45 years) are deemed to 
have Stage 1 PTC unless they have extra-cervical (M1) 
disease, and therefore a uniformly favorable diagnosis. 

Our findings suggest that a combined risk index using 
both clinical and genomic factors could discriminate 
more accurately among those patients who have a higher 
risk of progression from those patients with an excellent 
disease outcome and all of whom have a similar AJCC 
stage of disease based on clinical and pathologic factors 
alone. Furthermore, we identified a subset of patients with 
AJCC Stage 3 status who in fact appear to have indolent 
disease and a favorable prognosis when genomic factors 
are added. Therefore, it might not be necessary for these 
patients to receive aggressive therapy with associated 
treatment morbidity (surgery) or toxicity (medical 
therapy), even though they are currently believed to have 
more advanced disease.

Genomic alterations have long been proposed 
as diagnostic markers of PTC tumorigenesis and 
disease progression [36–38]. Recent advances in 
genomic technology enable profiling unique genomic 
alterations (such as mutations, copy number alterations, 
translocations, and/or chromosomal rearrangements) 
of cancer drivers that can be used as therapeutic targets 
or biomarkers to develop a cohesive framework for 
individualized cancer treatment [39–41]. Technological 
advances have now brought the possibility of more 
extensive interrogation of the genome to a clinical reality. 
Still, many studies are limited in their analysis of a single 
type of genomic alteration [42]. Using multiple forms 

Figure 5: Risk index model defines primary PTC samples with a distinct risk of disease progression. (A) Kaplan-Meier 
estimates of PTC progression-free survival of AJCC stages, risk model of clinical factors alone, and risk index model using combined 
clinical and genomic factors. (B) Hazard Ratio (HR) and AIC summary for groupings based on AJCC and Risk Index models.
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of genomic measurements, a recent study from TCGA 
research network demonstrated that thyroid tumors are 
more genetically complex than previously thought [16]. 
Although BRAF mutations occur frequently in PTC 
[43], PTC exhibits considerable heterogeneity in the 
constellation of alterations that drive the malignancy [16]. 
To date, systematic and comprehensive genomic profiling 
of cancers, such as the work from TCGA, has focused on 
defining genomic subtypes [16, 44, 45]. 

Assessing prognosis for patients with cancer is 
challenging, as multiple forms of genomic alterations are 

interconnected in modulating oncogenic pathways. Single 
forms of genomic measurement can only be expected to 
explain a certain percentage of variation in prognosis. In this 
study, we carried out a series of genome-wide, progression-
free survival analyses and identified a subset of genes 
whose expression, non-silent mutations, and copy number 
alterations collectively regulated disease progression 
of PTC. In particular, we found PTC progression was 
significantly associated with up-regulation of the FOXM1 
signaling pathway. FOXM1 is a transcription factor that 
promotes tumorigenesis [46, 47], uncontrolled cell growth, 

Figure 6: PTC Risk Index classification in PTC subtypes and in different disease stages. (A) Kaplan-Meier estimates of PTC 
progression-free survival of the novel risk index model using combined clinical and genomic factors in different PTC histological subtypes. 
(B) Distribution of risk groups in different AJCC stages. (C) Kaplan-Meier estimates of PTC progression-free survival of the novel risk 
index model among patients aged < 45 years with M0 PTC. (D) Kaplan-Meier estimates of PTC progression-free survival of the novel risk 
index model in TCGA-defined PTC genomic subtypes. p-values were calculated using the log-rank test. Tick marks indicate patients whose 
data were censored by the time of last follow-up.
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and epithelial-mesenchymal transition [48, 49]; it has been 
linked to the progression of ovarian cancer [50], colorectal 
cancer [51], triple negative breast cancer [52], non-small 
cell lung cancer [53], and stomach cancer [54]. Consistent 
with previous reports [14, 15], our findings suggest that the 
FOXM1 pathway also may provide therapeutic targets to 
prevent PTC progression. 

