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ABSTRACT
Bladder cancer (BC) is the second most prevalent malignancy in the urinary system 

and is associated with significant mortality; thus, there is an urgent need for novel 
noninvasive diagnostic biomarkers. A urinary pseudotargeted method based on gas 
chromatography–mass spectrometry was developed and validated for a BC metabolomics 
study. The method exhibited good repeatability, intraday and interday precision, linearity 
and metabolome coverage. A total of 76 differential metabolites were defined in the 
discovery sample set, 58 of which were verified using an independent validation urine 
set. The verified differential metabolites revealed that energy metabolism, anabolic 
metabolism and cell redox states were disordered in BC. Based on a binary logistic 
regression analysis, a four-biomarker panel was defined for the diagnosis of BC. The 
area under the receiving operator characteristic curve was 0.885 with 88.0% sensitivity 
and 85.7% specificity in the discovery set and 0.804 with 78.0% sensitivity and 70.3% 
specificity in the validation set. The combinatorial biomarker panel was also useful for 
the early diagnosis of BC. This approach can be used to discriminate non-muscle invasive 
and low-grade BCs from healthy controls with satisfactory sensitivity and specificity. 
The results show that the developed urinary metabolomics method can be employed 
to effectively screen noninvasive biomarkers.

INTRODUCTION

Bladder cancer (BC) is the second most prevalent 
malignancy in the urinary system [1] and is associated with 
significant mortality worldwide [2]. BC tumorigenesis is 
related to genetic susceptibility, environmental exposure, 
and unhealthy lifestyles [3]. Early detection and treatment 
are effective methods for improving the five-year survival 
rate, up to 90% for non-muscle invasive (NMI) BC [4]. 
Current BC diagnoses are primarily based on urinary 
cytology and cystoscopy. However, the diagnostic 
sensitivity of urinary cytology is low, and cystoscopy is 
invasive and costly [5]. Hence, there is an urgent need to 
find new noninvasive, inexpensive biomarkers with high 
sensitivity and specificity for the diagnosis of BC. 

Metabolomics is a powerful tool for investigating 
the variation of endogenous small molecules during life 
activities [6]. This method has also been used to study BC 
[7, 8], especially to identify biomarkers [9–11]. Huang  
et al. [9] found that a combined urinary biomarker composed 
of carnitine C9:1 and an unknown metabolite had high 
sensitivity and specificity in discriminating 27 BC patients 
from 32 healthy controls (HCs), although no validation 
was performed. Jin et al. [11] examined the urinary 
metabolic profiles of 138 BCs and 121 controls using 
liquid chromatography-mass spectrometry, and discovered 
that an orthogonal partial least-squares discriminant 
analysis (OPLS-DA) model based on metabolic profiling 
was appropriate for distinguishing BCs from controls. 
However, the lack of external validation and discrimination 
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for early-stage BCs limits this model’s significance in 
clinical application. Pasikanti et al. [12] performed urinary 
BC research with comprehensive two-dimensional gas 
chromatography-time-of-flight mass spectrometry. An 
OPLS-DA model based on metabolic profiling was used 
to discriminate BC from non-BC subjects, and the model 
was validated with 7 BC and 10 non-BC samples. Current 
urinary BC metabolomics studies have made promising 
progress, but still have some shortcomings, such as a lack 
of validation or limited validation subjects and a scarcity of 
early-diagnosis BC biomarkers.

Gas chromatography–mass spectrometry (GC-MS)  
is a popular method in metabolomics due to its high 
sensitivity and repeatability [13], available software for 
peak deconvolution [14], and commercial mass spectral 
libraries for identification [15]. This approach aims to 
analyze volatile and semi-volatile components using 
a nontargeted method in full scan mode or a targeted 
method in selected ion monitoring (SIM) mode. The 
nontargeted method displays wide metabolome coverage 
with limited sensitivity and linearity and complicated 
peak alignment [16, 17]. In contrast, the targeted method 
shows high sensitivity and accuracy with the detection of 
a few known compounds. By combining the advantages of 
both methods, a pseudotargeted method was proposed to 
analyze all detectable components in SIM mode [18]. This 
method has been used for various metabolomics studies 
[19, 20]. Urine is a noninvasive and readily available 
sample that is especially suitable for BC biomarker 
screening [21]. However, to date, a GC-MS-based urinary 
pseudotargeted method has not been developed.

