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ABSTRACT
Long non-coding RNAs (lncRNAs) play important roles in various biological 

processes, including the development of many diseases. Pathway analysis is a valuable 
aid for understanding the cellular functions of these transcripts. We have developed 
and characterized LncSubpathway, a novel method that integrates lncRNA and 
protein coding gene (PCG) expression with interactome data to identify disease risk 
subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies 
the most relevance regions which are related with risk lncRNA set and implicated 
with study conditions through simultaneously considering the dysregulation extent 
of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the 
sensitivity and false positive rates of LncSubpathway were within acceptable ranges, 
and that LncSubpathway could accurately identify dysregulated regions that related 
with disease risk lncRNAs within pathways. When LncSubpathway was applied to 
colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- 
and breast cancer subtype-related meaningful subpathways. Further, analysis of its 
robustness and reproducibility indicated that LncSubpathway was a reliable means of 
identifying subpathways that functionally associated with lncRNAs. LncSubpathway 
is freely available at http://www.bio-bigdata.com/lncSubpathway/.

INTRODUCTION

LncRNAs are a heterogeneous class of ncRNAs that 
play key roles in disease development and progression 
[1] by mediating a variety of biological functions, such as 
cell differentiation [2], immune responses [3], genomic 
imprinting [4], and chromatin modification [5]. For example, 
lncRNAs regulate core elements in the transforming growth 
factor-β signaling pathway and thus promote tumorigenesis, 
invasion, and metastasis [6]. Zhang et al. demonstrated 
that the lncRNA CASC11 interacts with hnRNP-K and 
activates the WNT/β-catenin pathway to promote growth 
and metastasis in colorectal cancer [7]. However, the 
mechanisms by which lncRNAs affect disease-associated 
aberrant pathway activation are not completely understood. 
Pathway identification may help improve our understanding 
of the large-scale expression measurements and underlying 
conditions in these studies. 

Many recent studies have investigated the functions 
of lncRNAs. Several “co-expression-based” methods 
have been proposed based on the observation that 
genes with similar expression patterns across multiple 
experimental conditions may share similar functions 
or participate in related biological pathways [8, 9]. For 
example, Guttman et al. assigned putative functions to 
~1600 lincRNAs identified using chromatin-state maps. 
Liao et al. constructed an lncRNA-protein coding gene 
co-expression network and used it to predict the functions 
of the lncRNAs involved [10]. Guo et al. provided a 
global strategy for inferring lncRNA functions in a 
comprehensive co-expression network [11]. Jiang et al. 
developed the lncRNA2function tool to investigate 
the function of human lncRNAs based on correlations 
between their expression and the expression of protein-
coding genes across 19 human normal tissues [12]. In 
addition, Liu et al. predicted disease-related lncRNAs 
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based on lncRNA-mRNA co-expression [13]. Instead of 
using similarities in the expression patterns of lncRNA 
and protein coding genes, Linc2GO [14] predicted 
lincRNA functions based on the ceRNA hypothesis, which 
posits that lncRNAs interact with microRNAs (miRNAs) 
by acting as sponges. LncRNAs thus indirectly regulate 
their targets and represent a novel layer of gene regulation 
that might play critical roles in both physiological 
conditions and diseases. Sequence-based strategies 
for examining the relationships between lncRNAs and 
mRNAs would complement these co-expression-based 
methods. 

