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ABSTRACT

In developed countries, the number of patients with colorectal cancer has been 
increasing, and colorectal cancer is one of the most common causes of cancer death. 
To improve the quality of life of colorectal cancer patients, it is necessary to establish 
novel screening methods that would allow early detection of colorectal cancer. We 
performed metabolome analysis of a plasma sample set from 282 stage 0/I/II 
colorectal cancer patients and 291 healthy volunteers using gas chromatography/
triple-quadrupole mass spectrometry in an attempt to identify metabolite biomarkers 
of stage 0/I/II colorectal cancer. The colorectal cancer patients included patients 
with stage 0 (N=79), I (N=80), and II (N=123) in whom invasion and metastasis were 
absent. Our analytical system detected 64 metabolites in the plasma samples, and 
the levels of 29 metabolites differed significantly (Bonferroni-corrected p=0.000781) 
between the patients and healthy volunteers. Based on these results, a multiple 
logistic regression analysis of various metabolite biomarkers was carried out, and 
a stage 0/I/II colorectal cancer prediction model was established. The area under 
the curve, sensitivity, and specificity values of this model for detecting stage 0/I/
II colorectal cancer were 0.996, 99.3%, and 93.8%, respectively. The model’s 
sensitivity and specificity values for each disease stage were >90%, and surprisingly, 
its sensitivity for stage 0, specificity for stage 0, and sensitivity for stage II disease 
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were all 100%. Our predictive model can aid early detection of colorectal cancer 
and has potential as a novel screening test for cases of colorectal cancer that do not 
involve lymph node or distant metastasis.

INTRODUCTION

In developed countries, colorectal cancer is one 
of the most common causes of cancer death [1], and it 
is treated using a combination of colonoscopy, surgery, 
chemotherapy, and radiotherapy. When colorectal cancer 
is discovered early, its 5-year relative survival rate is very 
high, but advanced colorectal cancer reduces the quality of 
life (QOL) of patients. Therefore, novel methods that would 
allow the early detection and diagnosis of colorectal cancer 
are desired in the medical field. The fecal occult blood test 
(FOBT) and blood tests for tumor markers are commonly 
used as screening methods for diagnosing colorectal cancer. 
The FOBT is a non-invasive and inexpensive method, but 
has low sensitivity and specificity for cases of colorectal 
cancer that do not involve lymph node or distant metastasis. 
As for blood tests for tumor markers, carcinoembryonic 
antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) 
can be used to test for colorectal cancer, but such blood 
tests also have low sensitivity so they are not appropriate 
for detecting colorectal cancer early. Colonoscopy is a 
more accurate and reliable method for detecting colorectal 
cancer early, but it cannot be used for screening because it 
is more invasive and expensive than blood testing. Recently, 
computed tomographic colonography, which is less invasive 
than colonoscopy, has been used to detect colorectal 
cancer; however, special X-ray equipment is required to 
obtain detailed scans, which is expensive. Combinations 
of conventional screening methods are also used to detect 
colorectal cancer, but such combined approaches only detect 
about 40% of colorectal cancer cases [2].Therefore, it is 
necessary to establish the novel screening methods for early 
detection of colorectal cancer with high sensitivity, high 
specificity, noninvasive and easy procedure.

Biomarker research into colorectal cancer is being 
carried out using a variety of approaches including omics-
based methods, such as genomics and proteomics, and 
many researchers are searching for novel biomarkers 
that would allow the early detection of the disease and 
could also be used for predicting therapeutic efficacy, 
recurrence, and prognosis, etc. [3]. In our previous study, 
serum metabolomics or metabolome analysis, which is the 
comprehensive study of low molecular weight metabolites, 
was employed to find novel metabolite biomarkers of 
colorectal cancer, and then a colorectal cancer prediction 
model based on four metabolites was established using 
multiple logistic regression analysis [4]. The metabolome 
mainly represents the endpoint of the omics cascade, and 
it is also the closest point in the cascade to the phenotype. 
The genome, which is located in the upstream part of the 
omics cascade and includes numerous genes, is generally 
not affected by exogenous factors, such as environmental 

and dietary factors. Even if a certain gene contains a 
mutation, it might not affect the rest of the body due to the 
effects of homeostatic functions. In addition to variations 
in DNA, mRNA, and protein expression, the metabolome 
is affected by the enzymatic activities of various proteins, 
and alterations in the levels of metabolites can also be 
caused by exogenous factors. Therefore, the metabolome 
could be considered to be a summary of the other 
upstream omics profiles, and metabolome analysis might 
be able to detect subtle changes in metabolic pathways 
and deviations from homeostasis before phenotypic 
changes occur [5, 6]. Thus, metabolomics could contribute 
greatly to biomarker research [7, 8]. Our previous study 
[4], in which a colorectal cancer prediction model was 
established, included colorectal cancer patients with 
stage 0 to IV disease, and the colorectal cancer prediction 
model demonstrated sensitivity and specificity values of 
about 80%. However, the number of stage 0/I/II colorectal 
cancer patients was relatively small, so it is necessary 
to carry out a further trial involving a larger number of 
stage 0/I/II colorectal cancer patients in order to establish 
a screening procedure that could contribute to the early 
detection of colorectal cancer and improve the QOL of 
colorectal cancer patients.

In this study, we employed gas chromatography/
triple-quadrupole mass spectrometry (GC/QqQMS), 
which is generally used for multiple reaction monitoring 
(MRM) analysis. QqQMS-based MRM analysis can be 
used to easily distinguish single metabolite-derived peaks 
from co-eluted peaks and background noise, and it exhibits 
high sensitivity and a wide dynamic range compared 
with single-QMS [9], although gas chromatography/
single-quadrupole mass spectrometry (GC/QMS) is very 
useful for comprehensive metabolite analysis [10]. In 
our previous study [4], GC/QMS was used to discover 
biomarker candidates for colorectal cancer. An automatic 
derivatization machine was also used because inter-
sample differences in the time between derivatization 
and measurement can affect the results [11, 12]. By using 
this automatic derivatization machine, our GC/QqQMS 
analysis system is able to obtain more accurate metabolite 
data. The aim of the present study is to find metabolite 
biomarker candidates that would allow the detection of 
cases of colorectal cancer that do not involve lymph node 
or distant metastasis. To do this, human plasma samples 
that were collected from stage 0 to stage II colorectal 
cancer patients and corresponding healthy volunteers were 
analyzed using our GC/QqQMS analysis system. Then, 
a multiple logistic regression model for detecting cases 
of colorectal cancer without any lymph node or distant 
metastasis was established on the basis of the metabolite 
data.
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RESULTS