In this study, a GC-MS-based urinary 
pseudotargeted method was developed and applied for 
BC urinary metabolic profiling. A discovery urine set with 
85 subjects (50 BCs and 35 HCs) and an independent 
validation set with 96 subjects (59 BCs and 37 HCs) were 
used to discover and verify the differential metabolites. A 
combinatorial biomarker panel was defined for BC and 
early-stage BC diagnosis. A flow diagram for this study is 
shown in Figure 1.

RESULTS AND DISCUSSION

Development and validation of the urinary 
pseudotargeted GC-MS metabolomics method

A urinary pseudotargeted GC-MS metabolomics 
method was developed based on GC-MS-SIM after peak 
detection, deconvolution and characteristic ion selection 
using quality control (QC) samples. The SIM acquisition 
table consisted of 28 groups including 465 characteristic 
ions. An example of the characteristic ion selection is 
shown in Supplementary Figure 1. A peak at 22.2 min in 
the QC sample was identified as a co-eluted peak after 
peak detection and deconvolution. The characteristic ions 
were successfully selected for the co-eluted peak using 

in-house software and chromTOF 4.43 (LECO, USA). 
The signal to noise ratio (S/N) of the co-eluted peaks was 
430.3 and 135.6 with a typical Gaussian peak shape using 
the pseudotargeted method. In contrast, the S/N of the co-
eluted peaks was 57.9 and 39.5, respectively, using the 
nontargeted method. 

The developed urinary pseudotargeted method 
was validated for its repeatability, intraday and interday 
precision and linearity. The repeatability was evaluated 
and expressed by the relative standard deviation (RSD) 
distribution; 75.7, 89.5 and 95.9% of the peaks had RSDs 
lower than 10, 20 and 30%, respectively (Figure 2A). 
The intraday precision was assessed by a QC sample 
analyzed six times, where 80.2, 91.6 and 95.1% of the 
peaks had RSDs lower than 10, 20 and 30%, respectively 
(Figure 2B). The interday precision was determined by 
analyzing two QC samples for five days, where 64.3, 
86.9 and 91.6% of the peaks had RSDs lower than 10, 
20 and 30%, respectively (Figure 2C). The linearity was 
expressed by the Pearson correlation coefficient for the 
peak intensity and metabolite concentrations. Among 
the peaks, 50.5, 66.7, 81.3 and 88.8% had a Pearson 
correlation coefficient higher than 0.99, 0.95, 0.85 and 0.7, 
respectively (Figure 2D). These results illustrate that the 
repeatability, intraday and interday precision, and linearity 
of the developed urinary pseudotargeted method were 
suitable for metabolic profiling analysis.

Urinary metabolic profiling analysis of BC

The developed urinary pseudotargeted method was 
applied to BC metabolic profiling analysis. Score scatter 
plots from principal component analysis (PCA) showed 
that the QC samples were closely clustered (Supplementary 
Figure 2A ), and the Pearson correlation of any two QC 
samples was within 0.995–1.0 (Supplementary Figure 2B). 
The results illustrate that the data quality of the BC urinary 
metabolic profiling was good.

For metabolite identification, a 3-fold volume QC 
sample was used to enhance the peak strength of the low-
abundance metabolites; thus, 42 low-content metabolites 
that were not identified in normal QC samples were 
successfully annotated. Finally, 231 metabolites involved 
in 57 metabolic pathways were annotated (Supplementary 
Table 1), including 84 organic acids and fatty acids, 
63 saccharides and derivatives, 38 amino acids and 
derivatives, 13 nucleosides and derivatives, 9 alcohols, 8 
phenols, 5 amines, 4 esters and 2 steroids. Among these, 
147 metabolites were verified using standards.

The 218 annotated metabolites with RSDs below 
30% in the QC samples were used for further data analysis. 
To overview the differences in urinary metabolic profiling 
between the BC and HC groups, partial least-squares 
discriminant analysis (PLS-DA) with Pareto scaling was 
performed. Score scatter plots of the PLS-DA model 
showed that the BC group was clearly separated from the 
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HC group in the second principal component (Figure 3A). 
The model was verified using a permutation test with 99 
cycles. The R2Y and Q2Y intercept values were 0.289 and 
–0.136, respectively, suggesting that the PLS-DA model 
had no overfitting.