Although these methods have been crucial for 
investigating lncRNA functions and regulation, they 
were not designed to investigate the functional roles of 
lncRNAs that contribute to disease states. In addition, most 
of these methods can predict functions only for individual 
lncRNAs; however, since single factors alone rarely 
determine the onset or progression of disease, evaluating 
sets of risk lncRNAs might be more informative. Multiple 
risk-associated lncRNAs may collectively impact different, 
but related, pathways in different conditions [15, 16]. Thus, 
novel computational methods are needed for functional 
analysis of lncRNAs. To do this, some important biological 
aspects should be considered. First, many studies have 
suggested that abnormalities in “subpathway regions” 
(i.e. sub-regions within the entire pathway) play important 
roles in disease etiology [17, 18]. It is therefore possible 
that lncRNA dysregulation may impact subpathway 
regions to contribute to disease development. Locating 
subpathway regions that are associated with dysregulated 
lncRNAs might help reveal mechanisms by which 
lncRNAs contribute to disease states. Second, perturbations 
of signaling pathways that contribute to human diseases 
can result not only from dysfunctional nodes (e.g. genes 
or proteins), but also from dysfunctional molecular 
interactions outside of those nodes [19, 20].

In this study, we propose a novel computational 
method that integrates transcriptional expression, pathway 
topologies, and lncRNA-mRNA association network 
to detect transcriptional subpathway dysregulation that 
related with dysregulated lncRNAs. We used two distinct 
but complementary sources of biological data to construct 
this network: (i) an lncRNA-mRNA co-expression 
network, which was constructed based on correlations 
between the expression of lncRNAs and mRNAs from 
28 RNA-seq datasets reflecting multiple experimental 
conditions; (ii) an lncRNA-mRNA association network 
constructed based on ceRNA theory. We then used 
the PCST algorithm, which has been used to identify 
functional modules in protein–protein interaction networks 
[21–23], to locate dysfunctional pathway regions that 
were associated with risk lncRNAs; alterations of both 
PCGs and lncRNAs and the degree of changes in the 
associations among them were considered simultaneously. 
Finally, we used random permutation to evaluate each 

identified subpathway region. We then analyzed data from 
stimulation, colorectal cancer, and breast cancer studies 
to demonstrate the effectiveness of our method. We found 
that LncSubpathway successfully and reliably identified 
meaningful subpathways related to dysregulated, disease-
associated lncRNAs. LncSubpathway is freely available at 
http://www.bio-bigdata.com/lncSubpathway/.

RESULTS

Simulation I: characteristics of LncSubpathway

We characterized LncSubpathway with respect to 
changes in the degree to which lncRNAs and PCGs were 
differentially expressed and interacted in this simulated 
study. Two simulated pathways (Linear and ERBB) 
with different patterns of connections between pathway 
PCGs were examined. To test the effects of increasing 
the magnitude of changes in nodes (lncRNAs/PCGs) or 
interactions, simulation datasets were created by varying 
corresponding parameters. 

Figure 1 shows weights and P-values obtained when 
LncSubpathway was used to analyze the simulated datasets. 
In general, subpathway weights increased and P-values 
decreased as the extent of the changes in the lncRNAs/
PCGs nodes and correlations between them (n, e, and p) 
increased. In addition, weight values changed similarly 
when the extent of changes in nodes (lncRNAs/PCGs) or 
edges was varied (Figure 1), indicating that changes in 
nodes and interactions contributed equally to weights and 
P-values in the identified subpathways. Furthermore, the 
P-values of subpathways identified in the ERBB pathway 
were lower than those of the subpathways identified in the 
linear pathway (Figure 1). This because the ERBB pathway 
has a more closely-connected structure than the linear 
pathway, making the formation of a connected subnetwork 
easier in the ERBB than in the linear pathway when the 
extent of dysregulation (n, e, and p) is the same. 

We then further characterized the sensitivity of 
LncSubpathway. Ratios of the 100 replicates in which 
P < 0.01 or 0.05 were obtained when LncSubpathway was 
applied to identify lncRNA-related subpathways for each 
simulation condition were determined (Figure 2); this ratio 
was used to measure the sensitivity of LncSubpathway. 
As shown in Figure 2, in general, the ratio of statistically 
significant cases increased as the extent of changes 
increased at both the node (PCG/lncRNA) and edge levels. 
The sensitivity of LncSubpathway is therefore relatively 
high under various conditions for these two distinct 
pathway structure models.