Our GC/QqQMS-based metabolite analysis 
system detected 64 metabolites in the subjects’ plasma. 
The sample set examined in this study was obtained 
from 282 colorectal cancer patients and 291 healthy 
volunteers, and the colorectal cancer patients included 
clinical stage 0 (N=79), I (N=80), and II (N=123) patients 
who were free from invasion and metastasis. Regarding 
the characteristics of the colorectal cancer patients and 
healthy volunteers included in this study (Table 1), there 
were no significant differences in age or body mass index 
(BMI) between the colorectal cancer patients and healthy 
volunteers. The male-to-female ratio of the two groups 
also did not differ significantly. Significant differences in 
the frequencies of current smokers, former smokers, and 
people who had never smoked were observed between 
the colorectal cancer patients and healthy volunteers, 
whereas the significance of the inter-group differences in 
the frequencies of current alcohol drinkers, former alcohol 
drinkers, and people who had never drank alcohol could 
not be confirmed. The numbers of people who were and 
were not taking medication differed significantly between 
the colorectal cancer patients and healthy volunteers. 
As for the blood test results, the blood levels of total 
cholesterol, triglycerides, glucose, total bilirubin, aspartate 
transaminase (AST), C-reactive protein (CRP), CEA, and 
CA19-9 differed significantly between the colorectal 
cancer patients and healthy volunteers (Supplementary 
Table 1).

The plasma metabolite levels of the colorectal 
cancer patients and healthy volunteers were compared 
using Wilcoxon’s rank sum test (Supplementary Table 2). 
As a result, the plasma levels of 41 of the 64 metabolites 
were shown to differ significantly (p<0.05) between the 
colorectal cancer patients and healthy volunteers. After the 
application of Bonferroni’s correction (p=0.000781), the 
levels of 29 metabolites continued to exhibit significant 
differences. Next, a simple linear regression analysis of 
the 29 metabolites that demonstrated Bonferroni-corrected 
significant differences was performed, and their area under 
the curve (AUC), sensitivity, and specificity values were 
evaluated (Table 2). Pyruvic acid-meto-trimethylsilyl 
(TMS), glycolic acid-2TMS, lactic acid-2TMS(/SI), and 
fumaric acid-2TMS(/SI) displayed AUC values of >0.8, 
and both the sensitivity and specificity of pyruvic acid-
meto-TMS and lactic acid-2TMS(/SI) were >80%.

Based on these results, multiple logistic regression 
analysis involving various metabolite biomarkers was 
performed. The 29 metabolites that exhibited Bonferroni-
corrected significant inter-group differences were 
subjected to a stepwise variable selection method, and 
8 metabolites (pyruvic acid-meto-TMS, glycolic acid-
2TMS, tryptophan-3TMS(/SI), palmitoleic acid-TMS, 
fumaric acid-2TMS(/SI), ornithine-4TMS(/SI), lysine-
4TMS, and 3-hydroxyisovaleric acid-2TMS) were selected 

as variables for the multiple logistic regression model. 
Then, a multiple logistic regression model composed 
of these 8 selected metabolites was established, which 
resulted in the following predictive model (Figure 1):

p=1/[1+exp-{-8.99+19.38X1+82.33X2-6.86X3-67.48X4+296.32X5+9.69X6-

5.76X7-24.99X8}]
The AUC, sensitivity, and specificity values of 

this model were 0.996, 99.3%, and 93.8%, respectively 
(Table 3). On the other hand, the sensitivity of CEA and 
CA19-9 were both <20%, although the specificity of CEA 
and CA19-9 were both >95% (Table 3). The sensitivity/
specificity of the developed model for each clinical stage 
(0/I/II) were also evaluated (Table 3). As a result, it was 
found that the model exhibited sensitivity and specificity 
values of >90% for each stage of the disease, and 
surprisingly its sensitivity for stage 0 disease, specificity 
for stage 0 disease, and sensitivity for stage II disease were 
all 100%. On the contrary, the sensitivity of CEA was 
3.8% for stage 0 disease, 15.0% for stage I disease, and 
29.3% for stage II disease, and the sensitivity of CA19-9 
was 6.4% for stage 0 disease, 6.3% for stage I disease, and 
13.1% for stage II disease. CEA and CA19-9 exhibited 
specificity values of >90% for each stage of the disease.

Finally, the AUC of the predictive model 
was compared with that of pyruvic acid-meto-TMS 
(Supplementary Figure 1) because the AUC of pyruvic 
acid-meto-TMS was especially high in the simple linear 
regression analysis. As a result, the AUC of the predictive 
model was shown to be significantly superior to that of 
pyruvic acid-meto-TMS (p<0.0001).

DISCUSSION

In this study, we investigated whether the 
alterations in plasma metabolite levels are available for 
early detection of colorectal cancer. An analytical system 
composed of an automatic derivatization machine and GC/
QqQMS was used for this investigation. The automatic 
derivatization machine helped to eliminate the influence of 
inter-sample differences in the time between derivatization 
and measurement on plasma metabolite levels. In addition, 
GC/QqQMS makes it possible to easily distinguish the 
peak for a particular metabolite from co-eluted peaks and 
background noise, resulting in higher quality evaluations. 
The aim of this study is to find metabolite biomarkers and/
or multiple metabolite-based multiple logistic regression 
models that would allow the discovery and diagnosis 
of cases of colorectal cancer that do not involve lymph 
node or distant metastasis. Therefore, the sample set was 
composed of colorectal cancer patients with stage 0, I, or 
II disease and corresponding healthy volunteers.

Some previous metabolomics studies have 
attempted to discover biomarkers that might aid the early 
detection of colorectal cancer. Ritchie et al. performed 
non-targeted and targeted serum metabolite profiling 
using training sets composed of three and two independent 
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Table 1: Characteristics of the colorectal cancer patients and healthy volunteers

CRC HV
p-value

N 282 291

Age (y.o.)