Discovery and validation of differential 
metabolites

The Mann–Whitney U test and false discovery rate 
(FDR) correction were used to identify the differential 
metabolites (p < 0.05 and FDR < 0.15). In total, 76 
differential metabolites related to BC were found in the 
discovery set. To validate the differential metabolites, 
independent batch urine samples (59 BC subjects and 37 
age- and sex-matched HC subjects) were analyzed using 
the same procedures employed for the discovery set; 58 
differential metabolites were validated with the same 
changing trends in the discovery set. Detailed information 
is shown in Supplementary Table 2. The relative contents 
of the verified differential metabolites in the discovery set 
are displayed in a heat map (Figure 3B). Most differential 
metabolite levels were significantly decreased in the BC 
group, including saccharides (e.g., D-ribose, D-glucuronic 
acid, D-lyxose, D-xylose, ribitol, xylitol, xylulose, 

D-cellobiose, D-rhamnose, L-fucose, D-allose, D-sorbitol, 
and N-acetyl-D-mannosamine), organic acids (e.g., 
3-phosphoglyceric acid, isocitric acid, cis-aconitic acid, 
succinic acid, 2-hydroxyglutaric acid, 3-hydroxypropionic 
acid, 5-hydroxyvaleric acid, and 5-hydroxyhexanoic acid), 
amino acids (e.g., N-acetyl-aspartic acid, N-acetyl-glutamic 
acid, tyrosine, tyramine, glycine, lysine, and 2-aminoadipic 
acid) and nucleotides (e.g., adenine and inosine). In 
contrast, cholesterol, lactic acid, and 1, 3-propanediol levels 
were significantly increased in the BC group.

Significantly altered metabolic pathways 
between BC and HC

To determine the globally altered metabolic 
pathways induced by BC, pathway enrichment analysis 
was performed based on the validated differential 
metabolites in the discovery set (Figure 4A). Twenty-
seven significantly changed pathways were found with 
an FDR < 0.05, including energy metabolism (e.g., 
glycolysis and tricarboxylic acid (TCA) cycle), amino 
acid metabolism (e.g., glycine, serine and threonine 
metabolism, tyrosine metabolism), purine metabolism, 
oxidative stress (e.g., pentose phosphate pathway (PPP) 
and glutathione metabolism), etc.

Figure 1: Experimental flow diagram.
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The related differential metabolites involved 
in the disturbed pathways were visualized using a 
pathway map (Figure 4B). As a glycolysis intermediate, 
3-phosphoglyceric acid levels decreased in BCs, while 
lactic acid levels were higher. Reduced TCA cycle 
intermediates were also observed in the BC group. 
The reduced TCA cycle activity and active anaerobic 
glycolysis in BCs imply that the energy supply was 
converted from aerobic oxidation via the TCA cycle 
to anaerobic glycolysis. This finding agrees with the 
“Warburg effect” [22, 23] and the abnormal expression 
of related genes in BC [24], such as the reduction in the 
pyruvate dehydrogenase complex [11]. 

PPP intermediate levels (e.g., D-glucuronic acid, 
D-ribose) were decreased in the BC group. PPP provides 
precursor substances and reducing power for nucleotide and 
reductive synthesis [25, 26]. Glycine, a precursor of purine 
synthesis [27], was reduced in the BC group. Decreased 
adenine and inosine levels were also observed. These results 
illustrate that purine synthesis, a vital metabolism process for 
cell proliferation, was disturbed in BC. Cholesterol, which 
has important cellular functions [28] (e.g., cell signaling 
and cell proliferation), was increased in the BC group. The 
disturbed PPP, purine synthesis and cholesterol in BCs may 
be related to active anabolic metabolism in tumor cells.

The redox state of a cell can be revealed by 
the ratio of lactic acid/alanine, which has a positive 

correlation with oxidative stress [24]. In our study, the 
ratio was significantly elevated in the BC group for both 
the discovery (p < 0.001, ratio BC/HC = 3.4) and external 
validation (p < 0.001, ratio BC/HC = 1.7) sets. Glycine as a 
participant in glutathione (GSH) synthesis was decreased 
in the BC group. GSH is a primary cellular antioxidant 
that protects cells from oxidative damage [27]. The high 
lactic acid/alanine ratio and abnormal glycine and PPP 
intermediate levels in BC may be connected with high 
oxidative stress in tumor cells. 