Simulation II: false positive rates for the 
LncSubpathway

Due to the high sensitivity of LncSubpathway, it is 
possible that this method also has a high false positive rate. 
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We therefore used two simulation strategies to analyze the 
false positive rate of LncSubpathway. 

Figure 3A shows the evaluation of false positive 
rates of LncSubpathway, at an excepted rate of 1%, for 
applying method to simulation datasets that generated 
according to Choi et al.’s method and Goel et al.’s 
method for Linear and ERBB pathway models and 
sample size 250,300 and 500. The false positive rate 
of LncSubpathway for these simulated cases was not 
exceeded 5% (Figure 3A) for both the Linear and ERBB 
pathway models. This indicates that the false positive rates 
of LncSubpathway are within an acceptable range.

Simulation III: the effectiveness of 
LncSubpathway

To assess the effectiveness of our method, we 
next examined whether LncSubpathway accurately 
located dysregulated subpathway regions that were 
associated with lncRNAs of interest. We assumed 
that one subpathway region in the linear pathway and 
three subpathway regions in the ERBB pathway were 
dysregulated. Simulated datasets were then generated 

according to the dysregulation patterns of the subpathway 
regions in Supplementary Figure 1. As shown in Figure 
3B, LncSubpathway was highly accurate in identifying 
all four dysregulated subpathway regions; even the lowest 
recall ratio value, which was for ERBB subpathway region 
3, was still 0.85. This indicates that LncSubpathway is 
capable of accurately locating dysregulated subpathway 
regions that are related to lncRNAs of interest.

Risk lncRNAs related dysregulation 
subpathways in colorectal cancer

We then used LncSubpathway to identify 
dysregulated subpathways that were associated with 
risk lncRNAs in colorectal cancer. Colorectal cancer is 
well-studied, and many pathways have been reported 
to be relevance with its development or progression. 
LncSubpathway identified 27 subpathways (corrected 
P < 0.05) which have at least one lncRNA associate with 
PCGs within the subpathway. These 27 subpathways 
correspond to 23 entire pathways. On average, 12.8 
lncRNAs and 7.5 key lncRNAs were functionally 
associated with each subpathway. Among the 27 

Figure 1: Characteristics of LncSubpathway. Subpathway weights and P-values obtained when LncSubpathway was used to 
analyze simulation datasets with different degrees of change for nodes and edges in the linear and ERBB pathway structure models. Node 
fold-change was varied from 2.0 to 7.0 in increments of 0.5; edge correlation change was varied from 0.1 to 0.9 in increments of 0.1. p, the 
proportion of pathway-associated nodes (lncRNAs/PCGs) or edges that were changed, varied from 0.1 to 0.9 in increments of 0.2.
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subpathways identified, up to 21 (78%) have been 
implicated in the initiation and/or progression of colorectal 
or other cancers (Suppelmentary Table 1). To examine how 
these dysregulated subpathways and the related lncRNAs 
identified by LncSubpathway can provide insight into 
disease etiology, we examined three representative 
subpathways, including the p53 signaling pathway (path: 
04115_1), the FOXO signaling pathway (path: 04068_1), 
and purine metabolism (path: 00230_1). 

The first subpathway examined is a TP53-centered 
subpathway region within the p53 signaling pathway 
(path: 04115_1) (Figure 4A), which plays a role in the 
initiation and progression of colorectal cancer. TP53, 
a well-known tumor suppressor gene that encodes p53 
protein, is frequently inactivated by mutations or deletions 
in most human cancers, including colorectal cancer [24]. 
For example, p53 is expressed in primary tumors and 
lymph node metastases in colorectal cancer patients [25]. 
Furthermore, p53 controls colorectal cancer cell invasion 
by inhibiting the NF-κB-mediated activation of Fascin 
[26]. In addition, leukemia inhibitory factor (LIF) inhibits 
tumor-suppressor p53 via Stat3/ID1/MDM2 in human 
colorectal cancer [27]. It is worth noting that the interaction 
between MDM2 and TP53 was involved in the subpathway 
region identified by LncSubpathway (Figure 4A). We 
then focused on investigating the relationship between 
lncRNAs associated with p53 subpathway and colorectal 