The clinical utility of outcome predictors is 
determined by whether or not these factors can alter 
patient management in ways that ultimately improve 
patient outcomes. It has been well recognized that 
clinical and pathological factors play an important role 
in PTC progression, and their performance as predictors 
of prognosis could overlap or be independent of 
genomic measurements. The AJCC staging system has 
long remained the gold-standard used for guiding the 
management of PTC; other staging systems that have been 
developed for PTC, such as the European Organization 
for Research and Treatment of Cancer (EORTC) [55]; 
National Thyroid Cancer Treatment Cooperative Study 
(NTCTCS) [34]; AGES (age, grade, extent, size); AMES 
(age, metastases, extent and size of tumor) [56]; and 
MACIS (metastases, age, completeness of resection, 
invasion, size) similarly do not employ genetic descriptors 
[57, 58]. For genomic features to be incorporated in the 
clinical setting, they must significantly add to standard 
practice. Here, we demonstrate that genomic predictors 
complement, rather than replace, current PTC staging. 
Our novel integrative risk index that added genomic 
measurement to conventional staging factors demonstrated 
superior performance in identifying the subset of early 
stage PTC based on clinicopathologic factors that is 
associated with a high risk of disease progression, as 
well as advanced stage PTC based on clinicopathologic 
factors alone that is associated with near-perfect long 
term outcomes. Therefore, our proposed risk index model 
integrates clinical and pathologic factors with genomic 
alterations in a novel way that provides more accurate 
prediction of long term outcome than current clinical 
staging systems alone. 

A recent study from TCGA research network 
defined PTC into two major subtypes, BRAF-like or RAS-
like tumors, which have broad implications for future 
customized therapeutic strategies, since BRAF-like PTCs 
signal preferentially through MAPK, while RAS-like 
PTCs signal through both MAPK and PI3K [16]. These 
two subtypes represent over 97% of the PTC population, 
so additional classification might be needed to further 
identify the subset of patients who will need more intense 
treatment informed by targeting these drivers to prevent 
aggressive disease progression. Therefore, we applied our 
C+GRI model to this newly developed PTC classification 
system, and defined high-risk samples as BRAF-like or 
RAS-like, which potentially could provide an opportunity 
to refine therapeutic strategies for PTC based on their 
genomic classification and risk of disease progression. 

Our study had several limitations. First, an 
independent large set of thyroid tumors outside of TCGA 
with multiple forms of genomic measurement is not 
currently available as an external validation set. Therefore, 
we carried out an internal validation approach using 2,000 
bootstrap resampling, a procedure to reduce prediction 
error estimation that has been applied in multiple previous 
studies [59–65]. Another limitation of this study is that we 
were missing several variables that might be informative, 
including exposure to radiation, family history of PTC, 
BMI, and extrathyroidal extension. We had a relatively 
small number of outcome events, and this prohibited our 
ability to create training and testing sets. Future studies, 
perhaps through consortium efforts, would be required 
to generate a larger number of samples with sufficient 
follow-up time in order to establish a clinically sustainable 
set of factors for informing patient risk. Potential 
reclassification of some encapsulated variant of PTC as 
non-invasive follicular thyroid neoplasms with papillary-
like nuclear features (NIFTP) could evolve interpretation 
of our findings if this revised lexicon is incorporated by 
TCGA [66].

To date, there has been a relative paucity of 
integrative risk indices that incorporate genomic 
factors into clinical cancer staging, with the exception 
of melanoma and colon cancer [42, 67]; indeed, this 
has not been done for differentiated thyroid cancer in 
a formal sense. The current study demonstrates the 
value of systematically incorporating genomic and 
clinicopathological parameters into a novel risk index 
model in the setting of PTC; this approach could serve as 
a model for application in other malignancies for which 
there is TCGA data. 

