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ABSTRACT

Bone loss occurs in obesity and cancer-associated complications including 
wasting. This study determined whether a high-fat diet and a deficiency in monocyte 
chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 
mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-
bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular 
number, trabecular thickness and bone mineral density and increased trabecular 
separation in femurs. Similar changes occurred in vertebrae. The high-fat diet 
compared to the AIN93G diet exacerbated LLC-induced detrimental structural 
changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient 
in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, 
connectivity density, trabecular number and decreases in trabecular separation in 
both femurs and vertebrae, and increases in trabecular thickness and bone mineral 
density and a decrease in structure model index in vertebrae. Lewis lung carcinoma 
significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 
5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 
deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency 
resulted in significant changes in plasma concentration of osteocalcin. In conclusion, 
pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; 
MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated 
bone wasting.

INTRODUCTION

Metastasis is the most devastating aspect of cancer, 
which is accompanied by wasting that eventually results 
in cachexia characterized by a significant skeletal muscle 
loss and multi-organ functional failures. Limited studies 
indicate that bone loss can occur during cancer-associated 
wasting. For example, lung cancer patients with a 30% 
loss of body mass exhibit significantly lower total body 
mineral content than healthy-matched controls [1]. 
Concurrent muscular and bone deterioration is found 
in a murine model of cancer cachexia [2]. Furthermore, 
pathways that induce muscular wasting may promote bone 
loss during cachexia [3].

Monocyte chemotactic protein-1 (MCP-1) is 
primarily considered a potent chemotactic factor that 

attracts monocytes and other inflammatory cells to the 
site of inflammation during tissue injury and infection [4]. 
However, MCP-1 has functions beyond tissue repair; it 
participates in the development and progression of many 
pathophysiological conditions, including cancer [5–7]. 
Elevated expression of MCP-1 is associated with poor 
outcomes and short disease-free intervals [5–7], and thus 
it has prognostic value for cancer patients. In support of 
the clinical observations, animal studies show that MCP-
1 participates in primary tumor growth and metastasis 
[8–10]. In addition, MCP-1 is pro-osteoclastogenic. High 
expression of MCP-1 is found in osteoporotic bone of 
humans [11]. In vitro studies show that MCP-1 stimulates 
the formation of osteoclasts [12].

Adipose tissue produces proinflammatory cytokines 
including MCP-1. Adipose tissue expression of MCP-
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1 mRNA correlates positively with adiposity and body 
mass index [13]. Accumulation of visceral fat mass is an 
indicator of detrimental health outcomes in obesity [14, 
15]. Being obese at the time of primary cancer diagnosis 
is predictive of poor prognosis [16–19]. Increased body 
weight caused by obesity was considered a benefit to bone 
health because of reported positive correlations between 
body weight and bone mineral density [20]. However, 
studies also show an inverse relationship between body fat 
mass and bone mass in humans [21]. Laboratory studies 
show that consumption of a high-fat diet results in bone 
loss in rodent models [22–24].

In our study of the relationship between obesity 
and metastasis, we found that consumption of a high-fat 
diet enhances and MCP-1 deficiency reduces spontaneous 
pulmonary metastasis of Lewis lung carcinoma (LLC) 
in mice [25]. Furthermore, we found bone loss in mice 
with lung metastases of LLC [24]. Thus, we hypothesized 
that a high-fat diet exacerbates and MCP-1 deficiency 
alleviates metastasis-associated bone wasting. To test this 
hypothesis, we performed micro-computed tomographic 
analysis of femurs and vertebrae collected from LLC-
bearing wild-type and MCP-1-/- mice in a previous study 
[25] showing that the high-fat diet enhances and MCP-1 
deficiency attenuates metastasis of LLC.