Median 68 (40-93) 68 (41-88)

0.825
Mean 67.0 66.8
S.D. 9.02 7.94

Sex
Male 170 178

0.828
Female 112 113

BMI (kg/m2)
Mean 22.9 22.8

0.6119
S.D. 3.62 2.82

Smoking habits
Current 52 24

0.0006
Former 116 118
Never 114 149

Alcohol consumption

Current 174 198

0.1132
Former 26 18
Never 79 75
N.R. 3 0

Medication
Yes 160 202

0.0017
No 122 89

Tumor (T)

Tis 79
T1 53
T2 27
T3 119
T4a 2
T4b 2

Lymph node (N)
N0 282

N1/2 0

Metastasis (M)
M0 282
M1 0

Stage
0 79
I 80
II 123

(Continued )
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cohorts, respectively, and 28-36 carbon-containing 
hydroxylated polyunsaturated ultra-long-chain fatty-acids 
were identified as biomarkers of colorectal cancer [13]. In 
this study by Ritchie et al., 13 to 34 stage 0/I/II colorectal 
cancer patients were included in each cohort, and 28-
36 carbon-containing hydroxylated polyunsaturated 
ultra-long-chain fatty acids were shown to be useful for 
discovering stage 0/I/II colorectal cancer patients. In a 
study by Miyagi et al., two-class linear discrimination 
analysis based on plasma amino acid profiling showed 
AUC values of 0.903, 0.859, and 0.829 for detecting 
stage 0 (n=8), I (n=63), and II (n=48) colorectal cancer, 
respectively [14]. A study by Fang et al., which included 26 
stage I/II colorectal cancer patients, found that the serum 
levels of some lipid species differed significantly between 
stage I/II colorectal cancer patients and healthy volunteers 
[15]. Proton nuclear magnetic resonance spectroscopy 
(1HNMR)-based fecal metabolomic fingerprinting 
was reported to be useful for distinguishing stage I/II 
colorectal cancer patients from healthy volunteers in a 
study involving 20 stage I/II colorectal cancer patients 
[16]. In a study by Uchiyama et al. based on capillary 
electrophoresis/mass spectrometry [17], in which 14 stage 
I colorectal cancer patients and 14 stage II colorectal 
cancer patients were included in the sample set, the serum 
level of benzoic acid showed sensitivity, specificity, and 
AUC values of 1.0, 0.98, and 0.98, respectively, for stage 
I colorectal cancer, and 0.93, 0.90, and 0.95, respectively, 
for stage II colorectal cancer. Therefore, previous studies 

have identified promising metabolite biomarkers of cases 
of colorectal cancer that do not involve lymph node or 
distant metastasis, but many of these studies included 
small numbers of colorectal cancer patients that were free 
from lymph node and distant metastasis; i.e., stage 0/I/
II colorectal cancer patients. Our study solely involved 
patients with stage 0 (n=79), I (n=80), or II (n=123) 
colorectal cancer. Moreover, the established predictive 
model exhibited sensitivity of >95%, and its specificity 
was also >90% (Table 3). These results suggest that the 
predictive model established in our study may be superior 
to other biomarker candidates reported in previous studies.

The established predictive model was composed of 
8 metabolites; i.e., pyruvic acid, glycolic acid, tryptophan, 
palmitoleic acid, fumaric acid, ornithine, lysine, and 
3-hydroxyisovaleric acid. The multicollinearity of 
the metabolites could not be confirmed because their 
variance inflation factor (VIF) values were small (Figure 
1). Therefore, a variety of the factors associated with 
colorectal cancer without any lymph node or distant 
metastasis might have independently contributed to 
the alterations in the blood levels of each metabolite. 
For example, the colorectal cancer patients had higher 
plasma levels of pyruvic acid, which is an intermediate 
of glycolysis, than the healthy volunteers (Supplementary 
Table 2). The colorectal cancer patients also had higher 
plasma levels of lactic acid, which is the end product of 
glycolysis, than the healthy volunteers (Supplementary 
Table 2). A previous proteomic analysis of colorectal 

CRC HV
p-value

N 282 291

Site

C 33
A 39
T 23
D 11
S 73
R 101
P 2

Histology

tub1 175
tub2 91
por1 2
por2 1
pap 3
muc 10

The p-values for age and BMI were calculated using Welch's t-test. The p-values for sex, smoking habits, alcohol 
consumption, medication usage, and cancer stage were calculated using Pearson's chi-squared test. CRC: colorectal cancer 
patients; HV: healthy volunteers; y.o.: years old; BMI: body mass index; S.D.: standard deviation; N.R.: no response; C: 
cecum; A: ascending colon; T: transverse colon; D: descending colon; S: sigmoid colon; R: rectum; P: sacral promontory.
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Table 2: AUC, sensitivity, and specificity values of the metabolites that exhibited Bonferroni-corrected significant 
differences