MATERIALS AND METHODS

Processing of genomic data from TCGA project

Clinical information and multiple forms of genomic 
data for 507 papillary thyroid carcinoma (THCA) samples 
were obtained from TCGA (http://cancergenome.nih.
gov/) in September 2015 (Supplementary Table 1). mRNA 
expression of 505 samples were measured by the Illumina 
HiSeq V2 platform, and a normalized Expectation 
Maximization value (RSEM) for each of the genes was 
extracted from TCGA (level 2). After removing genes with 
a call rate lower than 90%, a total of 16,025 genes were 
selected for examination in this study. Level 3 somatic 
mutation data from 430 THCA samples measured by 
whole genome exome sequencing were downloaded from 
TCGA. Recurrently detected mutations or mutated genes 
were defined as those mutations or mutated genes observed 
in three or more samples. Somatic copy number alterations 
(SCNA) were measured using Affymetrix Genome-
Wide Human SNP Array 6.0, and level 1 CEL files were 
downloaded from TCGA. Germline genotypes were 
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generated using SNP array data measured from matched 
blood lymphocytes or matched normal tissue. SCNAs 
calls were processed as we have described previously [68]. 
In total, SCNAs on chromosome 1–22 were successfully 
measured in 489 THCA samples. We determined copy 
number calls at each of 1,710,630 SNPs and copy number 
markers as homozygous deletion (CN = 0), hemizygous 
deletion (CN = 1), normal copy number (CN = 2), low level 
amplification (CN = 3), and high level amplification (CN 
≥ 4). All probe coordinates were mapped to the Genome 
Reference Consortium GRCh37 (hg19). 

Patient population

A complete set of genomic data, such as somatic 
mutation, gene expression, and somatic copy number 
alteration data were available for 411 samples. We focused 
on PTC samples, and therefore dropped those samples 
that were not categorized as one of the histological PTC 
subtypes, such as classical, follicular, or tall cell variants 
(n = 6). We also dropped samples that had a history of 
neoadjuvant treatment (n = 4), and samples for which T 
stage was missing (n = 1), or there was no information 
regarding clinical outcome (n = 1). In total, 399 PTC 
samples were included for progression-free survival 
analyses. The Duke IRB considered this study exempt 
since patients were de-identified.

Genomic filtering 

Progression-free survival analysis was defined as 
new tumor events or death after initial treatment as disease 
progression events, and patients’ data were censored at 
the time of last follow-up for those individuals without a 
progression event. As we described previously [68, 69], 
a series of whole genome Cox Proportional-Hazards 
Regression progression-free survival analyses (COXPH) 
were performed to quantify the hazard ratios associated 
with genomic alterations and their significance when 
considered alongside other demographic, clinical, and 
pathologic variables, such as (i) patient age at diagnosis 
(< 45 or ≥ 45 years based on current AJCC-UIC/TNM 
classification [70]) at diagnosis, (ii) tumor stage, (iii) 
lymph node stage (0, 1, Nx), (iv) metastatic stage (0,1, 
Mx), (v) histologic subtypes (Classical, Follicular, Tall 
cell variants), (vi) gender, and (vii) history of other 
malignancy.

To filter the gene expression data, we used a 
multivariable Cox model for each gene using all clinical 
variables; for example,

PFS ~ Gi + Clinical Variables, 
for each gene expression, Gi. We then adjusted 

all the p-values using the Benjamini-Hochberg (B-H) 
procedure [71], and filtered to select those with adjusted 
p-values < 0.05. A similar procedure was utilized for 
mutations and mutated genes data,

PFS ~ Mi + Clinical Variables,

for each mutation or mutated gene, Mi, filtering 
to select with p < 0.05. For the copy number alterations 
(CNAs) data, we removed regions that contained less 
than 5 SNPs or that were < 10 kb in length. Each region 
should contain at least one known gene. For the remaining 
regions, we then fit two nested models,

PFS ~ Ri + Clinical Variables, 
PFS ~ Clinical Variables,
and tested each region Ri using a likelihood ratio test 

(LRT) [72]. The LRT p-values were then adjusted using 
the B-H procedure.   

Elastic net regression and leave-one-out cross 
validation

For each of the 399 patients, the remaining 398 were 
used to select genomic variables by elastic net regression [73]. 
For the remaining patients, we fit a multivariable model that 
included the clinical variables and all the selected genomic 
variables after filtering as described. The model included 
the clinical variables without penalty, and the genomic 
variables were penalized using elastic net regression. The 
tuning parameter for the elastic net model was selected based 
upon 10-fold cross-validation. Each model generated a set of 
coefficients for the clinical and genomic variables, and the 
coefficients were averaged across all genes and models.