Potential biomarkers for BC diagnosis

The 58 validated differential metabolites were further 
filtered for potential biomarker screening for BC diagnosis 
in the discovery set. To control the stability of the metabolite 
analysis, only differential metabolites with RSDs < 15% in 
the QC samples and an FDR < 0.05 were considered to further 
reduce the false discovery rate. Differential metabolites 
with ratios of less than 0.7 or more than 1.3 between the 
BC and HC groups were kept. Twenty-four candidate 
metabolites were used for binary logistic regression analysis 
performed by the SPSS 18.0 software. A four-biomarker 
panel (5-hydroxyvaleric acid, cholesterol, 3-phosphoglyceric 
acid and glycolic acid) that covered extensive metabolic 
characteristics (e.g., organic acid metabolism, steroid hormone 
biosynthesis, glycolysis and glyoxylate metabolism) was 

Figure 2: Method validation. (A) Repeatability (n = 6). (B) Intraday precision (n = 6). (C) Interday precision (n = 2, 5 days).  
(D) Linearity.
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defined as a combinatorial biomarker for the discrimination 
of BCs vs. HCs. A receiving operator characteristic (ROC) 
curve was obtained using the urinary four-biomarker panel. 
The area under the curve (AUC) was 0.885 for BC diagnosis, 
with 88.0% sensitivity and 85.7% specificity (Figure 5A), 
showing satisfactory discrimination by the four-biomarker 
panel. The relative contents of 5-hydroxyvaleric acid, 
cholesterol, 3-phosphoglyceric acid, and glycolic acid are 
shown in Figure 5B–5E.

In the external validation set, the probability was 
calculated for ROC analysis using the binary logistic 
regression model established in the discovery set. The 
AUC was 0.804 for BC discrimination, with 78.0% 
sensitivity and 70.3% specificity (Figure 5F). For all 
of the subjects from both the discovery and validation 
groups, the AUC was 0.846 for BC diagnosis, with 81.7% 
sensitivity and 79.2% specificity. The relative contents of 
the four metabolites are shown in Figure 5G–5J. Among 
the four metabolites, cholesterol levels were significantly 

increased in the BC group, while 5-hydroxyvaleric acid, 
3-phosphoglyceric acid, and glycolic acid levels were 
markedly decreased in the BC group.

To identify the potential ability for early-stage BC 
diagnosis, the urinary four-biomarker panel was applied 
to distinguish NMI or low-grade (LG) BCs from HCs. 
ROC analysis was performed based on the same binary 
logistic regression model for BC diagnosis. For the NMI 
BC diagnosis, the AUC, sensitivity, and specificity were 
0.875, 85.7%, and 85.7% in the discovery set (Figure 6A) 
and 0.770, 70.5% and 70.3% in the external validation set 
(Figure 6B), respectively. For LG BC diagnosis, the AUC, 
sensitivity, and specificity were 0.817, 76.5%, and 85.7% in 
the discovery set (Figure 6C) and 0.739, 63.0% and 70.3% 
in the external validation set (Figure 6D), respectively. For 
all of the subjects from both the discovery and validation 
groups, the AUC was 0.825 for NMI BC diagnosis, with 
77.2% sensitivity and 79.2% specificity, and 0.781, 68.2% 
and 79.2% for LG BC diagnosis, respectively. These results 

Figure 3: (A) Score scatter plots of the PLS-DA model with Pareto scaling. (B) Heat map of verified differential metabolites.
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Figure 4: Differential metabolite pathway analysis. (A) The globally altered pathways in BC. The color depth and column length 
indicate the disturbance degree of the pathway. (B) Pathway map of the significantly differential metabolites (p < 0.05) between BCs 
and HCs. The blue and red histograms denote the relative contents of the differential metabolites in the HCs and BCs, respectively. 
Abbreviations: glucose (Glc), glucose 6-phosphate (G6P), 3-phosphoglyceric acid (3PGA), phosphoenolpyruvic acid (PEP), pyruvic acid 
(Pyr), lactic acid (Lac), glycerol 3-phosphate (glycerol 3P), phenylalanine (Phe), aspartic acid (Asp), N-acetyl-aspartic acid (N-Acetyl-
Asp), lysine (Lys), tyrosine (Tyr), serine (Ser), leucine (Leu), isoleucine (Ile), glycine (Gly), glutamic acid (Glu), N-acetyl-glutamic acid 
(N-Acetyl-Glu), glutathione (GSH), and oxidized glutathione (GSSH).
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reveal that the urinary four-biomarker panel can be used for 
the diagnosis of NMI or LG BC.

