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ABSTRACT
Chronic exposure to arsenic affects more than 200 million people worldwide, and 

has been associated with many adverse health effects, including cancer in several 
organs.  There is accumulating evidence that arsenic biotransformation, a step in 
the elimination of arsenic from the human body, can induce changes at a genetic and 
epigenetic level, leading to carcinogenesis.  At the genetic level, arsenic interferes 
with key cellular processes such as DNA damage-repair and chromosomal structure, 
leading to genomic instability.  At the epigenetic level, arsenic places a high demand 
on the cellular methyl pool, leading to global hypomethylation and hypermethylation 
of specific gene promoters.  These arsenic-associated DNA alterations result in 
the deregulation of both oncogenic and tumour-suppressive genes.  Furthermore, 
recent reports have implicated aberrant expression of non-coding RNAs and the 
consequential disruption of signaling pathways in the context of arsenic-induced 
carcinogenesis.  This article provides an overview of the oncogenomic anomalies 
associated with arsenic exposure and conveys the importance of non-coding RNAs 
in the arsenic-induced carcinogenic process.

INTRODUCTION

Arsenic is an environmental carcinogen associated 
with human skin, bladder, liver and lung cancers [1, 2]. 
According to the World Health Organization (WHO), 10 
μg/L is the maximum acceptable arsenic concentration 
in drinking water, however, high levels of arsenic have 
been found in groundwater in more than 70 countries 
across 5 continents, including North America, affecting 
over 200 million people [3-7]. Environmental arsenic in 
groundwater is predominantly found in the inorganic form 
(iAs), as pentavalent arsenate (AsV) [8]. The consequences 
of chronic exposure to low doses lead to deleterious effects 
in multiple organs and tissues (Figure 1). The oncogenic 
effect is in part attributed to the production of toxic 
metabolites in the biotransformation of arsenic (Figure 2). 

Among the symptoms of chronic exposure to iAs are 
changes in skin pigmentation, hyperkeratosis (abnormal 
thickening of the skin) and other skin lesions [9]. These 
lesions may be precursors to several types of skin cancer, 

which is the most prevalent form of arsenic-induced cancer 
[10, 11]. In addition, iAs exposure also appears to play a 
role in the development of bladder, liver and lung cancers 
[12-15] though evidence also points to an increased risk 
for other tissue types, such as breast, prostate and cervix 
[14, 16-18]. More recent evidence suggests an increased 
risk of urinary tract cancer with exposure to arsenic in 
drinking water at around guideline levels (i.e. 10 μg/L) 
[19-22]. Furthermore, iAs is reported to be associated 
with pulmonary disease, cardiovascular diseases, and 
neurodevelopmental and cognitive impairments, which 
can even be observed in newborns of mothers previously 
exposed to arsenic [23-29] (Figure 1). 

The occurrence of different organ-specific 
malignancies associated with arsenic exposure may be a 
consequence of its transit and storage functions, namely 
its routes of entry to the human body (e.g. inhalation, 
adsorption and ingestion), as well as its metabolism and 
excretion, the latter being correlated with the higher 
incidence of kidney, urinary tract and bladder cancers [21-
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22]. Metabolically, cellular intake of AsV occurs through 
membrane transport proteins including aquaporins and 
inorganic phosphate (Pi) transporters (Figure 2) [30, 
31]. Mitochondrial ATP synthase, which is able to use 
AsV instead of Pi to produce ATP, conjugates ADP with 
AsV, which is then reduced to the more cytotoxic AsIII 
by glutathione (GSH) [32]. The high toxicity of AsIII is 
partly the result of its strong interaction with protein thiol 
groups, which can trigger inactivation and proteolysis of 
key tumour-suppressor proteins [33]. 

Arsenic toxicity is dependent on multiple factors. 
Molecular alterations at the DNA and RNA level may be 
at the forefront of this issue, including the disruption of 
DNA damage-repair mechanisms, coding and non-coding 
gene expression alterations and changes in mutation 
patterns [34-36]. This is further complicated by individual 
factors, such as genetic polymorphisms that may disrupt 
the intake-excretion balance [37], which may regulate 
the susceptibility to arsenic-induced damage, as well as 
lifestyle, which may make individuals with obesity more 
efficient in the methylation and excretion of arsenic [38]. 
Interestingly, arsenic trioxide (As2O3) displays anti-tumour 
activity and as such is currently used as a chemotherapeutic 
agent in the treatment of acute promyelocytic leukemia 

(APL), particularly in cases with a translocation between 
chromosomes 15 and 17 [39]. As2O3 is associated with 
a number of genetic and epigenetic changes, including 
alterations in coding and non-coding gene expression 
levels and abnormal methylation patterns [40, 41]. In light 
of this, it is important to examine the molecular changes 
in both the treatment of APL with As2O3 in addition to iAs 
exposure to fully understand the mechanisms of arsenic-
induced carcinogenesis. 