AUC Sensitivity Specificity

Pyruvic acid-meto-TMS 0.93551 87.9% 90.4%

Glycolic acid-2TMS 0.90352 92.6% 78.0%

Lactic acid-2TMS(/SI) 0.88963 82.6% 82.8%

Fumaric acid-2TMS(/SI) 0.83445 74.1% 80.8%

Ornithine-4TMS(/SI) 0.76751 68.8% 76.3%

Sucrose-8TMS 0.7613 74.8% 66.0%

Fructose-meto-5TMS(2) 0.71667 71.6% 65.3%

Arabinose-meto-4TMS 0.71089 65.3% 69.1%

2-ketoglutaric acid-meto-
2TMS 0.67883 64.9% 66.3%

Sorbose-meto-5TMS(1) 0.66413 67.7% 61.9%

Palmitoleic acid-TMS 0.65756 55.3% 69.4%

Tryptophan-3TM(/SI) 0.6573 45.0% 81.1%

Cysteine-3TMS 0.64901 79.1% 46.4%

Xylose-meto-4TMS(2) 0.6352 51.4% 71.1%

2-aminobutyric acid-2TMS 0.62659 72.7% 50.5%

Lysine-4TMS 0.62194 39.0% 81.8%

Malic acid-3TMS(/SI) 0.62077 42.2% 77.0%

Threitol-4TMS 0.62045 39.0% 80.4%

Maltose-meto-8TMS(1) 0.38827 12.4% 96.2%

Elaidic acid-TMS 0.6098 53.9% 67.0%

Uric acid-4TMS 0.60658 51.1% 69.4%

Isocitric acid-4TMS 0.60463 35.5% 85.6%

meso-erythritol-4TMS 0.60291 42.9% 79.0%

Valine-2TMS(/SI) 0.595 47.2% 69.4%

Leucine-2TMS 0.59334 49.3% 65.6%

3-hydroxyisovaleric acid-
2TMS 0.59258 38.3% 78.7%

Xylitol-5TMS 0.5882 62.8% 56.4%

Arabitol-5TMS 0.58759 57.1% 60.8%

Proline-2TMS 0.58217 54.6% 61.9%

A simple linear regression analysis of the metabolites that exhibited Bonferroni-corrected significant differences was 
performed, and the AUC, sensitivity, and specificity values of these metabolites are shown in Table 2. AUC: area under the 
curve; TMS: trimethylsilyl group; SI: stable isotope; ‘-TMS’: the number of TMS molecules bound to each metabolite via 
derivatization; ‘/SI’: the metabolites whose peak intensity values were normalized using the corresponding stable isotopes.
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cancer tissues obtained from stage III colorectal cancer 
patients revealed the upregulation of glycolysis [18]. 
On the other hand, Hirayama et al. found that colorectal 
cancer tissue contained lower levels of pyruvic acid 
than normal colon tissue, although the concentration of 
lactic acid was increased in the colorectal cancer tissue 
[19]. This phenomenon is known as ‘the Warburg effect’. 
The colorectal cancer tissue examined in the study by 
Hirayama et al. was collected from colorectal cancer 
patients with stage I to IV disease. The blood level of 
pyruvic acid also reflects the nutritional state of the body 
regardless of the presence/absence of cancer. The plasma 
level of fumaric acid, which is an intermediate of the 
tricarboxylic acid (TCA) cycle (which occurs downstream 
of glycolysis), was also found to be increased in colorectal 
cancer patients compared with healthy volunteers, and 
moreover, the levels of 2-ketoglutaric acid, malic acid, and 
isocitric acid, which are intermediates of the TCA cycle, 
were significantly higher in the colorectal cancer patients 

(Supplementary Table 2). Glycolysis and the TCA cycle 
are important metabolic pathways for providing energy 
to cells, and the abovementioned findings indicate that 
information about local colorectal cancer-based alterations 
in nutritional conditions should be included in predictive 
models for colorectal cancer.

Palmitoleic acid, which is a ω-7 unsaturated fatty 
acid, is abundant in dietary oils, and it is also produced 
from palmitic acid by ∆9 desaturase in the body. In the 
present study, the colorectal cancer patients displayed 
significantly lower levels of palmitoleic acid than 
the healthy volunteers (Supplementary Table 2). The 
colorectal cancer patients exhibited lower blood levels 
of total cholesterol than the healthy volunteers, but their 
blood levels of triglycerides were higher than those of 
the colorectal cancer patients (Supplementary Table 
1), suggesting that there is no relationship between 
stage 0/I/II colorectal cancer and lipid metabolism 
abnormalities. Palmitoleic acid enhances insulin 

Figure 1: The ROC curve and data for the predictive model. The black line on the graph is the ROC curve for the predictive 
model. The AUC, sensitivity, and specificity values of the predictive model obtained via multiple logistic regression analysis were 0.996, 
99.3%, and 93.8%, respectively, and the optimal cut-off value was 0.19. The coefficients, S.E., p-values, and VIF of this predictive model 
at the intercept and for each variable are shown in the table below the graph. S.E.: standard error; VIF: variance inflation factor; TMS: 
trimethylsilyl group; SI: stable isotope; ‘-TMS’: the number of TMS molecules bound to each metabolite via derivatization; ‘/SI’: the 
metabolites whose peak intensity values were normalized using the corresponding stable isotopes.
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sensitivity by suppressing inflammation and inhibiting 
the destruction of insulin-secreting pancreatic β cells 
[20], and it also reduces obesity-related inflammation 
[21]. Thus, palmitoleic acid seems to exert anti-
inflammatory effects, and its administration to humans 
was shown to decrease blood CRP levels [22]. It has 
also been suggested that changes in a person’s fatty acid 
profile might affect their risk of colorectal cancer. [23]. 
Therefore, a reduced level of palmitoleic acid could lead 
to altered inflammatory conditions in the body, and hence, 
influence the development of stage 0/I/II colorectal cancer. 
Accordingly, it might be beneficial to include information 
about inflammatory conditions in predictive models for 
colorectal cancer.

In this study, a significant difference in smoking 
status was detected between the colorectal cancer patients 
and healthy volunteers, and the colorectal cancer patients 
had the high frequency of smoking status compared with 
healthy volunteers (Table 1). It has been reported that 
smoking habits affect the metabolite profile of the human 
body, including the blood [24–26]. In addition, habitual 
diet also seems to influence the serum metabolite profile 
[27]. Recently, a positive association between smoking 
and colorectal cancer was detected in Japanese [28], and 
so it might be necessary to include information about the 
lifestyle factors related to colorectal cancer without any 
lymph node or distant metastasis in predictive models for 
the disease. In a previous study, it was revealed that the 
power of a metabolite-based model to predict colorectal 
cancer was enhanced by incorporating four general 
clinical factors, age, gender, smoking status, and alcohol 
status, although the study in question included patients 
with stage I to IV colorectal cancer [29]. In addition, 
it was reported that the administration of aspirin and 
hormonal agents reduced the risk of colorectal cancer [30, 
31]. Regarding aspirin, its use decreased the plasma level 
of oncometabolite 2-hydroxyglutarate in a randomized, 
double-blind, crossover trial [32], suggesting that 

medication might cause changes in the plasma levels of 
certain metabolites. In our study, information about the 
drugs being taken could not be collected for all subjects 
in the medication-positive group, so the positive/negative 
associations between particular medications and plasma 
metabolite levels should be discussed in the future.