In conclusion, a urinary GC-MS-based pseudotargeted 
method was developed and validated. This approach was 
found to be suitable for metabolic profiling analysis due 
to its good analytical performance. Using the developed 
method, the significantly differential urinary metabolites 
between BCs and HCs were identified and tested in two 
independent groups, demonstrating that energy supply, 
anabolic metabolism and cell redox states are disturbed in 
BC. A combinatorial biomarker panel consisting of four 
differential metabolites was defined for BC and early-stage 
BC diagnosis with satisfactory sensitivity and specificity in 
both the discovery and external validation sets. This study 
provides a new candidate urinary biomarker for BC (even 
early-stage BC) diagnosis. However, a large perspective 
cohort study is still needed to verify the usefulness of 
combinatorial biomarkers in the future.

MATERIALS AND METHODS

Chemicals and reagents

HPLC-grade methanol was supplied by Merck 
(Darmstadt, Germany). Ultrapure water was prepared 
with a Milli-Q system (Millipore, USA). N-methyl-
N-(trimethylsilyl)-trifluoroacetamide (MSTFA), 
methoxyamine hydrochloride, pyridine and urease (Type 3) 
were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

The chemical standards for metabolite structure validation 
were purchased from Sigma-Aldrich, Alfa Aesar (Ward 
Hill, MA, USA) or J&K Scientific (Beijing, China).

Urine sample collection

This study was approved by the ethics committee 
of Shanghai Changhai Hospital, and informed consent 
forms were obtained from all participants. BC patients 
were diagnosed by histopathological examination based 
on the World Health Organization/International Society 
of Urological Pathology. Urine samples from BC patients 
and matched HC subjects in the discovery and external 
validation sets were obtained at Shanghai Changhai Hospital 
and Shanghai Medical Center, respectively. Subjects with 
hypohepatia or renal dysfunction were excluded. The fasting 
morning urine samples were collected and stored at –80°C.

In the discovery set, 85 urine samples were enrolled, 
including 50 BC subjects (male/female: 35/15) and 35 HC 
subjects (male/female: 23/12). The BC group contained 
17 LG BC subjects, 33 HG BC subjects, 35 NMI BC subjects 
and 15 muscle invasive (MI) BC subjects. In the external 
validation set, another 96 urine samples were enrolled, 
including 59 BC subjects (male/female: 51/8) and 37 HC 
subjects (male/female: 26/11). The BC group contained 27 
LG BC subjects, 32 HG BC subjects, 44 NMI BC subjects 
and 15 MI BC subjects. The BC and HC groups were 
age- and sex-matched in both the discovery and external 
validation sets. Clinical information is given in Table 1. 

Figure 5: Diagnostic performance of the urinary four-biomarker panel for the diagnosis of BC. ROC curves for the four-
biomarker panel for BCs vs. HCs in the (A) discovery set and the (F) external validation set. Urinary concentration of (B) 5-hydroxyvaleric 
acid, (C) cholesterol, (D) 3-phosphoglyceric acid and (E) glycolic acid in the discovery set. Urinary concentration of (G) 5-hydroxyvaleric 
acid, (H) cholesterol, (I) 3-phosphoglyceric acid and (J) glycolic acid in the external validation set. *, **, and *** represent p values less 
than 0.05, 0.01, and 0.001 between BCs and HCs, respectively.
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Urine sample preparation

Urinary samples were thawed before preparation. 
One hundred microliters of urease solution (15 mg/mL  
in ultrapure water) was added to 100 μL of urine, vortexed 
for 10 s, and placed in a 37°C water bath for 15 min 
for enzymatic hydrolysis of the urea. Next, 800 μL of 
methanol was added to the above solution, which was 
then vortexed for 30 s. After centrifugation, 400 μL of the 
supernatant was lyophilized. Before analysis, 50 μL of 
methoxyamine solution (20 mg/mL in pyridine) was added 
to the residue with vortexing and ultrasound treatment 
and was then maintained in a 37°C water bath for 1.5 h to 
oximate. Next, 40 μL of MSTFA was added to the above 
solution, which was held in a 37°C water bath for 1 h to 

silanize. Finally, the supernatant was used for GC-MS 
analysis.

Equal volumes of all urinary samples were pooled to 
prepare the QC samples. The repeatability was assessed by 
the parallel processing of six QC samples using the same 
procedure employed for the original samples. Next, 4-fold, 
2-fold, 1-fold, 0.5-fold and 0.25-fold concentrations of 
the QC samples were obtained by lyophilizing a certain 
volume of the QC sample and dissolving it in ultrapure 
water. For linearity evaluation, each concentration level 
of the QC samples was pretreated with three duplications 
using the same procedure utilized for the initial samples. 
The linearity was evaluated by calculating the Pearson 
correlation coefficient between the MS response and the 
metabolite concentration.