As literature relating (epi)genetics to arsenic 
exposure has been accumulating at an increasing 
rate (Figure 3), we review the latest advances in the 
oncogenomic effects of arsenic-induced carcinogenesis. 

GENOMIC ABERRATIONS ASSOCIATED 
WITH ARSENIC

Oxidative DNA damage

Carcinogenic aspects of arsenic exposure

Several studies propose that iAs is not able to 
bind directly to DNA and therefore is not likely to be 

Figure 1: Health effects associated with chronic exposure to inorganic arsenic from contaminated drinking water.  
Levels of iAs in drinking water near the maximum threshold of 10μg/L can lead to the onset of many diseases in a number of areas in the 
body.  Cancer is a particularly prevalent disease resulting from chronic arsenic exposure, represented in italics.
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responsible for mutational damage [42]. However, 
methylated arsenicals derived from iAs biotransformation 
have been shown to generate single and double-stranded 
DNA breaks through the formation of reactive oxygen 
species (ROS) [43]. Human keratinocytes exposed to 
arsenic produce two main types of ROS: superoxide anion 
(O2

- •) and hydrogen peroxide (H2O2) [44]. The type of 
ROS produced in response to arsenic is cell-type specific, 
highlighting the relevance of this mechanism to arsenic-
induced carcinogenesis [45, 46]. In fact, the mechanism 
of oxidative stress is the most studied features of arsenic 
toxicity and is recognized as one of the most important 
[47].

The basis of the carcinogenic aspects of oxidative 
stress upon exposure to arsenic is that when attacking 
DNA, ROS produce 8-Hydroxy-29-deoxyguanosine (8-
OHdG), which is capable of generating G>T conversions 

that trigger G>C → T>A transversions [48-50]. 8-OHdG 
is a biomarker of DNA oxidative damage, shown to be 
expressed at higher levels in the epidermal nuclei of 
arsenic-related Bowen’s disease, Bowen’s carcinoma and 
arsenic keratosis [51-53]. Furthermore, whole-genome 
sequencing analysis revealed a specific mutational 
signature that can differentiate arsenic-related lung 
tumours from tumours unrelated to arsenic, even though 
they may display the same histological features. Arsenic-
related tumours are characterized by low overall number 
of mutations, high rates of T>G/A>C, and low rates of 
C>A/G>T transversions [34]. 

Arsenic-induced mutations can be particularly 
damaging if they lead to the activation of an oncogene, 
such as RAS [54]. Mice exposed to arsenic during gestation 
have higher incidence of liver tumours with a mutation 
at codon 61 in HRAS compared to liver tumours in mice 

Figure 2: The biotransformation of inorganic arsenic and mechanisms of arsenic-induced carcinogenesis.  The reduction, 
oxidation and methylation of pentavalent arsenic (AsV, green pentagon) occurs after cellular intake via membrane transport proteins (blue 
cylinder).  Mitochondrial ATP synthase (purple) conjugates AsV with ADP, which is then reduced by the electron donor glutathione (GSH) 
to produce AsIII (blue trapezoid), a more cytotoxic form of arsenic.  In order for excretion, AsIII is methylated with methyl groups donated by 
S-adenosylmethionine methyltransferase (SAM).  These methylated arsenic species (MMA, DMA; yellow) all have carcinogenic potential 
through the induction (red lightning bolt) of a number of genomic and epigenetic effects (red gears), culminating in transcriptomic changes 
and generalized genomic instability.



Oncotarget25739www.impactjournals.com/oncotarget

not exposed to arsenic, and suggests that this mutation 
might be associated with arsenic-induced oxidative stress 
[55]. Similarly, it is hypothesized that mutations in the 
tyrosine kinase domain of the epidermal growth factor 
receptor (EGFR) are responsible for the activation of 
the EGFR pathway [56], a common molecular feature of 
many cancers that is also observed in cell lines exposed to 
arsenic [57-61]. 

Oxidative stress can also lead to mutations and 
instability in mitochondrial DNA (mtDNA), which is 
associated with the development of skin cancers [62]. 
Mitochondria are involved in cell proliferation, cell death 
and abnormal cell differentiation, and therefore alterations 
in mtDNA structure and function have been correlated 
with carcinogenesis [63]. Additionally, ROS can also 
disturb the permeability of the mitochondrial membrane, 
leading to the aberrant expression of apoptosis related 
genes [64]. For that reason, As2O3 is used as a therapeutic 
agent, shown to induce apoptosis in leukemic cells [39]. 
Chemotherapeutic aspects of arsenic exposure

Interestingly, the carcinogenic and chemotherapeutic 
effects of arsenic might rely on common mechanisms 
[65]. In arsenic-induced carcinogenesis, the cells 
overcome the apoptotic effect that is observed after 
exposure to As2O3 through the activation of the nuclear 
factor erythroid-derived factor 2–related factor 2 (NRF2) 
pathway, responsible for the oxidative stress response, 
demonstrating that arsenic effects are both dose and time-
dependent [66]. Taken together, cellular oxidative stress 
induced by arsenic exposure contributes to widespread 
genomic instability, which poses deleterious effects to the 
cell, and the individual [67, 68].  