cancer. Growth arrest specific 5 (GAS5), which has been 
identified as a potential tumor suppressor, is associated 
with cellular growth arrest and apoptosis processes 
(https://www.ncbi.nlm.nih.gov). Interestingly, GAS5 was 
associated with the positive cell cycle regulator CDK6 and 
thus influenced downstream cell cycle arrest processes in 
this subpathway region (Figure 4A). Further examination 
revealed that GAS5 lncRNA may competitively regulate 
CDK6 via interactions with common miRNAs. In the 
cell cycle arrest region, GAS5 cooperated with SNHG7, 
RP11-474D1.3.1, and LINC00265, and its activity was 
coordinated with cell cycle regulators such as CDK2, 
CDK4, CDK6, CCND1, CCND2, CCND3, CCNE1, 
CCNE2, and CDKN1A (p21) (Figure 4A). Together, these 
results demonstrate that the activity of these lncRNAs 
and cell cycle regulators is coordinated during colorectal 
cancer pathogenesis. PTEN, a well-known tumor 
suppressor that is competitively regulated by GAS5 in 
the subpathway region, inhibits the cancer-related IGF-1/
mTOR pathway. Interestingly, AC068491.1.1, a lncRNA 
that was upregulated 3.0-fold and with FDR < 0.001, was 
functionally coordinated with IGFBP3, which is known 
to be involved in colorectal cancer and liver metastasis 
[28, 29]. Co-expression correlations based on 28 RNA-Seq 
datasets confirmed the association between AC068491.1.1 
and IGFBP3. The correlation between AC068491.1.1 and 
IGFBP3 differed between normal and colorectal cancer 

Figure 2: Sensitivity of LncSubpathway. The y-axis of each subplot represents the ratio of subpathways that LncSubpathway 
identified as differential with P < 0.01 (P < 0.05) after 100 repetitions of the linear and ERBB pathway models. Node (edge) change and 
the variable p were similar to Figure 2.
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tumor samples; in normal samples, AC068491.1.1 and 
IGFBP3 were negatively correlated (r = –0.49, P = 0.038), 
while in colorectal cancer samples they were positively 
correlated (r = 0.69, P = 0.001). This change may be 
related to the dysregulation of downstream cell growth and 
apoptosis processes. Together, the above findings suggest 
that lncRNA AC068491.1.1 is functionally associated with 
the P53 signaling pathway and may thus play a critical role 
in colorectal cancer.

The second subpathway we explored is the FOXO 
signaling subpathway (Figure 4B), which was identified 
as a significant subpathway due to dysregulation at the 
node level (P < 0.001), but not the edge level (P =0.344) 
(Supplementary Table 1 and Supplementary Figure 2). 
Notably, the expression of the key lncRNAs associated 
with this subpathway changed nearly 4-fold on average. 
The transcription factor FOXO has been considered a 
tumor suppressor that limits cell proliferation and induces 
apoptosis [30] and also regulates energy metabolism and 
development in several tissues [31]. FoxO3A, a member 
of the FOXO transcription factor family, is modulated 
by AMPK. The AMPK-FoxO3A axis is activated in 
colorectal cancer cell and may be a promising therapeutic 
target [31]. Interestingly, the AMPK (PRKAA1)-FoxO3A 
axis was centrally located in the subpathway region 
identified by LncSubpathway (Figure 4B). In determining 
how dysregulation of the lncRNAs associated with this 
subpathway is implicated in colorectal cancer pathogenesis, 
we first noted that the lncRNA DLEU2 (fold-change > 2) 
competitively regulated AMPK (PRKAA1); the ceRNA 
dataset supported this association. The dysregulation of 