Figure 6: Diagnostic performance of the urinary four-biomarker panel for the diagnosis of early-stage BC. ROC curves 
of the urinary four-biomarker panel for NMI BCs vs. HCs in the (A) discovery set and (B) external validation set. ROC curves of the urinary 
four-biomarker panel for LG BCs vs. HCs in the (C) discovery set and (D) external validation set. 

Table 1: Clinical information for the subjects enrolled in the discovery and external validation 
sets

Characteristics Discovery set External validation set 
HC BC HC BC

Cases 35 50 37 59
Age* 63.1 ± 8.1 62.8 ± 12.1 65.9 ± 6.0 65.0 ± 11.6
Sex (Male/Female) 23/12 35/15 26/11 51/8
Grade (Low/High) 17/33 27/32 
Stage (NMI/MI) 35/15 44/15 
*Data are given as the mean ± SD.
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Nontargeted GC−MS analysis

A QP 2010 GC-MS system with an AOC-20i 
automatic injector (Shimadzu, Japan) coupled with a DB-5 
MS fused-silica capillary column (30 m × 0.25 mm × 0.25 
μm, Agilent Technologies, USA) was used for GC-MS 
analysis. The column temperature was held at 70°C for 
3 min, increased to 220°C at a rate of 4oC/min, and then 
increased again at a rate of 8°C /min to 300°C for 10 min. 
The injection temperature, transfer line and ion source were 
maintained at 300°C, 280°C and 230°C, respectively. One 
microliter of sample was injected at a split ratio of 1:10. 
The carrier gas, helium (99.9995%, China), was maintained 
at a constant linear velocity of 40 cm/s, and the electron 
ionization source voltage was 70 eV. Data acquisition 
started at 5.0 min with a mass range of 33–600 m/z.

Establishment of a urinary pseudotargeted GC-
MS metabolomics method

The procedures for transforming the nontargeted 
method to a pseudotargeted method were as follows [18]. 
First, the QC samples were analyzed using a nontargeted 
method. AMDIS 2.62 (NIST, USA) was employed for 
the QC data analysis to obtain the scan time, intensity, 
S/N, retention time (RT) and start and end times of the 
peaks. The data were pretreated by keeping the ions with 
the highest intensity in the 1-s scan window and with 
an S/N > 20. Then, characteristic ions were selected 
using an in-house software program with a bi-Gaussian 
chromatographic peak algorithm [18] and ChromTOF 
4.43 (LECO, USA). The RT intervals of adjacent peaks 
were used for grouping. Additionally, a 3-fold volume 
QC sample and a hydrocarbon mixture were analyzed to 
annotate the low-abundance metabolites and to calculate 
the retention index (RI) based on n-alkanes, respectively. 
The identification of urinary metabolites was similar to a 
previous report [8]. In short, metabolites were annotated 
based on commercial mass spectral libraries (Mainlib, 
NIST, Wiley, and Fiehn) and a homemade metabolite 
library and were further verified using the standards’ RT/RI.  
The developed pseudotargeted method was applied to 
study BC urinary metabolic profiling using the same GC 
conditions as the nontargeted method and a SIM mode 
with an acquisition rate of 4 scans/s. A QC sample was 
inserted every ten samples to monitor the stability of the 
system while running the sequences. 

Data analysis

A peak table was exported by sequentially 
processing the raw data using Postrun Analysis based on a 
quantitative table (containing RT and characteristic ions). 
The peak area was normalized to the total peak area. The 
identified metabolites with an RSD below 30% in the QC 
samples were further analyzed. PCA and PLS-DA were 

performed using SIMCA-P 11.0 (Umetrics, Sweden). The 
differential metabolites with a p < 0.05 were screened by 
a nonparametric test (Mann-Whitney U test) using the 
SPSS 18.0 software. To reduce the false positive rate, FDR 
correction was performed using the Benjamini–Hochberg 
method [29]. Changes in the levels of the differential 
metabolites were visualized with MultiExperiment 
Viewer (http://www.tm4.org). The altered pathways 
were determined with MetaboAnalyst 2.0 (http://www.
metaboanalyst.ca) and pathway maps of the differential 
metabolites were displayed with VANTED [30]. The 
potential biomarkers were defined by binary logistic 
regression analysis using the SPSS 18.0 software and were 
presented as box plots using the Origin 8.0 software.
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