Chromosomal alterations 

Genomic instability resulting from cellular 
oxidative damage can also lead to further disruptions in 
chromosome structure and stability, including end-to-
end fusion, abnormal sister chromatid separation, and 
aneuploidy [67]. Doses of arsenic around 10 μg/L have 
been shown to have an aneuploidogenic effect, illustrating 
the long-term risk of chronic low-dose exposure to arsenic 
[69]. Chromosomal aberrations of this sort are implicated 
in cancer development, possibly through the activation 
of proto-oncogenes [70]. Arsenic exposure may also 
disrupt microtubule assembly through interaction with the 
sulfhydryl groups of tubulin, leading to mitotic spindle 
complex malfunction [6, 71]. This can result in increased 
micronuclei formation, which is also associated with the 
onset of cancer [72, 73]. Another consequence of arsenic-
induced genomic instability is the continued progression 
through the cell cycle despite DNA damage, accomplished 
through inhibition of the p53 mediated apoptotic response 
[74]. 

In addition to chromosomal alterations and genomic 
instability, arsenic exposure is also related to DNA copy-
number alterations (CNAs) (Figure 4), a key feature of 
tumour progression evidenced by the amplification of 
oncogenes and the deletion of tumour suppressor genes 
[75]. It has been demonstrated that lung squamous cell 
carcinoma exhibits both segmental DNA gains and 
losses after exposure to arsenic through dietary sources, 
compared to lung tumour genomes from smokers and non-
smokers who have not been exposed to arsenic [76, 77]. 
Interestingly, this study implicated arsenic-induced DNA 
losses at the 9q12 locus, which is known to contain a gene 
from the FOX-gene family [76, 78]. FOX-gene family 
proteins are DNA-binding proteins that are involved with 
the regulation of transcription as well as DNA repair, some 
of which possess tumour suppressive functions while 
others display oncogenic features, and are frequently 
deleted or overexpressed through CNAs in many human 
cancers [79]. 

Conversely, it has been shown that in CDKN1B and 
CDKN2A-deleted cells, treatment with As2O3 resulted in 
increased signal patterns of these genes [80]. As CDKN1B 
and CDKN2A are members of a cell-cycle-inhibiting 
gene family, this suggests another possible mechanism of 
apoptotic induction by As2O3. Furthermore, CNAs may 
serve as prognostic factors for patients with APL, such as 
the deletion of the gene encoding CD56 by As2O3, which 
correlates with higher relapse-free survival [81]. Further 
characterization of chromosomal abnormalities and CNAs 
induced by arsenic will help to elucidate its carcinogenic 
mechanism and potentially implicate novel targets in 
therapeutic responses.

EPIGENETIC FEATURES OF ARSENIC-
INDUCED CANCER

During arsenic biotransformation, AsIII is known to 
be methylated by S-adenosylmethionine methyltransferase 
(SAM) as part of the excretion process (Figure 2), which 
may lead to the depletion of SAM and consequent 
epigenetic disruption of the methylome [82-85]. This 
dependence of cellular detoxification and excretion of 
iAs on SAM and methyl group availability suggests 
that there may be epigenetic consequences of arsenic-
exposure. Global DNA methylation levels and associated 
gene methylation changes play a critical role in cancer 
development, and also provide useful diagnostic and 
prognostic markers [86-88]. Differential DNA methylation 
patterns have been observed in individuals with high 
urinary arsenic concentrations, suggesting that these 
alterations may be important for non-genotoxic arsenic-
induced carcinogenesis [89]. Arsenic exposure has been 
shown to induce global DNA hypomethylation, as well as 
specific gene promoter methylation changes through the 
alteration of CpG methylation status [90]. 
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Global hypomethylation

The methylation of arsenic is necessary for 
excretion, but this puts a high demand on the activity 
of several enzymes important in DNA methylation and 
epigenetic gene regulation, such as SAM and DNA 
methyltransferases (DNMTs). SAM is a cofactor that acts 
as a methyl-group donor for many biomolecules [91]. 
The production of methylated arsenic species leads to the 
depletion of SAM and a marked decrease in the availability 
of methyl groups in the cell [92]. Global hypomethylation 
can lead to chromatin remodeling, allowing for the 
transcription of previously inaccessible oncogenes 
and cancer-associated genes. It has been reported that 
exposure to 5 µM iAs over 29 weeks malignantly 
transformed cells, and was further correlated with an 
increased S100P and HYAL1 expression, genes relevant 
to the malignant process [93]. This was accomplished 
through hypomethylation near the transcriptional start site 
of these genes. Evidence of global hypomethylation as a 
result of iAs exposure has been shown in multiple cancer 
types, including prostate, breast and liver cancers [36, 94, 
95]. Furthermore, widespread DNA hypomethylation in 
hepatocytes is implicated in the increased expression of 
pro-growth genes, particularly estrogen receptor-α [95, 

96]. Clinically, iAs exposure was observed to be a putative 
cause of significant DNA hypomethylation in adult 
peripheral blood mononuclear cells, suggesting possible 
involvement in lymphatic cancers [97]. Taken together, 
the current data suggest the significance of global DNA 
hypomethylation in arsenic-induced carcinogenesis. 