DLEU2 may be associated with the AMPK-FoxO3A axis 
and thus promote uncontrolled cell growth in colorectal 
cancer. Interestingly, in addition to upstream PRKAA1, 
DLEU2 was also associated with multiple downstream 
factors, including CDKN1A, GABARAPL2, and CAT, 
and might therefore also impact cell cycle, autophagy, 
oxidative stress, and DNA repair functions (Figure 4B). In 
addition, we found that RP11-474D1.3.1, lncRNA with the 
largest expression change in the FOXO signaling pathway, 
competitively regulated the MAPK9, RBL2, CDKN1A, 
and CCND2 genes, thus influencing cell cycle regulation 
(Figure 5B). Next, we identified three miRNAs, hsa-miR-
106b, hsa-miR-17, and hsa-miR-20a, that were shared by 
the regulatory relationships between RP11-474D1.3.1 and 
MAPK9, RBL2, CDKN1A, and CCND2. The role of these 
three miRNAs in colorectal cancer is well-documented, 
indicating that the highly dysregulated RP11-474D1.3.1 
lncRNA plays an important role in colorectal cancer. 

Finally, we examined a purine metabolism 
subpathway which was identified as significant mainly due 
to dysregulation of the edges (Figure 4C). The differences 
in correlation for the edges in this subpathway region were 
higher than those for the background (Supplementary 
Figure 3). Purine metabolism affects tumor progression. 
For example, purine-metabolizing ectoenzymes mediate 
the production of IL-8, which plays important roles 
in both diseases related to chronic inflammation and 
tumor modulation in human colon HT-29 cells [32]. 
We found that H19, a cancer lncRNA that is associated 
with many cancer types, including colorectal cancer 
[33, 34], was functionally associated with the purine 

Figure 3: (A) False positive rate analysis using simulation datasets. The false positive rate of LncSubpathway evaluated using methods 
described in Choi et al. (left) and Goel et al. (right) for the Linear and ERBB pathway structure models, respectively. (B) The ratio of 
elements in predefined subpathway regions that were recalled in subpathways identified by LncSubpathway.
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metabolism subpathway. Moreover, some PCGs, such 
as IMPDH2 [35, 36], RRM2 [37–39], and PAICS [40], 
involved in this subpathway region are closely associated 
with colorectal or other types of cancer. The lncRNA 
SNHG1, which is involved in several cancers, such as 
hepatocellular carcinoma [41] and non-small cell lung 
cancer [42], was functionally associated with PAICS and 
IMPDH2 in this subpathway. Although the role of SNHG1 
in colorectal cancer remains largely unknown, our results 
indicate that it may be important in tumorigenesis and 
progression. The above results suggest that LncSubpathway 
can identify risk lncRNAs functionally related subpathway 
regions that were dysregulated at the edge level. 

In summary, the above results demonstrated that 
LncSubpathway is effective in locating risk lncRNA-
associated subpathway regions with dysregulation at the 
node or/and edge levels. LncSubpathway might therefore 
help identify the functional roles of lncRNAs and novel 
lncRNAs underlying diseases.

Identifying risk lncRNA-associated subpathways 
provides novel insights into breast cancer 
subtypes

In this section, we examined the ability of 
LncSubpathway to provide information regarding 
differences between disease subtypes. We applied 
LncSubpathway to the breast cancer subtype dataset 
and identified risk lncRNA-associated subpathways for 
each subtype (luminal A, luminal B, HER2, and basal) 
(Supplementary Tables 2–5). Supplementary Tables 
2–5 show dysregulated subpathways which have at least 
one lncRNA associate with PCGs within them for each 
subtypes. Figure 5A shows the biological functions to 
which the subpathways identified using LncSubpathway 