In conclusion, a predictive model for detecting cases 
of colorectal cancer that do not involve lymph node or 
distant metastasis was established using a GC/QqQMS 
based-metabolomics approach. In this study, we focused 
on stage 0/I/II colorectal cancer, and the diagnostic model 
was established. Accuracy of this diagnostic model for 
stage III/IV colorectal cancer has not been investigated, 
although the previous model [4] was evaluated for all stage 
(0/I/II/III/IV) colorectal cancer, so the established model 
may not be appropriate for stage III/IV colorectal cancer. 
The aim of this study is to establish the diagnostic model 
to discovery cases of colorectal cancer that do not involve 
lymph node or distant metastasis, and the metabolites 
on the model may be different between the previous 
and the current studies. Our predictive model exhibited 
high sensitivity and specificity in the present study 
population, and our results formed the basis of future’s 
prospective studies for other cohorts, so its performance 
should be prospectively validated in other populations 
in which blood samples should be collected via the same 
procedure. In addition, it is also needed to perform the 
further validation study in general population based on 
healthy subjects and then to evaluate sensitivity of this 
model via endoscopy as the gold standard procedure. 
Specimens from colorectal cancer patients were collected 
from clinically-diagnosed subjects, so the results might 
not be representative of those in preclinical cancers 
involved in healthy population, even though the stages 
of cancers in the present study were 0 or I. Sensitivity 
calculated with clinically-diagnosed cancers generally 
tends to be overestimated than the true sensitivity for 
preclinical cancers in the population. Our study sample 

Table 3: Sensitivity and specificity of the predictive model and tumor markers

Stage 0/I/II Stage 0 Stage I Stage II

Sensitivity Model 99.3% 100% 97.5% 100%

CEA 18.1% 3.8% 15.0% 29.3%

CA19-9 9.3% 6.4% 6.3% 13.1%

Specificity Model 93.8% 100% 91.3% 91.7%

CEA 96.0% 92.4% 97.4% 97%

CA19-9 95.6% 95.5% 97.4% 94.4%

The sensitivity and specificity values of the predictive model obtained via multiple logistic regression analysis, and 
CEA and CA19-9, which were selected via simple linear regression analysis, are shown. Sensitivity and specificity were 
separately evaluated for stage 0-II (0/I/II), stage 0, stage I, and stage II disease. CEA: carcinoembryonic antigen; CA19-9: 
carbohydrate antigen 19-9.
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set had the significant differences in the plasma levels 
of total cholesterol, triglyceride, glucose, total bilirubin 
and AST between the colorectal cancer patients and 
healthy volunteers, so it is impossible to completely 
deny the involvement of these factors’ alterations in the 
establishment of our model at this time. In the future, the 
contribution of blood biochemical factors including these 
factors to the diagnostic model should be also performed 
via the subset analysis in the validation study with the 
larger number of human samples. Finally, to enable 
improvements in QOL via the early detection of colorectal 
cancer, the practical utility of this predictive model should 
also be studied. Furthermore, the applicability of our 
model to screening examinations, for example, health 
checkups, should be examined.

MATERIALS AND METHODS

Subjects

This study was approved by the ethics committees 
at Kobe University Graduate School of Medicine and the 
National Cancer Center Japan. We included patients who 
were diagnosed with stage 0, I or II colorectal cancer at 
the National Cancer Center Hospital; were histologically 
confirmed to have adenocarcinoma; and whose blood 
plasma was collected between May 2011 and July 2014 
for research purpose. Patients who were simultaneously 
diagnosed with another type of cancer or had a history of 
cancer were excluded. The control plasma samples were 
obtained from healthy individuals who underwent cancer 
screening at the Research Center for Cancer Prevention 
and Screening, National Cancer Center, and whose blood 
plasma were available for researches. Blood was transferred 
into tubes containing EDTA-2Na as an anticoagulant. 
Blood collected from colorectal cancer patients was kept 
at room temperature for 15-30 min after gentle mixing, 
and then was kept at 4°C. After 0.5 – 24 hr, the blood was 
centrifuged at 3,000 rpm for 10 min at 4°C, and plasma was 
obtained. Blood collected from healthy volunteers was kept 
at room temperature for about 30 min after gentle mixing, 
and then was kept at 4°C. After 1 – 6 hr, the blood was 
centrifuged at 3,000 rpm for 10 min at 4°C, and plasma 
was obtained. Individuals who were diagnosed with cancer 
or had previously been diagnosed with cancer or colorectal 
polyps were excluded from the healthy control group. The 
colorectal cancer patients were classified into 5-year age 
groups (40-44, 45-49, 50-54,…, 80-84, 85+), and healthy 
volunteers were selected by matching them as closely as 
possible with the colorectal cancer patients based on gender, 
age group, and the year of blood collection. All plasma 
samples were prospectively collected from individuals who 
had provided written informed consent to allow their blood 
samples to be used for research purposes and were stored at 
-80°C at the National Cancer Center Biobank (the samples 
from the colorectal cancer patients) or the Research Center 

for Cancer Prevention and Screening (the samples from 
the healthy volunteers). We retrospectively selected 282 
colorectal cancer patients and 291 healthy volunteers for 
our analyses based on the patient/healthy control selection 
criteria and collected their plasma samples. The subjects’ 
characteristics are summarized in Table 1 . Clinical staging 
was performed based on the Union for International Cancer 
Control TNM Classification (7th edition). The classification 
of histology and tumor location was conducted based on 
the Japanese Classification of Colorectal Carcinoma (8th 
edition). In this study, each sample was numbered in a 
blinded manner before metabolite extraction, and steps until 
peak identification and alignment were performed by using 
this blinded number.