Promoter hypermethylation

Global methylation changes may be accentuated by 
specific promoter methylation alterations in cells exposed 
to chronic doses of iAs. In a genome-wide study, it was 
discovered that 2919 genes showed differential DNA 
methylation profiles when exposed to concentrations of 
iAs around current WHO guideline levels (at or above 
10 µg/L), most of which were identified as CpG islands 
near the transcription start site [98]. Exposure to higher 
arsenic concentrations between 250-500 µg/L showed a 
similar relationship between iAs exposure and promoter 
hypermethylation [99]. Arsenic levels above 500 µg/L 
were associated with increased methyl acceptance capacity 
of promoter DNA, suggesting the onset of widespread 
hypomethylation at the point where the demand on the 
global methylation level is no longer sustainable [92, 
99]. This displays the existence of a putative threshold 

Figure 3: Number of publications relating genetics and epigenetics to arsenic exposure.  Search was performed within 
EndNote (Version 7, Thomson Reuters) and manually filtered. Number of publications are based on a United States National Library of 
Medicine PubMed search using the terms “arsenic AND genetic” (blue line), “arsenic AND epigenetic” (red line), “arsenic AND miRNA 
OR microRNA” (green line), or “arsenic AND lncRNA OR lincRNA OR long non-coding RNA” (purple line). 2016 publications were not 
included in the search, and annual (Jan 1-Dec 31) date limitations were used.
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at which global hypomethylation may become more 
prevalent in arsenic-induced carcinogenesis, which may 
have implications for early diagnosis and treatment of 
cancers associated with chronic exposure to iAs. These 
observations suggest that arsenic may be able to induce 
tumourigenesis and cancer progression through the 
epigenetic silencing of tumour suppressors as well as the 
epigenetic activation of oncogenes or associated genes. 
One of the most notable examples of this is the significant 
hypermethylation of the TP53 promoter, the level of which 

was elevated in arsenic-induced skin cancers relative to 
skin cancers not resulting from arsenic exposure [100]. 
Evidence of promoter hypermethylation has been shown 
in a number of cancer types, including prostate, skin, and 
bladder, although the exact role of this in carcinogenesis 
has yet to be fully elucidated [101-103].

As2O3
 treatment also displays a similar pattern 

as its therapeutic action may be through inhibition of 
DNMT expression level, global DNA hypomethylation 
or alternative epigenetic effects [104]. It can be suggested 

Figure 4:  Circular representation of DNA copy-number alterations (CNAs) in lung squamous cell carcinomas. Each 
chromosome of the human genome (hg19) is represented in the outer circle. Only lung squamous cell carcinomas were considered for 
this analysis, since this is the histological subtype more strongly associated with arsenic exposure. In arsenic exposed patients, there is an 
unusually high frequency of lung SqCC among never smokers, while this subtype is almost exclusively associated with smokers in non-
arsenic related lung SqCC. CNAs detected in lung SqCCs arsenic-exposed, non-smoker patients (red, n=10), arsenic-exposed, smokers 
(blue, n=12) and non-arsenic exposed, smokers (dark grey, n=20) are shown. On each chart, the frequency of DNA gains among cases is 
shown above the black line indicating absence of alterations, while the frequency of DNA losses are shown below. Overall, the number 
of alterations observed in arsenic-exposed, non-smokers lung SqCCs are significantly lower than smokers. Interestingly, one of the most 
characteristic alterations described in lung SqCC (DNA gains 3q and 5p) exhibits a remarkable similarity among smokers, regardless of 
arsenic exposure status, while a low frequency of alterations is observed among non-smokers, arsenic-exposed patients (segments A and B).
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Table 1:  Coding-gene expression changes linked to carcinogenesis resulting from exposure to arsenic.

mRNA Expression Change (non-
exposed vs.  exposed) Arsenic Compound Exposure Dose Experimental model Sample origin Reference

DNA Repair and Stress Response

ERCC1 Up Drinking water 9.60–46.5µg/L in blood Human sample Frozen Peripheral 
Blood Lymphocytes [110]

ERCC1 Down NaAsO2 0.01–10μM Cell line Jurkat Lymphoblast 
Cells [156]

POLB Up NaAsO2 2 or 50p.p.m. Mice tissue Female BALB/c 
Mice Lung tissue [111]

POLB Down Drinking water 9.60–46.5µg/L in blood Human sample Frozen Peripheral 
Blood Lymphocytes [110]