RESULTS

Physical measurement of bone

There were no differences in femur length, medial-
lateral axis width and anterior-posterior axis width between 
non-tumor-bearing and LLC-bearing wild-type mice 
fed the AIN93G diet (data not shown). In LLC-bearing 

mice, the femur length of MCP-1-/- mice was slightly 
but significantly shorter than that of wild-type mice 
(14.53 ± 0.08 vs. 14.82 ± 0.08 mm, p<0.05); there were 
no differences in medial-lateral axis width and anterior-
posterior axis width between MCP-1-/- and wild-type mice 
(data not shown). The high-fat diet did not change these 
variables compared to the AIN93G diet (data not shown).

Micro-computed tomographic measurement of 
trabecular bone

The presence of LLC was detrimental to the three-
dimensional microstructure of trabecular bone. Compared to 
non-tumor-bearing mice, LLC reduced bone volume fraction 
(BV/TV) by 29%, connectivity density (Conn.D) by 31%, 
trabecular number (Tb.N) by 11%, and trabecular thickness 
(Tb.Th) by 10% and increased trabecular separation (Tb.
Sp) by 14% in femurs (Table 1). In lumbar vertebra 4, LLC 
reduced BV/TV by 19% and Tb.Th by 10% and increased 
structure model index (SMI) by 30% and Tb.Sp by 6% 
(Table 2). Furthermore, LLC reduced bone mineral density 
(BMD) by 17% in femurs (Figure 1a) and 12% in vertebrae 
(Figure 1b). Pearson correlation analysis showed that the 
volume of lung metastases correlated inversely with BV/TV, 
Conn.D, Tb.N and BMD and positively with SMI and Tb.Sp 
in both femurs and vertebrae (Table 3).

The high-fat diet exacerbated the detrimental structural 
changes in trabecular bone mediated by LLC. Consuming 
the high-fat diet instead of the AIN93G diet decreased 
Conn.D by 21%, Tb.N by 8% and increased Tb.Sp by 9% 
in femurs (Table 1). The high-fat diet instead of the AIN93G 
diet increased SMI by 12% in vertebrae (Table 2). The high-
fat diet decreased BMD by 12% in femurs (Figure 1a) but 
only marginally reduced BMD in vertebrae (Figure 1b).

Table 1: Trabecular structural changes in femurs of MCP-1-/- and wild-type mice fed the AIN93G or the high-fat diet

AIN93G
Wild-type  
No LLC

AIN93G
Wild-type

AIN93G
MCP-1-/-

High-fat
Wild-type

High-fat
MCP-1-/- Diet

p values
Gene D × G

BV/TV, % 14.8 ± 1.0 * 10.5 ± 0.8 12.7 ± 0.9 9.8 ± 0.6 10.8 ± 0.5 0.10 < 0.05 0.41

Conn.D, 
1/mm3

156.4 ± 12.9 * 108.3 ± 12.9 144.2 ± 12.0 90.3 ± 7.5 109.4 ± 8.4 < 0.05 < 0.05 0.44

SMI 2.2 ± 0.1 2.6 ± 0.1 2.4 ± 0.1 2.6 ± 0.1 2.5 ± 0.1 0.22 0.12 0.37

Tb.N, 1/mm 5.4 ± 0.1 * 4.8 ± 0.1 5.3 ± 0.1 4.5 ± 0.1 4.8 ± 0.1 < 0.01 < 0.01 0.30

Tb.Th, µm 46.5 ± 1.0 * 41.9 ± 0.6 42.6 ± 1.1 43.5 ± 0.8 43.3 ± 0.7 0.19 0.76 0.63

Tb.Sp, µm 181.5 ± 4.1 * 207.0 ± 6.3 186.0 ± 4.0 219.4 ± 5.3 206.9 ± 3.6 < 0.01 < 0.01 0.38

Two-way ANOVA was performed to compare differences among the groups of LLC-bearing mice. A priori contrasts were 
performed to compare the difference between AIN93G-fed wild-type mice with or without Lewis lung carcinoma (LLC); 
*p<0.01 compared to AIN93G wild-type. Values are means ± SEM (n = 14-15 per group). BV/TV: bone volume fraction; 
Conn.D: connectivity density; SMI: structure model index; Tb.N: trabecular number; Tb.Th: trabecular thickness; Tb.Sp: 
trabecular separation.
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Table 2: Trabecular structural changes in vertebrae of MCP-1-/- and wild-type mice fed the AIN93G or the high-fat diet