The risk index is a linear combination of the selected 
covariates multiplied by the averaged coefficients from 
the elastic net regression [74, 75]. We used the risk index 
distribution to classify each patient as low, intermediate, 
or high risk by using the 25th and 75th percentiles as 
cut points. The genomic variables with sufficiently high 
probability to be included (cutoff point: 0.20) were 
selected in the final model (C+GRI), and we retained the 
full model with all variables with non-zero coefficients for 
comparative purposes. The final model is the one that only 
retains those genomic variables that appear in at least 20% 
of all of the models across subjects, as after this cut point, 
the frequency of appearance dropped from 23.4% to 5.8% 
(Supplementary Table 9). A similar modeling process, 
using only the clinical variables and Cox regression was 
used to generate a leave-one-out risk index from averaged 
coefficients was completed to generate a Clinical Risk 
Index (CRI) model as a comparison.

Internal validation of the model

Bootstrap resampling of the Risk-Index procedure 
was utilized to assess stability of the Risk Index, both 
for the CRI model and the C+GRI model. For each of 
2,000 bootstrap samples, the risk index was re-computed 
using the linear combination of the previously computed 
average coefficients. Patients were categorized into Low, 
Intermediate, or High risk groups based on the 25th and 75th 
percentiles, and a Cox model was fit using the risk index 
group as a covariate. For CRI and C+GRI, we computed 
the time-dependent AUC for 1, 3, and 5 years survival 
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times, as well as the difference (d = AUCC+GRI– AUCCRI).  
For the final models, we report the bootstrap average 
hazard ratio, the bootstrap average difference, d, as well 
as the 95% confidence intervals, respectively, based 
on the 2.5th and 97.5th percentiles from the bootstrap 
distribution. We also report the final risk grouping based on 
the ensemble of the bootstrap results, with each subject risk 
characterized according to the highest frequency across 
categories. This procedure was repeated for both the long 
model and the final model, in order to determine the impact 
of retaining genomic factors that appeared only rarely in 
the leave-one-out process. For model comparison and 
selection, we used the Akaike Information Criterion (AIC).  

Pathway analysis

GeneSet analysis was performed using a diverse 
gene set libraries from Enrichr, a comprehensive gene 
set enrichment analysis web server [76, 77]. In order 
to visualize sample set enrichment of these gene-sets 
(enrichment level of a gene-set in a sample), we employed 
Gene Set Analysis (GSA) software (R package version 
1.03, https://CRAN.R-project.org/package=GSA ), which 
implements a supervised method (class labels are known 
before the analysis) that computes a “maxmean” summary 
statistic for each gene-set. Briefly, GSA computes the 
average of both positive and negative aspects of gene-
scores (for example, fold changes) over each gene in a 
gene-set, and chooses the one that is larger in absolute 
value. Statistically signi_cant gene-sets were obtained 
from a Cox Proportional-Hazards model (COXPH) after 
accounting for the following variables: 1) gender, 2) 
patient age, 3) TNM staging, and 4) tumor histology.

In order to identify pathways that are associated 
with patient progression-free survival, we fit the following 
Cox regression model-

PFS ~ Pi + Clinical Variables,
For each pathway Pi and tested two-sided null 

hypothesis that pathway has no effect on PFS i.e., H0:  
Pi = 0. The test statistic is computed from a likelihood-
ratio test. Pathways with adjusted p value less than 0.05 
are considered statistically significant.

Functional enrichment analysis of identified PTC 
progression associated genes was performed using Enrichr 
[22, 23]. We analyzed protein-protein interaction using 
STRING [78] networks based on protein association 
knowledge from databases of physical interaction and 
databases of curated biological pathway knowledge (MINT, 
HPRD, BIND, DIP, BioGRID, KEGG, Reactome, IntAct, 
EcoCyc, NCI-Nature Pathway Interaction Database, 
GO) and predicted associations between genes based on 
observed patterns of simultaneous expression of genes [78].
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