contribute for each subtype (FDR < 0.05). In general, 
all four breast cancer subtypes were associated with 
subpathways involved in generic cancer-related biological 
functions, such as signal transduction, cell growth and 
death, and cellular community. This indicates that risk 
lncRNAs associated with different subtypes may participate 
in similar cancer-related functions. In addition, some 
functions were identified that were associated with specific 
subtypes. Subpathways related to signaling molecules and 
interactions were specifically identified for the basal-like 
subtype. This is consistent with the clinical characteristics 
of the basal-like subtype, which has high rates of recurrence 
and metastasis, with which signaling molecules and 
interaction pathways are closely associated. In addition, 
lipid metabolism was associated with the luminal A and 
HER2 subtypes, but not with the other two subtypes. While 
elevated levels of STAR-related lipid transfer protein 3 may 
contribute to progression of HER2-positive breast cancers 
[43], the contributions of lipid metabolism abnormalities 
to progression in the luminal A subtype requires further 
study. The above findings suggest that LncSubpathway can 
identify unique risk lncRNA-related functional groups that 
correspond to the clinical and molecular characteristics of 
different breast cancer subtypes.

We then explored the entire pathways to which these 
risk lncRNA-related, subtype-associated subpathways 
belonged. As shown in Figure 5B–5C, some generic 
cancer pathways, such as cell cycle, focal adhesion, and 
PI3K-Akt signaling pathways, were associated with 
all four subtypes, while some pathways were subtype-
specific. Two notable examples of subtype-specific 
pathways are the estrogen signaling pathway for the 
luminal A subtype and the ECM-receptor interaction 
pathway for the basal-like subtype (Figure 5C). The 
estrogen signaling pathway plays an important role in 

Figure 4: Risk lncRNA-associated subpathways in colorectal cancer. Node color is proportional to the differential degree 
(fold-change value) of lncRNAs/PCGs; edge width corresponds to the degree of change in the correlation. (A) Path:04115_1: risk lncRNA-
associated subpathway region belonging to the p53 signaling pathway. (B) Path:04068_1: risk lncRNA-associated subpathway region 
belonging to the FoxO signaling pathway. (C) Path:00230_1: risk lncRNA-associated subpathway region belonging to purine metabolism.
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the development and treatment of the luminal A subtype, 
which is estrogen receptor-positive. Meanwhile, the ECM 
pathway is closely related to cancer cell invasion; invasive 
and metastatic cells must cross the basement membrane’s 
extracellular matrix to disseminate to distant sites [44–46], 
and basal-like breast cancer is characterized by high levels 
of invasion and metastasis. The above results indicate that 
the dysregulation of lncRNAs with different functions 
may contribute to the development of different disease 
subtypes.

While PI3K-Akt subpathways were identified 
in both the HER2 and luminal B subtypes, the specific 
sub-regions within the entire PI3K-Akt pathway that 
were dysregulated differed between the two subtypes 
(Figure 5D). Dysregulation of the PI3K-Akt pathway is 
closely related to the initiation and development of breast 
cancer [47]. CDK, a well-known cancer driver gene, 
was involved in the Her2-related subpathway region 
(Supplementary Figure 4). Goel et al. demonstrated that 
CDK4/6 inhibitors could overcome therapeutic resistance 
in HER2 breast cancer [48]. In contrast, the Luminal B 
subtype-related region included the Ras-PI3K pathway 
(Supplementary Figure 4); Ras, in combination with the 
oncogenic mutant form of PIK3CA, induces metastasis 
in luminal B subtypes [49]. LncRNA PVT1 was also 
functionally associated with the luminal B-related 
region (Figure 5D). Several studies have demonstrated 
the important roles of PVT1 in breast cancer [50, 51]. 
In particular, Zhang et al. found that aberrant PVT1 
expression is associated with the proliferation of breast 

cancer cells [52]. Interestingly, PVT1 was functionally 
associated with VEGFA (GF) and Bcl-2 and may thus 
impact downstream cell proliferation and apoptosis in 
the luminal B-related region (Supplementary Figure 4). 
Furthermore, these lncRNAs that are functionally related 
to different subpathway regions may play specific roles 
in the corresponding subtypes. Together, the above 
findings suggest that LncSubpathway can also precisely 
identify disease subtype-specific, risk lncRNA-related 
subpathways.