AIN93G
Wild-type 
No LLC

AIN93G
Wild-type

AIN93G
MCP-1-/-

High-fat
Wild-type

High-fat
MCP-1-/- Diet

p values
Gene D × G

BV/TV, % 23.7 ± 0.9 * 19.3 ± 1.3 22.1 ± 0.8 18.4 ± 0.5 20.8 ± 0.7 0.21 < 0.01 0.79

Conn.D, 
1/mm3

267.2 ± 5.8 271.0 ± 8.1 297.1 ± 7.8 260.9 ± 7.0 283.1 ± 9.0 0.12 < 0.01 0.80

SMI 1.0 ± 0.1 * 1.3 ± 0.1 1.2 ± 0.10 1.5 ± 0.1 1.3 ± 0.1 0.05 < 0.05 0.54

Tb.N, 1/mm 5.7 ± 0.1 5.6 ± 0.1 5.7 ± 0.1 5.5 ± 0.1 5.6 ± 0.1 0.19 < 0.05 0.68

Tb.Th, µm 47.5 ± 1.0 * 42.8 ± 0.9 44.8 ± 0.7 42.7 ± 0.6 44.1 ± 0.9 0.65 < 0.05 0.69

Tb.Sp, µm 166.6 ± 1.7 * 175.7 ± 2.5 166.0 ± 2.1 177.2 ± 2.1 172.7 ± 2.6 0.07 < 0.01 0.25

Two-way ANOVA was performed to compare differences among the groups of LLC-bearing mice. A priori contrasts were 
performed to compare the difference between AIN93G-fed wild-type mice with or without Lewis lung carcinoma (LLC); 
*p<0.01 compared to AIN93G wild-type. Values are means ± SEM (n = 14-15 per group). BV/TV: bone volume fraction; 
Conn.D: connectivity density; SMI: structure model index; Tb.N: trabecular number; Tb.Th: trabecular thickness; Tb.Sp: 
trabecular separation.

Figure 1: Bone mineral density of femurs and vertebrae 
of MCP-1-/- and wild-type mice fed the AIN93G or the 
high-fat diet. Two-way ANOVA were performed to compare 
differences among the groups of LLC-bearing mice. A priori 
contrasts were performed to compare differences between 
AIN93G-fed wild-type (WT) mice with or without Lewis lung 
carcinoma (No-LLC); *p<0.05 compared to AIN93G WT. 
Values are means ± SEM (n = 14-15 per group). BMD: bone 
mineral density.

Deficiency in MCP-1 attenuated detrimental 
structural changes in trabecular bone induced by LLC. The 
MCP-1 deficiency increased BV/TV by 16%, Conn.D by 
28%, Tb.N by 9% and decreased Tb.Sp by 8% in femurs 
(Table 1). In vertebrae, MCP-1 deficiency increased BV/
TV by 14%, Conn.D by 9%, Tb.N by 2% and Tb.Th by 
4% and decreased SMI by 11% and Tb.Sp by 4% (Table 
2). Deficiency in MCP-1 increased BMD in vertebrae by 
8% (Figure 1b) but not in femurs (Figure 1a).

Micro-computed tomographic measurement of 
cortical bone

Compared to non-tumor-bearing mice, LLC-bearing 
mice exhibited decreases of 4% and 6% in cortical area 
fraction (Ct.Ar/Tt.Ar) and 7% and 9% in cortical thickness 
(Ct.Th) in femur mid-shaft and vertebrae, respectively (Table 
4). The high-fat diet did not change LLC-induced decreases 
in Ct.Ar/Tt.Ar and Ct.Th in either femurs or vertebrae (Table 
4). Deficiency in MCP-1 resulted in a slight but significant 
increase in Ct.Ar/Tt.Ar in femurs but not in vertebrae, nor 
did it increase Ct.Th in either femurs or vertebrae (Table 4).