POLD2 Up Drinking water 9.60–46.5µg/L in blood Human sample Frozen Peripheral 
Blood Lymphocytes [110]

PARP1 Up NaAsO2 2 or 50p.p.m. Mice tissue Female BALB/c 
Mice Lung tissue [111]

PARP1 Down MMA(III) or DMA(III) 0.1μM Cell line Human HeLa S3 
Cells [157]

APEX1 Up NaAsO2 2 or 50p.p.m. Mice tissue Female BALB/c 
Mice Lung tissue [111]

APEX1 Down As2O3 0.005 – 5μM Cell line
Normal Human 
Epidermal 
Keratinocytes 
(NHEK) 

[158]

LIG1 Up NaAsO2 2 or 50p.p.m. Mice tissue Female BALB/c 
Mice Lung tissue [111]

OGG1 Up NaAsO2 2 or 50p.p.m. Mice tissue Female BALB/c 
Mice Lung tissue [111]

NQO1 Up NaAsO2 2, 5 and 10μM Cell line Mouse hepa1c1c7 
Cells [159]

NQO1 Up AsIII 0.005 – 5μM Cell line
Normal Human 
Epidermal 
Keratinocytes 
(NHEK)

[158]

XPC Down AsIII 0.005 – 5μM Cell line
Normal Human 
Epidermal 
Keratinocytes 
(NHEK)

[158]

XBP-1 Up As2O3 5μM Cell line
Murine 
Neuroblastoma Cells 
(Neuro-2a)

[160]

SESN1 Up NaAsO2 5μM Cell line
Human Breast 
Cancer Cell MCF-7 
(p53+/+)

[161]

Cell Proliferation and Growth

FOXM1 Up As2O3 1μM Cell line
Human Airway 
Epithelial Cell 
(NuLi-1)

[162]

GM-CSF Up NaAsO2 0 - 4μM Cell line
Normal Human 
Epidermal 
Keratinocytes 
(NHEK)

[163]

PCNA Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

CTBP1 Up As2O3 1µM Cell line
Normal Human 
Urothelial Cell 
(HUC1)

[165]

FOS Up AsIII 50μM Cell line Human HeLa S3 
Cells [166]

TGFB3 Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

Cell Death

TNFRSF6 Up NaAsO2 5μM Cell line
Human Newborn 
Foreskin Cells 
(HFW)

[167]

FADD Up NaAsO2 5μM Cell line
Human Newborn 
Foreskin Cells 
(HFW)

[167]

MCL1 Up NaAsO2 5μM Cell line
Human Newborn 
Foreskin Cells 
(HFW)

[167]

BAX Up As2O3 5μM Cell line
Murine 
Neuroblastoma Cells 
(Neuro-2a)

[160]

BCL2 Down As2O3 5μM Cell line
Murine 
Neuroblastoma Cells 
(Neuro-2a)

[160]

Cell Cycle

ATF3 Up NaAsO2 5μM Cell line
Human Breast 
Cancer Cell MCF-7 
(p53+/+)

[161]

CDKN1A Down NaAsO2 0.1μM Cell line Human Keratinocyte 
Cell (HaCaT) [112]

TP53 Up As2O3 2μM Cell line Human Glioma Cells 
(U87MG and T98G) [168]
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that this may reflect the carcinogenic mechanism of iAs 
exposure, but to an extent that leads to targeted cell death 
in APL cells. This was observed in prostate cancer cell 
lines, where DNA damage and hypomethylation triggered 
histone tail modification and chromatin remodeling, 
leading to the upregulation of pro-apoptotic genes [105]. 
In liver cells, treatment with As2O3 correlated with 
hypomethylation in the cis-regulatory sites of the promoter 
of MYC (a known cancer-associated gene), as well as 
hypermethylation in the promoter of MAX (a regulator of 
MYC and cell cycle) [106]. Thus, As2O3-based studies not 
only further the targeted therapy of cancer, but also help to 
elucidate the mechanism of arsenic toxicity, and in turn, its 
role in carcinogenesis.

GENE EXPRESSION CHANGES

The numerous genomic and epigenetic changes 
resulting from iAs exposure culminate in the deregulation 
of a variety of genes. In Table 1, we summarize previously 
described coding-gene expression changes derived from 
arsenic exposure, demonstrating that this metalloid 
can alter crucial pathways involved in diverse cellular 
processes. 