Chemicals and reagents
13C3-lactic acid, 13C2-oxalic acid, 2H3-sacrosine, 

2H8-valine, 13C3-dihydroxyacetone, 2H10-isoleucine, 
13C4-fumaric acid, 13C4-malic acid, 2H3-aspartic acid, 
13C5-glutamic acid, 13C6-4-hydroxybenzoic acid, 2H3-
lauric acid, 13C5-ribose, 13C2-taurine, 2H4-citric acid, 2H7-
ornithine, 13C6-tyrosine, 13C6-dopa, 2H6-kynurenine, 2H8-
cystamine, and 13C11-tryptophan were purchased from 
Cambridge Isotope Laboratories, Inc. (MA, USA). 2H3-
2-hydorxybutyric acid and 2-isopropylmalic acid were 
purchased from CDN isotopes (Quebec, CA) and Sigma 
Aldrich (Tokyo, Japan), respectively. The compounds 
were dissolved in methanol, as shown in Supplementary 
Table 3 , and then the obtained solution was used as an 
extraction solution. A standard alkane series mixture (C7 
to C33) and octafluoronaphthalene (OFN) were purchased 
from Restek Co. (PA, USA) and Shimadzu Co. (Kyoto, 
Japan), respectively. Methoxyamine hydrochloride and 
N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA), 
which were used for the derivatization, were obtained 
from Sigma-Aldrich and GL Science (Tokyo, Japan), 
respectively.

Sample preparation

To extract low molecular weight metabolites, 50 
μL of plasma were mixed with 270 μL of the extraction 
solution (Supplementary Table 3), and then the mixture 
was shaken at 1,200 rpm for 30 min at 37°C, before 
being centrifuged at 2,000 x g for 10 min at 4°C. 
One hundred μL of the obtained supernatant were 
transferred to a clean tube and then dried for 3 hr with a 
centrifugal evaporator. For oximation, 80 μL of 20 mg/
ml methoxyamine hydrochloride dissolved in pyridine 
were added to the tube and then sonicated for 10 min, 
before being shaken at 1,200 rpm for 90 min at 30°C. 
The mixture was centrifuged at 2,000 x g for 10 min 
at 20°C, and then 40 μL of the resultant supernatant 
were subjected to GC/QqQMS, as described in the next 
section.
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GC/QqQMS procedure

The GC/QqQMS analysis was performed on an 
AOC-6000 (Shimadzu Co.) and a GCMS-TQ8040 
(Shimadzu Co.) equipped with a BPX-5 capillary column 
(internal diameter: 30 m × 0.25 mm; film thickness: 0.25 
μm; SEG, Victoria, Australia). In the AOC-6000, 20 μL 
of MSTFA were added to the sample supernatant, and 
then the mixture was incubated at 750 rpm for 30 min 
at 37°C, before 1.0 μL of the derivatized solution was 
injected into the GCMS-TQ8040. During the GCMS-
TQ8040 analysis, the inlet temperature was kept at 250°C, 
and helium was used as a carrier gas at a constant flow 
rate of 39.0 cm per sec. The injector split ratio was set 
to 1:30. The GC column temperature was programmed 
to remain at 60°C for 2 min and then rise from 60°C to 
330°C at a rate of 15°C per 1 min, before being kept at 
330°C for 3 min. The total GC run time was 23 min. The 
transfer line and ion-source temperature were 280°C and 
200°C, respectively. The ionization voltage was 70 eV. 
Argon gas was used as a collision-induced dissociation 
gas. The MRM cycle time was set at 5 cycles/sec to 
allow accurate peak area assessment. The metabolite 
detection was performed using the Smart Metabolites 
Database (Shimadzu, Co.), which contained the relevant 
MRM method file and data regarding the GC analytical 
conditions, MRM parameters, and retention index 
employed for the metabolite measurement. To correct the 
retention time, the Automatic Adjustment of Retention 
Time (AART) function of the GCMSsolution software 
(Shimadzu Co.) and a standard alkane series mixture (C7 
to C33) were used. The peak identification was performed 
automatically and then confirmed manually based on the 
specific precursor and product ions, and the retention 
time. The database used in this study includes data about 
215 peaks from 153 metabolites, 22 corresponding stable 
isotopes, and 2-isopropylmalic acid. Due to derivatization-
induced variations, 35 metabolites produce 2 peaks each, 
and 2 metabolites have 3 peaks each. The peak intensity 
of each metabolite was normalized to that of the internal 
standard; i.e., 4-hydroxybenzoic acid-13C6-2TMS. 
Regarding the metabolites that we identified based on 
the stable isotopes, their peak intensities were corrected 
using the corresponding stable isotopes. In this study, 22 
stable isotopes were used, but some native metabolites 
were not detected in the subjects’ plasma. During the 
normalization process, 22 metabolites were corrected 
using both the internal standard and the corresponding 
stable isotopes. Then, the data that exhibited the best 
co-efficient of variation (CV) during the quality control 
(QC) process was adopted for the study. Based on the 
elimination process conducted as part of the QC protocol 
described in the next section, 64 metabolites were finally 
selected as reliable targets for statistical evaluation. The 
MRM parameters for the detected metabolites were 
shown in Supplementary Table 4. The 2-isopropylmalic 

acid contained in the extraction solution was also used to 
evaluate the stability of our GC/QqQMS analysis system.

Quality controls

In order to ensure the reproducibility of the 
acquired metabolomic data, a QC procedure is required 
[33]. We established a specific data cleansing and QC 
protocol before the analyses. Commercially available 
pooled plasma (Kohjin-Bio Co., Saitama, Japan) was 
used as the QC sample. All QC plasma samples were 
derived from the same product lot. One QC sample 
was analyzed with each batch of 10 study samples. 
The QC samples were prepared and analyzed in the 
same manner as the study samples. An OFN sample 
(concentration: 100 pg/μL) was also analyzed in each 
batch of 10 study samples. The criteria used to eliminate 
samples and metabolites from the study were as follows: 
1) samples for which the area ratios of the internal 
standard; i.e., 4-hydroxybenzoic acid-13C6-2TMS, were 
<0.5 or >1.5 times the median value for the batch; 2) 
samples in which ≥2 stable isotopes that were subjected 
to metabolite extraction could not be identified; 3) 
metabolites that could not be detected in ≥1 QC or 
study samples; 4) metabolites for which the CV for all 
QC samples was >30% after normalization using the 
internal standard, or >20% after normalization with the 
corresponding stable isotopes; and 5) batches in which a 
signal value of <2,000 is detected in 100 pg/μL of OFN.