Concentrations of osteocalcin and tartrate-
resistant acid phosphatase 5b (TRAP 5b) in 
plasma

Compared to non-tumor bearing mice, LLC resulted 
in a 27% decrease in osteocalcin (Figure 2a) and a 50% 
increase in TRAP 5b in plasma (Figure 2b). There was 
no difference in osteocalcin between the high-fat and  
AIN93G diets and between MCP-1-/- and wild-type mice 
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Table 3: Pearson correlations of the extent of lung metastasis with trabecular structural changes in femurs and 
vertebrae of MCP-1-/- and wild-type mice fed the AIN93G or the high-fat diet

Femurs Vertebrae

Number of metastasis Volume of metastasis Number of metastasis Volume of metastasis

r p r p r p r p

BV/TV, % –0.18 0.20 –0.48 < 0.01 –0.14 0.32 –0.40 < 0.01

Conn.D, 1/mm3 –0.21 0.13 –0.54 < 0.01 –0.20 0.17 –0.32 < 0.05

SMI 0.09 0.52 0.43 < 0.01 0.25 0.07 0.41 < 0.01

Tb.N, 1/mm –0.30 < 0.05 –0.60 < 0.01 –0.14 0.34 –0.33 < 0.05

Tb.Th, µm 0.02 0.92 –0.07 0.60 –0.13 0.38 –0.34 < 0.05

Tb.Sp, µm 0.28 < 0.05 0.60 < 0.01 0.13 0.38 0.33 < 0.05

BMD, mg HA/cm3 –0.23 0.11 –0.51 < 0.01 –0.23 0.11 –0.46 < 0.01

Abbreviations: BV/TV: bone volume fraction; Conn.D: connectivity density; SMI: structure model index; Tb.N: trabecular 
number; Tb.Th: trabecular thickness; Tb.Sp: trabecular separation; BMD: bone mineral density.

(Figure 2a). The high-fat diet compared to the AIN93G 
diet increased TRAP 5b by 26% (Figure 2b); MCP-1 
deficiency decreased TRAP 5b by 20% compared to wild-
type mice (Figure 2b).

DISCUSSION

The present study showed that the presence of LLC 
and its pulmonary metastases deteriorated trabecular and 
cortical structure and reduced bone mineral density in 
mice, indicating the significance of malignancy in bone 
wasting. The high-fat diet, which leads to increases in 
adipose MCP-1 [25], exacerbated and deficiency in 
MCP-1 attenuated LLC-mediated bone deterioration. 
These findings indicate that MCP-1 contributes to cancer-
associated bone loss.

Lewis lung carcinoma metastasizes to lungs from a 
subcutaneous primary tumor [25, 26]. The present study 
showed that the extent of LLC metastasis correlated 
positively with the severity of bone loss in mice. The 
metastasis of LLC is accompanied by elevations in 
plasma concentrations of proinflammatory cytokines, e.g. 
MCP-1, plasminogen activator inhibitor-1 (PAI-1), tumor 
necrosis factor-α (TNF-α) [25, 27]. Available studies 
show that proinflammatory cytokines participate in bone 
homeostasis. For example, PAI-1 deficiency attenuates 
bone loss in estrogen-deficient [28] and diabetic mice 
[29] and in LLC-bearing mice [24]; TNF-α promotes 
osteoclastogenesis and osteoclast activation [30, 31]. 
While exact mechanisms through which LLC reduces 
bone mass remain to be elucidated, our results indicate 
that increases in production of proinflammatory cytokines 
may contribute to bone loss.

This study provides evidence that MCP-1 
contributes positively to the bone loss associated with 
cancer metastasis. This finding is supported by reports 

that MCP-1 is highly expressed at sites of osteoporotic 
bone [11], prostate cancer-induced bone resorption [32] 
and bacteria-induced bone loss [33]. Furthermore, in vitro 
studies show that MCP-1 stimulates osteoclast formation 
[12, 34] and that lack of MCP-1 decreases the numbers 
and activity of osteoclasts in vitro and elevates bone mass 
in mice [35].