Reproducibility and robustness of 
LncSubpathway

To evaluate the reproducibility of LncSubpathway, 
we used two additional colorectal cancer databases that 
included primary tumor and normal samples from the 
GSE9348 dataset and primary tumor and metastasis 
samples from the GSE41568 dataset. We re-annotated 
these two expression profiles to obtain sample-matched 
lncRNA and mRNA profiles. Using LncSubpathway, 
we then analyzed the two re-annotated datasets and two 
subsets of the RNA-Seq dataset SRP029880, which was 
used in the above analysis comparing tumor samples 
against normal and metastasis samples. LncSubpathway 
identified 21 significant subpathways (FDR<0.05) 
which have at least one lncRNA associate with PCGs 
within them corresponding to 18 entire pathways for 
the GSE9348 dataset and 39 significant subpathways 
(FDR<0.05) corresponding to 32 entire pathways for the 

Figure 5: Identification of subpathways associated with risk lncRNAs in breast cancer subtypes. (A) The distribution 
of significant subpathways identified by LncSubpathway for each subtype based on relevant functional groups. (B) Venn diagram 
plot of significant subpathways identified by LncSubpathway for each subtype based on the entire pathway to which they belonged.  
(C) Global view of key lncRNA-associated pathways across four breast cancer subtypes. Red in the heatmap represents lncRNAs functionally 
associated with the corresponding pathway. Bars represent the number of subtypes with which the corresponding key lncRNA (pathway) was 
associated. (D) Two PI3K-Akt subpathway regions functionally associated with risk lncRNAs in HER2 and luminal B subtypes. Node color 
is proportional to the fold-change value of lncRNAs/PCGs; edge width corresponds to the degree of change in the correlation. Left: path: 
04151_6 for HER2 subtype; right: path: 04151_1 for luminal B subtype.
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primary tumor vs. normal sample SRP029880 dataset. 
Among the 18 pathways identified in the GSE9348 dataset, 
up to 11 (61.1%) were also identified in these 32 entire 
pathways of SRP029880. This pathway overlap was 
statistically significant (P = 2.44e–06, hypergeometric test) 
(Figure 6A). Furthermore, the overlap of entire pathways 
which contain significant subpathways that have at least one 
lncRNA associate with PCGs within them for SRP029880 
and GSE9348 was also significant. Similarly, the overlap 
in pathways identified in the two tumor vs. metastasis 
datasets was also statistically significant (P = 5.29e–05, 
hypergeometric test) (Figure 6A). These results indicate 
that LncSubpathway generated reproducible results and 
that it is reliable for the integrative analysis of lncRNA and 
mRNA expression at the subpathway level.

Biological or measurement-related noise may exist in 
the expression and biological network data examined here. 
To evaluate whether LncSubpathway was sensitive to this 
noise, we performed removal perturbation experiments on 
the lncRNA and/or mRNA expression profiles, pathway 
structures, and lncRNA-mRNA association networks for 
the tumor-normal and tumor-metastasis subsets of the 
SRP029880 dataset. Specifically, we randomly deleted 
n% of the lncRNAs or/and mRNAs from the expression 
profiles, n% of the edges within the pathways, and n% of the 
associations in the lncRNA-protein coding gene network, 
respectively. For each deletion type, n was set at 5, 10, 15, 

20, 25, or 30; the deletion process was repeated 100 times 
for each scenario. LncSubpathway was used to analyze each 
dataset generated by this random deletion, and the ratio of 
identified subpathways that were identified in the original 
pathway list at an FDR < 0.05 significance level was 
determined. Overall, the ratio of pathway overlap decreased 
as the deletion proportion increased for both datasets (Figure 
6B). However, the recalled pathway ratio was higher than 
75% in most of the deletion cases, except for those in 
which more than 15 percent of the lncRNA and mRNA 
profiles were simultaneously deleted from the normal vs. 
tumor dataset (Figure 6B). We then further explored the 
overlap pathway ratio from a rank point of view. The top 
20 pathways from the original pathway list and from the 
pathway list generated by random deletion were compared. 
The results were consistent with the above deletion analysis; 
specifically, even when the deletion rate was increased to 
30%, the pathway overlap ratios remained above 60% in 
most cases (Supplementary Figure 5). Taken together, the 
above results suggest that LncSubpathway was robust 
in resisting disturbances in expression profiles, pathway 
structures, and lncRNA-mRNA association networks.