The disruption of multiple pathways can result in 
genomic instability and may lead to cancer development. 
A direct example is the alteration of the expression of 
genes involved with DNA repair. Arsenic exposure 
affects the ability of nucleotide excision repair (NER) in 

MYC Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

MYC Up NaAsO2 0 - 4μM Cell line
Normal Human 
Epidermal 
Keratinocytes 
(NHEK)

[163]

RB1 Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

CDC6 Up As2O3 1μM Cell line
Human Airway 
Epithelial Cell 
(NuLi-1)

[162]

CDK2 Up As2O3 1μM Cell line
Human Airway 
Epithelial Cell 
(NuLi-1)

[162]

CDK1 Up As2O3 1μM Cell line
Human Airway 
Epithelial Cell 
(NuLi-1)

[162]

CDC25A Up As2O3 1μM Cell line
Human Airway 
Epithelial Cell 
(NuLi-1)

[162]

CDC25A Up NaAsO2 5μM Cell line
Human Newborn 
Foreskin Cells 
(HFW)

[167]

CCND1 Up As2O3 1μM Cell line
Human Airway 
Epithelial Cell 
(NuLi-1)

[162]

CCND1 Up NaAsO2 5μM Cell line
Human Bron-
chial Epithelial Cell 
(Beas-2B)

[56]

Cell Signaling

EGFR Up As2O3 1µM Cell line
Normal Human 
Urothelial Cell 
(HUC1)

[165]

TNFα Up NaAsO2 0 - 4μM Cell line
Normal Human 
Epidermal Keratino-
cytes (NHEK)

[163]

TGFα Up NaAsO2 0 - 4μM Cell line
Normal Human 
Epidermal Keratino-
cytes (NHEK)

[163]

H-Ras Down NaAsO2 50ppb Mouse tissue
C57BL/6 Mice Off-
spring Hippocampal 
Nuclear Fractions

[164]

Raf-1 Down NaAsO2 50ppb Mouse tissue
C57BL/6 Mice Off-
spring Hippocampal 
Nuclear Fractions

[29]

VEGF Up NaAsO2 1 – 10μM Cell line Human Uroepitheli-
al Cell (SV-HUC-1) [169]

COX-2 Up NaAsO2 1 – 10μM Cell line Human Uroepitheli-
al Cell (SV-HUC-1) [169]

HIF-1α Up NaAsO2 1 – 10μM Cell line Human Uroepitheli-
al Cell (SV-HUC-1) [169]

ERBB2 Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

ERBB2 Down As2O3 1µM Cell line
Normal Human 
Urothelial Cell 
(HUC1)

[165]

MAPK8 Up AsIII 50μM Cell line Human HeLa S3 
Cells [115]

MAPK8 Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

H-RAS Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]

MET Up NaAsO2 500nM Cell line Rat Liver Epithelial 
Cell (TRL1215) [164]
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Figure 5:  Network interactions between deregulated miRNAs and their predicted targets upon arsenic exposure.  
miRNAs shown to be deregulated after exposure to arsenic and described in this review were inputted into miRDIP for gene target 
prediction, using the thresholds of the top 1% of mRNA transcripts predicted by at least 3 different prediction databases.  NAViGaTOR 
[178] was used to visualize the interactions between these miRNAs and their predicted mRNA targets.  miRNAs deregulated after exposure 
to arsenic are depicted by coloured square nodes, while their predicted mRNA targets are represented by circular nodes.  Edges indicate 
predicted miRNA/mRNA interactions and are coloured according to the identity of the selected miRNA.  The mRNA-target nodes are 
coloured as per to their association with Gene Ontology terms.  Certain mRNAs appear to be shared by several of the miRNAs identified 
(i.e. FGF4, AAK1, CHD7, HPDL etc.), representing possible important cellular functions that are affected by arsenic exposure, such as 
cellular fate and energy production.
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cell lines, which can enhance the mutagenicity of other 
carcinogens such as UV light [107, 108]. Among other 
factors, NER mechanisms are affected due to reduction of 
NER-associated genes (Table 1) [6, 109-112]. The poly-
(ADP-ribose) polymerase 1 (PARP1) is a protein involved 
with DNA damage response that controls genomic stability 
and has been shown to be increased in arsenic exposed cell 
lines and mice samples [111-113]. Therefore, deregulation 
of PARP1 may be a possible mechanism of the induction 
of chromosomal instability and carcinogenesis [113]. 

Other characteristics of tumour cells that may be 
increased upon arsenic exposure are growth, proliferation 
and survival [14, 114]. For example, the PI3K/AKT 
pathway is affected by arsenic through the phosphorylation 
of AKT, activation of the JNK-STAT3 pathway and/or 
suppression of PTEN, an inhibitor of this pathway [6, 115-
117]. Therefore, arsenic-induced activation of the PI3K/
AKT pathway contributes to cellular transformation due to 
increased proliferation rates and induction of anchorage-
independent growth [118].

The molecular damages caused by arsenic can be 
so extensive that cells are driven to undergo apoptosis 
[119]. This effect has been explored by the use of As2O3 
as a chemotherapeutic for APL treatment [120]. The 
production of ROS reduces the mitochondrial membrane 
potential, leading to an increase in cytochrome-c release 
and consequent activation of caspases. Consequently, the 
normal protein ratio between the anti-apoptotic Bcl-2 and 
the pro-apoptotic Bax is also compromised, triggering 
apoptosis [64]. Studies show that As2O3 in high doses 
can induce apoptosis of B-cell leukemic cells, malignant 
lymphocytes, myeloma cells, and even cell lines derived 
from esophageal carcinoma and neuroblastoma [121-125]. 
However, in the case of arsenic-induced cancers, the cells 
can overcome the apoptotic effect derived from the DNA 
damage through the activation of factors involved in the 
antioxidant response, such as NRF2 [66].