Adipose tissue, considered an endocrine organ, 
produces inflammatory cytokines. In the present study, 
the high-fat diet increased body adiposity and plasma 
concentrations of all proinflammatory cytokines quantified 
including MCP-1 (not in MCP-1-/- mice), PAI-1, TNF-α 
and leptin [25]. As aforementioned, these cytokines 
participate in bone metabolism, and their elevations often 
result in bone loss [28-31, 35] and osteoclastogenesis [30, 
31]. Thus, elevations of these cytokines likely contributed 
to the high-fat diet exacerbating bone loss in LLC-bearing 
mice.

Bone remodeling is a highly coordinated process 
of bone formation and bone resorption. Osteocalcin is 
considered an indicator of bone formation [36, 37]. Serum 
levels of osteocalcin are lower in lung cancer patients with 
bone metastasis compared to those with no or delayed 
metastasis [38, 39]. Mounting evidence show that TRAP 
5b is a useful marker of bone resorption [40, 41]. Serum 
concentrations of TRAP 5b correlate positively with the 
extent of bone lesions in patients with multiple myeloma 
[42] and increase in breast cancer patients with skeletal 
metastasis [43]. In the present study, the decrease in 
plasma osteocalcin and the increase in TRAP 5b in LLC-
bearing mice indicate that LLC metastasis may uncouple 
bone remodeling. This uncoupling may be responsible 
for the detrimental changes in bone structure and mineral 
density in those mice.

In LLC-bearing mice, neither the high-fat diet 
decreased nor MCP-1 deficiency increased the plasma 
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concentrations of osteocalcin compared to their 
corresponding controls. Therefore, their observed effects 
on bone structure likely were not via bone formation. 
The finding that the high-fat diet increased plasma 
TRAP 5b suggests that the high-fat diet may uncouple 

bone remodeling by promoting bone resorption. This 
suggestion is supported by reports that elevated TRAP 
5b in plasma [22, 44] is associated with obesity-induced 
bone loss. Our finding that MCP-1-/- mice exhibited 
decreased plasma TRAP 5b suggests that MCP-1 
deficiency may restore bone mass by reducing bone 
resorption. Furthermore, MCP-1 binds to the MCP-1 
receptor expressed in osteoclasts [12] and deficiency in 
MCP-1 receptor results in higher bone mass in mice [45]. 
Thus, all these studies support our finding that MCP-1 
may contribute to bone loss during LLC metastasis by 
promoting bone resorption but not by reducing bone 
formation.

In summary, the present study showed detrimental 
structural changes in trabecular and cortical bone and 
reduction in bone mineral density in mice with LLC 
and its pulmonary metastases. It indicates that LLC 
aggression leads to bone loss in this mouse model. 
Our findings support the clinical observations that 
cancer progression accompanies bone wasting [1] 
and disturbance of bone remodeling [38, 39, 42, 43]. 
Furthermore, it indicates the relevance and usefulness 
of this spontaneous metastasis model to study cancer-
associated bone wasting. That feeding mice the high-fat 
diet exacerbated and MCP-1 deficiency attenuated LLC-
mediated bone loss indicate that both high-fat diet and 
MCP-1 contribute positively to bone loss in metastasis-
associated wasting. It suggests that approaches that lead 
to a reduction in cancer-promoting proinflammatory 
cytokine MCP-1, including that produced by the adipose 
tissue, may attenuate not only cancer progression but 
also its associated bone wasting.

Figure 2: Plasma concentrations of osteocalcin and 
TRAP 5b in MCP-1-/- and wild-type mice fed the 
AIN93G or the high-fat diet. Two-way ANOVA were 
performed to compare differences among the groups of LLC-
bearing mice. A priori contrasts were performed to compare 
differences between AIN93G-fed wild-type (WT) mice with or 
without Lewis lung carcinoma (No-LLC); *p<0.05 compared to 
AIN93G WT. Values are means ± SEM (n = 12 per group).