Statistical analysis

Numerical data regarding age, BMI, and the blood 
test results are presented as the mean and standard 
deviation (S.D.) for each group, and were compared 
using the Student’s t-test. Categorical data concerning 
sex, cancer stage, or medical questionnaire responses are 
presented as distribution charts, and were compared using 
Pearson’s chi-square test. In the comprehensive analysis 
of metabolites, the plasma levels of each metabolite 
are presented as mean and S.D. values and were also 
compared using the Wilcoxon’s rank sum test. Ratios of 
the level of a particular metabolite in the colorectal cancer 
patients to that seen in the healthy volunteers are shown 
as fold change values. For clinical variables, p-values of 
<0.05 were considered to indicate a significant difference. 
For the metabolite analysis, p-values indicating significant 
differences were adjusted using the Bonferroni method. 
The stepwise method was used to select variables for 
the multivariate analysis. The multicollinearity of the 
selected variables was assessed by calculating VIF 
values. The multivariate analysis was performed using 
multiple logistic regression analysis. Receiver operating 
characteristic (ROC) curve analysis was used to evaluate 
the diagnostic performance of the resultant regression 
model based on its AUC, sensitivity, and specificity 
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values. These analyses were performed using the default 
conditions of JMP12 (SAS Institute Inc.).

ACKNOWLEDGMENTS

We are deeply grateful to Reiko Tanaka 
(Shimadzu Corporation, Kyoto Japan) for her work as 
an experimental assistant. We also thank the patients 
and healthy volunteers, who kindly donated their blood 
for research purposes, and the National Cancer Center 
Biobank for providing the samples. The National Cancer 
Center Biobank is supported by the National Cancer 
Center Research and Development Fund, Japan.

CONFLICTS OF INTEREST

The authors declare that no conflicts of interest 
associated with this manuscript exist.

GRANT SUPPORT

This study was supported in part by a Grant-in-
Aid for Scientific Research (B) from the Japan Society 
for the Promotion of Science (JSPS) [M.Y.]; a Grant-in-
Aid for Scientific Research (C) from the JSPS [S.N.]; 
and the Practical Research for Innovative Cancer 
Control from the Japan Agency for Medical Research 
and Development (AMED) [S.N. and M.Y.]; the 
Medical Research and Development Programs Focused 
on Technology Transfer: Development of Advanced 
Measurement and Analysis Systems (SENTAN) from 
AMED [S.N., T.K., Y.U., T.S., K.O., Y.Y., K.S., N.T.O., 
N.O., and M.Y.]; and the AMED-CREST from AMED 
[S.N., T.K., T.A., and M.Y.].

REFERENCES

1. World Cancer Report 2014. International Agency for 
Research on Cancer/World Health Organization. Edited by 
Stewart BW and Wild CP.

2. Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki 
W, Sobue T, Japan Cancer Surveillance Research Group. 
Cancer incidence and incidence rates in Japan in 2004: 
based on data from 14 population based cancer registries 
in the Monitoring of Cancer Incidence in Japan (MCIJ) 
project. Japanese Journal of Clinical Oncology. 2010; 40: 
1192-1200.

3. Nambiar PR, Gupta RR, Misra V. An “Omics” based survey 
of human colon cancer. Mutation Research, 2010; 693: 
3-18.

4. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi 
Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, 
Yoshida M. A novel serum metabolomics-based diagnostic 
approach for colorectal cancer. PLoS ONE. 2012; 7: 
e40459.

5. Yoshida M, Hatano N, Nishiumi S, Irino Y, Izumi Y, 
Takenawa T, Azuma T. Diagnosis of gastroenterological 
diseases by metabolome analysis using gas chromatography-
mass spectrometry. Journal of Gastroenterology 2012; 47: 
9-20.

6. Rochfort, S. Metabolomics reviewed: A new “Omics” 
platform technology for systems biology and implications 
for natural products research. Journal of Natural Products. 
2005; 68: 1813-1820.

7. Suzuki M., Nishiumi S., Matsubara A., Azuma T., Yoshida 
M. Metabolome analysis for discovering biomarkers of 
gastroenterological cancer. J Chromatogr B Analyt Technol 
Biomed Life Sci. 2014; 966: 59-69.

8. Nishiumi S, Suzuki M, Kobayashi T, Matsubara A, Azuma 
T, Yoshida M. Metabolomics for Biomarker Discovery in 
Gastroenterological Cancer. Metabolites. 2014; 4: 547-571.

9. Tsugawa H, Tsujimoto Y, Sugitate K, Sakui N, Nishiumi 
S, Bamba T, Fukusaki E. Highly sensitive and selective 
analysis of widely targeted metabolomics using gas 
chromatography/triple-quadrupole mass spectrometry. 
Journal of Bioscience and Bioengineering. 2014; 117: 
122-128.

10. Tsugawa H, Bamba T, Shinohara M, Nishiumi S, 
Yoshida M, Fukusaki E. Practical Non-targeted Gas 
Chromatography/Mass Spectrometry-based Metabolomics 
Platform for Metabolic Phenotype Analysis. Journal of 
Bioscience and Bioengineering. 2011; 112: 292-298.

11. Quéro A, Jousse C, Lequart-Pillon M, Gontier E, Guillot X, 
Courtois B, Courtois J, Pau-Roblot C. Improved stability of 
TMS derivatives for the robust quantification of plant polar 
metabolites by gas chromatography-mass spectrometry. J 
Chromatogr B Analyt Technol Biomed Life Sci. 2014; 970: 
36-43.

12. Noctor G, Bergot G. Mauve C. Thominet D. Lelarge-
Trouverie C. Prioul JL. A comparative study of amino 
acid measurement in leaf extracts by gas chromatography-
time of flight-mass spectrometry and high performance 
liquid chromatography with fluorescence detection. 
Metabolomics. 2007; 3: 161-174.

13. Ritchie SA, Ahiahonu PW, Jayasinghe D, Heath D, Liu 
J, Lu Y, Jin W, Kavianpour A, Yamazaki Y, Khan AM, 
Hossain M, Su-Myat KK, Wood PL, et al. Reduced levels of 
hydroxylated, polyunsaturated ultra long-chain fatty acids 
in the serum of colorectal cancer patients: implications for 
early screening and detection. BMC Medicine. 2010; 8: 13.

14. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa 
T, Miura T, Saruki N, Bando E, Kimura H, Imamura 
F, Moriyama M, Ikeda I, Chiba A, et al. Plasma free 
amino acid profiling of five types of cancer patients and 
its application for early detection. PLoS ONE. 2011; 6: 
e24143.

15. Li F, Qin X, Chen H, Qiu L, Guo Y, Liu H, Chen G, Song 
G, Wang X, Li F, Guo S, Wang B, Li Z. Lipid profiling for 
early diagnosis and progression of colorectal cancer using 
direct-infusion electrospray ionization Fourier transform 



Oncotarget17126www.impactjournals.com/oncotarget

ion cyclotron resonance mass spectrometry. Rapid 
Communications in Mass Spectrometry. 2013; 27: 24-34.

16. Lin Y, Ma C, Liu C, Wang Z, Yang J, Liu X, Shen Z, 
Wu R. NMR-based fecal metabolomics fingerprinting as 
predictors of earlier diagnosis in patients with colorectal 
cancer. Oncotarget. 2016; 7: 29454-29464. doi: 10.18632/
oncotarget.8762.

17. Uchiyama K, Yagi N, Mizushima K, Higashimura Y, Hirai 
Y, Okayama T, Yoshida N, Katada K, Kamada K, Handa O, 
Ishikawa T, Takagi T, Konishi H, et al. Serum metabolomics 
analysis for early detection of colorectal cancer. Journal of 
Gastroenterology. 2016.

18. Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong 
CN, Cheah PY, Eu KW, Hew CL. Proteomic analysis of 
colorectal cancer reveals alterations in metabolic pathways: 
mechanism of tumorigenesis. Molecular & Cellular 
Proteomics. 2006; 5: 1119-1130.

19. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, 
Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, 
Esumi H, Soga T. Quantitative metabolome profiling of 
colon and stomach cancer microenvironment by capillary 
electrophoresis time-of-flight mass spectrometry. Cancer 
Research. 2009; 69: 4918-4925.

20. Yang ZH, Miyahara H, Hatanaka A. Chronic administration 
of palmitoleic acid reduces insulin resistance and hepatic 
lipid accumulation in KK-Ay Mice with genetic type 2 
diabetes. Lipids in Health and Disease. 2011; 10: 120.

21. Chan KL, Pillon NJ, Sivaloganathan DM, Costford 
SR, Liu Z, Théret M, Chazaud B, Klip A. Palmitoleate 
Reverses High Fat-induced Proinflammatory Macrophage 
Polarization via AMP-activated Protein Kinase (AMPK). 
Journal of Biological Chemistry. 2015; 290: 16979-16988.

22. Bernstein AM, Roizen MF, Martinez L. Purified palmitoleic 
acid for the reduction of high-sensitivity C-reactive protein 
and serum lipids: a double-blinded, randomized, placebo 
controlled study. Journal of Clinical Lipidology. 2014; 8: 
612-617.

23. Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, 
Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell 
H. Dietary fatty acids and colorectal cancer: a case-control 
study. American Journal of Epidemiology. 2007; 166: 
181-195.

24. Gu F, Derkach A, Freedman ND, Landi MT, Albanes D, 
Weinstein SJ, Mondul AM, Matthews CE, Guertin KA, 
Xiao Q, Zheng W, Shu XO, Sampson JN, et al. Cigarette 
smoking behaviour and blood metabolomics. International 
Journal of Epidemiology. 2016; 45:1421-1432.

25. Hsu PC, Lan RS, Brasky TM, Marian C, Cheema AK, 
Ressom HW, Loffredo CA, Pickworth WB, Shields 
PG. Metabolomic profiles of current cigarette smokers. 
Molecular Carcinogenesis. 2017; 56:594-606.

26. Chen Q, Deeb RS, Ma Y, Staudt MR, Crystal RG, Gross 
SS. Serum Metabolite Biomarkers Discriminate Healthy 
Smokers from COPD Smokers. PLoS ONE. 2015; 10: 
e0143937.

27. Playdon MC, Sampson JN, Cross AJ, Sinha R, Guertin KA, 
Moy KA, Rothman N, Irwin ML, Mayne ST, Stolzenberg-
Solomon R, Moore SC. Comparing metabolite profiles of 
habitual diet in serum and urine. The American Journal of 
Clinical Nutrition. 2016; 104: 776-789.

28. Mizoue T, Inoue M, Tanaka K, Tsuji I, Wakai K, Nagata 
C, Tsugane S; Research Group for the Development, 
Evaluation of Cancer Prevention Strategies in Japan. 
Tobacco smoking and colorectal cancer risk: an evaluation 
based on a systematic review of epidemiologic evidence 
among the Japanese population. Japanese Journal of 
Clinical Oncology. 2006; 36: 25-39.

29. Zhu J, Djukovic D, Deng L, Gu H, Himmati F, Chiorean 
EG, Raftery D. Colorectal cancer detection using targeted 
serum metabolic profiling. Journal of Proteome Research. 
2014;13: 4120-4130.

30. Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: 
the promise of precision chemoprevention. Nature Reviews 
Cancer. 2016; 16: 173-186.

31. Johnson JR, Lacey JV Jr, Lazovich D, Geller MA, Schairer 
C, Schatzkin A, Flood A. Menopausal hormone therapy and 
risk of colorectal cancer. Cancer Epidemiology, Biomarkers 
& Prevention. 2009; 18: 196-203.

32. Liesenfeld DB, Botma A, Habermann N, Toth R, 
Weigel C, Popanda O, Klika KD, Potter JD, Lampe JW, 
Ulrich CM. Aspirin Reduces Plasma Concentrations of 
the Oncometabolite 2-Hydroxyglutarate: Results of a 
Randomized, Double-Blind, Crossover Trial. Cancer 
Epidemiology, Biomarkers & Prevention. 2016; 25: 
180-187.

33. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-
McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, 
Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre 
R et al. Procedures for large-scale metabolic profiling of 
serum and plasma using gas chromatography and liquid 
chromatography coupled to mass spectrometry. Nature 
Protocols. 2011; 6: 1060-1083.