NON-CODING RNA EXPRESSION 
CHANGES

MicroRNAs: Mediators of arsenic–induced 
carcinogenesis

The discovery that only a small portion of the 
transcribed human genome is translated into proteins led 
to a surge of interest in determining the role of non-coding 
RNAs (ncRNAs) in human diseases, especially regarding 
small ncRNAs [126-130]. There are three main classes of 
small ncRNAs: microRNAs (miRNAs), endogenous small 
interfering RNAs (endo-siRNAs) and PIWI-interacting 
RNAs (piRNAs) [131]. miRNAs are responsible for the 
post-transcriptional regulation of mRNAs and mainly 
repress translation through complementary binding along 
with RNA-induced silencing complex (RISC) assembly. 
These molecules have been extensively described 
and are known to be deregulated in cancer, playing 
important roles in cancer development and progression 
[132]. Correspondingly, arsenic studies associated 
with the deregulation of non-coding RNAs mainly 
describe alterations in miRNA expression, limiting our 
understanding of the association between arsenic exposure 
and the deregulation of long ncRNAs (lncRNAs) [133-
135], or other types of small ncRNAs (Figure 3). 

There is a strong link between arsenic exposure and 
the expression of miRNAs (Table 2), which may promote 
carcinogenesis. Many of these miRNAs are associated 
with cancer as they are responsible for negatively 
regulating oncogenes or tumour suppressors that are 
involved in several important cellular processes (Figure 
5) [136]. The genes described in Table 2 and Figure 5 
are only a representation of the known miRNAs that 
have differential expression when exposed to arsenic. In 

Table 2: Selected miRNA expression changes resulting from exposure to iAs linked to important cellular processes. 
miRNA Expression Change Arsenic Exposure Putative Target Tissue / Cancer Type Reference

miR-143 Down 5µM iAs BCL2; BCL-XL 
Apoptosis Prostate cancer [17]

miR-205 Down 1µM As2O3
AKT; mTOR 
Cell growth Urothelial carcinoma [165]

miR-27a Down Varied As2O3 Cell growth; apoptosis; migration Breast cancer [170]

miR-200b Down 2.5µM NaAsO2
PKCα;  
Cell migration

Human bronchial epithelial cells; lung 
cancer [171]

miR-21 Up 500µM NaAsO2
Cell proliferation promotion; apoptotic 
inhibition; acts on various tumour suppressors

Keratinocytes; Skin cancer (Melanoma); 
glioblastoma; prostate cancer

[172] 
[173] 
[174] 
[175]

miR-200a Up 500µM NaAsO2 Melanoma development Keratinocytes; Skin cancer (Melanoma) [172]

miR-520h Down Varied As2O3
PP2A/C (upregulation of this inhibits NF-κB); 
metastasis Cervical cancer [176]

miR-222 Up 1µM NaAsO2 ARID1A, PTEN; cell proliferation, migration Lung cancer; Human lung epithelial BEAS-
2B cells [177]
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fact, one study showed 36 miRNAs to be consistently 
deregulated upon exposure to 2 µmol/L of sodium arsenite 
(NaAsO2) [137]. Of these, many are implicated in cancer. 
miR-150, for example, has been shown to be a circulating 
marker of prostate, colorectal, lung and pancreatic cancer 
[138-141]. In prostate cancer, miR-150 is upregulated, 
and is additionally correlated with tumour recurrence and 
metastasis, as well as poor overall survival [142]. 

Studies looking at the effects of As2O3 on non-
coding gene expression show similar results. For 
example, miR-328 targets hERG, a gene encoding a 
subunit of a potassium ion channel. In the treatment of 
breast cancer, As2O3 is an effective therapy partly due to 
its action where it upregulates miR-328, thereby inducing 
apoptosis through the inhibition of hERG expression 

[143]. This highlights the importance of understanding 
the effects of arsenic exposure on more than the coding 
portion of the genome. miRNA-based studies have 
helped to uncover the details of the mechanism of arsenic 
induced carcinogenesis, which suggests that further 
characterization of other small non-coding RNAs involved 
in regulation may be of biological interest. 