Table 4: Cortical structural changes in femurs and vertebrae of MCP-1-/- and wild-type mice fed the AIN93G or 
the high-fat diet

AIN93G
 Wild-type 
No LLC

AIN93G
Wild-type

AIN93G
MCP-1-/-

High-fat
Wild-type

High-fat
MCP-1-/- Diet

p values
Gene D × G

Femurs

Ct.Ar/Tt.Ar, % 47.1 ± 0.6 * 45.4 ± 0.6 45.7 ± 0.4 44.6 ± 0.5 46.5 ± 0.4 0.99 < 0.05 0.10

Ct. Th, µm 165.4 ± 2.2 * 154.6 2.7 153.4 ± 1.9 154.7 ± 1.5 156.1 ± 3.0 0.54 0.98 0.58

Vertebrae

Ct.Ar/T.Ar, % 76.2 ± 0.7 * 71.8 ± 1.4 73.2 ± 0.8 72.3 ± 0.9 71.5 ± 1.0 0.55 0.76 0.27

Ct.Th, µm 47.1 ± 0.9 42.7 ± 0.9 43.6 ± 0.9 42.6 ± 0.6 43.4 ± 0.6 0.86 0.29 0.93

Two-way ANOVA was performed to compare differences among the groups of LLC-bearing mice. A priori contrasts were 
performed to compare differences between AIN93G-fed wild-type mice with or without Lewis lung carcinoma (LLC); 
*p<0.01 compared to AIN93G wild-type. Values are means ± SEM (n = 14-15 per group). Ct.Ar/Tt.Ar: cortical area 
fraction; Ct.Th: cortical thickness.
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MATERIALS AND METHODS

Animals and diets

Four to five-week old male MCP-1 deficient mice 
(MCP-1 -/-, B6.129S4-Ccl2tm1Rol/J, C57BL/6J background) 
and C57BL/6J wild-type mice (The Jackson Laboratory, 
Bar Harbor, ME, USA) were housed in a pathogen-free 
room with a 12:12-hour light/dark cycle and maintained 
at 22 ± 1°C [25]. Mice were fed a modified AIN93G diet 
[46] providing 16% or 45% (high-fat diet) of energy from 
corn oil. Mice had free access to their diets and deionized 
water; they were weighed weekly. Both diets were powder 
diets; they were stored at -20°C until feeding.

Lewis lung carcinoma cells

Lewis lung carcinoma cell line, a variant that 
metastasizes to lungs [26], was obtained from Dr. Pnina 
Brodt, McGill University, Montreal, Quebec, Canada. The 
cells were cultured with RPMI-1640 medium containing 
10% heat-inactivated fetal bovine serum and maintained in 
a humidified atmosphere of 5% CO2 in air at 37°C. Cells 
used for metastasis studies were in vivo-selected once [47]. 
Cells were free of mycoplasma based on Hoechst DNA 
staining and direct culture tests performed by American 
Type Cell Collection (Manassas, VA, USA).

Experimental design

The study was approved by the Institutional Animal 
Care and Use Committee of the U.S. Department of 
Agriculture, Agricultural Research Service, Grand Forks 
Human Nutrition Research Center. The procedures 
followed the guidelines of the National Institutes of 
Health for the care and use of laboratory animals [48]. The 
experimental design was reported previously [25]. Briefly, 
MCP-1-/- (n = 21 per group) and wild-type mice (n = 28 
per group) were fed their respective AIN93G or high-fat 
diet for 7 weeks before each mouse was subcutaneously 
injected with 2.5 x 105 viable LLC cells in the lower 
dorsal region. In addition, a separate group of wild-type 
mice (n = 18) fed the AIN93G diet but not injected with 
LLC cells served as controls to compare changes in bone 
structure and related biomarkers to LLC-bearing wild-
type mice fed the same AIN93G diet. The subcutaneous 
primary tumor was removed surgically 11 days later when 
it was approximately 1 cm in diameter. Following surgery, 
mice were maintained on their respective diets for an 
additional 10 days. At termination, mice were euthanized, 
and their lungs were removed for determination of the 
extent of metastasis [25]. The right femur and vertebral 
column (from 10th or 11th thoracic vertebra to sacrum) 
from each mouse was collected and stored in phosphate-
buffered saline for micro-computed tomographic analysis 
of trabecular and cortical bone. Plasma was collected 

for quantifying osteocalcin and tartrate-resistant acid 
phosphatase 5b (TRAP 5b).

Bone evaluation

Femurs were cleaned with cheese cloth for physical 
measurements before micro-computed tomographic 
analysis. Femoral length along the proximal distal direction 
and mid-shaft widths in both medial-lateral and anterior-
posterior axes were measured by using a digital caliper 
(Fred V. Fowler Company, Newton, MA, USA). Femurs 
and lumbar vertebral bodies were evaluated for trabecular 
and cortical structural properties by using high-resolution 
(12-µm slice increment) micro-computed tomography 
(µCT-40; Scanco Medical, Basserdorf, Switzerland) with 
x-ray source power of 55 KeV and 145 µA and integration 
time of 300 ms. A fixed threshold of 275 was used to 
delineate mineralized bone from soft tissue and marrow 
phase. In distal femurs, trabecular bone was evaluated in 
125 slices (1.5 mm) of the metaphysis proximal to the distal 
growth plate, and cortical bone was evaluated in 100 slices 
(1.2 mm) at mid-shaft of the femur. In vertebral bodies, 
trabecular and cortical bone were analyzed along the entire 
cranial-caudal axis of the 4th lumbar vertebra. The evaluation 
followed guidelines for assessment of bone microstructure 
in rodents using micro-computed tomography [49].

For trabecular bone, total volume (TV, mm3), bone 
volume (BV, mm3), bone volume fraction (ratio of the 
segmented bone volume to the total volume of the region 
evaluated, BV/TV, %), connectivity density (a degree of 
connectivity of trabeculae normalized by TV, Conn.D, 1/
mm3), structure model index (an indicator of the plate- 
and rod-like geometry of trabecular structure, SMI), 
trabecular number (the average number of trabeculae 
per unit length, Tb.N, 1/mm), trabecular thickness (mean 
thickness of trabeculae, Tb.Th, mm), trabecular separation 
(mean distance between trabeculae, Tb.Sp, mm) and bone 
mineral density (BMD, mg hydroyxapatite/cm3) were 
measured in distal femurs and vertebrae. For cortical 
bone, total cross-sectional area inside the periosteal 
envelope (Tt.Ar, mm2), cortical bone area (Ct.Ar, mm2), 
cortical area fraction (Ct.Ar/T.Ar, %) and average cortical 
thickness (Ct.Th, mm) were computed for the femoral 
mid-shaft and vertebrae.

Quantification of osteocalcin and TRAP 5b in 
plasma

Concentrations of osteocalcin (Alpco Diagnostics, 
Salem, NH, USA) and TRAP 5b (Immunodiagnostic 
Systems, Scottsdale, AZ, USA) in plasma were quantified 
by using sandwich enzyme-linked immunosorbent assay 
kits following protocols provided by the manufacturers. 
Samples were read within the linear range of the assay; 
the accuracy of the analysis was confirmed by the controls 
provided in each assay kit.
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Statistical analyses

The effects of diet (AIN93G or high-fat), genotype 
(MCP-1-/- or wild-type) and their interaction were tested by 
using two-way analysis of variance (ANOVA) and Tukey 
contrasts. To examine the effect of LLC on bone structural 
changes and plasma concentrations of osteocalcin and TRAP 
5b, a priori contrasts were used to test for differences in 
AIN93G-fed wild-type mice with or without LLC. Pearson 
correlation analysis was performed to examine associations 
between the extent of lung metastasis and trabecular 
structural changes in femurs and vertebrae. All data are 
presented as means ± standard error of the mean (SEM). 
Differences with a p-value of 0.05 or less were considered 
significant. All analyses were performed by using SAS 
software (version 9.4, SAS Institute, Cary, NC, USA).
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