PIWI-Interacting RNAs: Functions and 
prospective roles in arsenic-induced 
carcinogenesis 

Although initially thought to be restricted to germ 
cells, piRNAs have been recently shown to be expressed 
in somatic tissues, displaying conserved mammalian 

Figure 6:  Mechanisms of piRNA action.  piRNAs associate with PIWI proteins in the cytoplasm, forming a ribonucleoprotein 
effector complex that is able to recognize and bind to complementary target sequences on DNA both in the cytoplasm and nucleus (panel 
A).  When bound to the target sequence, piRNA-PIWI complexes can recruit epigenetic remodeling machinery (panels B and D) to either 
repress transcription through DNA methylation (panel C) or activate transcription through DNA acetylation or methylation removal (Panel 
E).
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biological functions [144, 145]. The uniqueness of 
this class is that they recognize complementary DNA 
sequences, instead of RNA sequences. Similarly to other 
classes of small non-coding RNAs, piRNAs are known 
to regulate gene expression through a small RNA-guided 
mechanism, in which piRNAs bind to the PIWI proteins 
of the Argonaute family forming the RISC, which can 
bind and regulate the expression of transcripts containing 
complementary sequences [146]. The main described 
function of piRNAs is the silencing of selfish genetic 
elements, mainly transposable elements (TEs), in the 
maintenance of genomic instability [147]. Later studies 
also demonstrated that piRNAs are able to promote 
epigenetic activation and even a miRNA-like transcript 
silencing [148-151]. In Figure 6 we illustrate these known 
functions, highlighting the importance of piRNAs as 
regulators of gene expression.

Since piRNAs are known to be involved with 
gene regulation and mainly with the control of genomic 
stability, it is likely that they are involved in a number 
of human diseases [126]. In fact, piRNAs display specific 
expression patterns that are markedly different across 
tissue types, between non-malignant and tumour tissues 
and even between different tumour subtypes [144]. As 
such, piRNAs have emerged as a highly promising area 
of study that might provide further knowledge on cancer 
biology and potentially improve tumour diagnosis and 
therapeutics. 

As described here, the most well known and 
described mechanism of action of arsenic is the induction 
of oxidative DNA damage and disruption of permeability 
of the mitochondrial membrane. Numerous piRNAs were 
found to align with mitochondria specific small RNA 
sequences in cancer cells and also showed the coexistence 
of PIWI proteins and piRNAs in mitochondria [152]. 
Those findings suggest that the piRNA/PIWI complex 
might be involved in stress response and leads to the 
assumption that they might be important in arsenic-
mediated tumourigenesis. Moreover, the piRNA/PIWI 
complex is known to be a major epigenetic regulator, 
being responsible for recruiting epigenetic machinery to 
binding sites, promoting epigenetic activation or silencing 
[148, 153]. Since epigenetic changes are another major 
mechanism for arsenic-induced cancer, this further 
supports the hypothesis that piRNAs may play important 
roles in arsenic-induced disease. Interestingly, so far there 
are no studies that have investigated the relation between 
piRNAs and arsenic-induced cancers. Therefore, this is 
an area that with further investigation, could improve our 
understanding on arsenic toxicology and therapeutics. 

CONCLUSION AND EMERGING 
QUESTIONS 

Arsenic contamination of drinking water sources 
is a major problem worldwide. Clinical implications of 

the prevalence of arsenic groundwater contamination are 
evidenced by an impact on the incidence of cancer, even at 
low exposure levels [154]. This evidence suggests that the 
current guideline for maximum exposure to arsenic may 
still present a hazard to exposed populations. Limiting 
the effects of arsenic exposure on at-risk populations 
may require the implementation of strategies to manage 
groundwater concentrations, such as nanofiltration, 
adsorption and bioremediation [7, 155].

In this review article, we have discussed a spectrum 
of molecular aberrations induced by arsenic. Arsenic 
exposure is closely associated with DNA damage through 
the production of ROS, which may provide a distinct 
molecular signature. This type of oxidative damage can 
induce chromosomal instability including copy number 
alterations that lead to the amplification or deletion of 
certain loci, which has implications in carcinogenesis 
when an oncogene or tumour suppressor gene is involved. 
Arsenic exposure can also induce epigenetic changes, 
including global hypomethylation by the depletion of the 
global methyl pool, leading to aberrant gene expression, 
as well as alterations in promoter CpG island methylation 
status. Furthermore, arsenic exposure is associated with 
changes in both coding and non-coding gene expression, 
which not only affects critical-protein activity in cells, but 
also the regulation of coding-genes, through disruptions 
in miRNA and possibly other non-coding gene levels. 
Interestingly, the regulatory functions of piRNAs 
overlap with known mechanisms of arsenic toxicity and 
chemotherapeutic effects, leading to the assumption that 
piRNAs might play important roles in these mechanisms. 
However, our current understanding of the precise 
mechanism of arsenic-induced carcinogenesis is still 
far from comprehensive, and further work may look to 
characterize novel biological players involved.

The numerous health effects of arsenic ingestion 
demonstrate the complexity of the mechanisms linking 
arsenic exposure to disease. Arsenic has been shown to 
induce a number of damaging genomic and epigenetic 
effects, but the scope of these has yet to be determined. 
The study of these mechanisms will allow for a better 
understanding of both arsenic-induced cancer and arsenic-
based therapies, which may lead to improved approaches 
for preventing exposure and reducing the onset of cancer, 
as well as the development of novel cancer therapeutics. 
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