DISCUSSION AND CONCLUSIONS

Thousands of lncRNAs that might regulate a variety 
of biological processes and play critical roles in disease 

Figure 6: Reproducibility and robustness analyses. (A) Reproducibility of LncSubpathway. Left: comparison of subpathways identified 
based on the tumor and normal subsets of the SRP029880 and GSE9348 datasets. Here, 32 entire pathways contain all significant subpathways 
for SRP029880 and 18 entire pathways contain significant subpathways which have at least one lncRNA associate with PCGs within them for 
GSE9348 were compared. Right: comparison of subpathways which have at least one lncRNA associate with PCGs within them identified based 
on the tumor and metastasis subsets of the SRP029880 and GSE41568 datasets. (B) Robustness of LncSubpathway. The mean ratio of recalled 
pathways after n% of lncRNAs (PCGs) in the expression profiles, n% of edges within pathways, or n% edges in the lncRNA-PCG association 
network were randomly deleted; n varied from 5 to 30 in increments of 5. Left: robustness analysis based on the tumor and normal subset of 
SRP029880. Right: robustness analysis based on the tumor and metastasis subset of SRP029880. Deletion profile GL: lncRNA and PCG profiles 
were simultaneously deleted; Deletion profile G: only the PCG profile was deleted; Deletion profile L: only the lncRNA profile was deleted.
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have already been identified, and the list continues to 
grow. However, most lncRNAs have not been functionally 
characterized, and their roles in diseases remain unclear. 
Identification of functional relationships between 
lncRNAs and disease-relevant subpathways might help 
to characterize the effects of lncRNAs in both normal 
biological phenomena and human diseases. Here, we 
developed the LncSubpathway method, which identifies 
lncRNAs associated with transcriptional dysregulation 
within pathways by integrating lncRNA-mRNA 
expression and pathway topologies. LncSubpathway 
simultaneously considers the degree of dysregulation of 
PCGs and edges within a pathway and changes in lncRNA 
expression and in correlations between lncRNAs and 
PCGs. First, we evaluated the characteristics and accuracy 
of LncSubpathway in three simulation experiments. The 
first simulation experiment characterized the sensitivity 
of LncSubpathway with respect to changes in the extent 
of differential lncRNA/PCG expression and in the extent 
to which their interactions were differential. The results 
indicate that LncSubpathway is sensitive to changes in 
the degree of differences in lncRNA/PCG expression and 
in their correlation with each other. We also found that 
the sensitivity of LncSubpathway is relatively high. The 
second simulation experiment evaluated false positive 
rates associated with LncSubpathway; the false positive 
rates were relatively low and within an acceptable range. 
The third simulation experiment examined whether 
LncSubpathway accurately and effectively located 
dysregulated regions that were associated with lncRNAs 
of interest. The results indicated that LncSubpathway 
performed well in this regard. Furthermore, when 
LncSubpathway was used to analyze the colorectal cancer 
and breast cancer datasets, it successfully identified 
subpathway regions that were functionally consistent 
with known risk lncRNAs. For example, LncSubpathway 
located cell cycle arrest-related subpathway regions that 
were associated with the lncRNA GAS5, a potential tumor 
suppressor associated with cellular growth, arrest, and 
apoptosis processes. LncSubpathway similarly identified 
subpathways with molecular characteristics that were 
consistent with specific breast cancer subtypes.

We constructed lncRNA-coding gene associations 
by integrating complementary co-expression-based and 
sequence-based association datasets. In order to ensure 
the reliability of the association network, lncRNA-coding 
gene pairs in the co-expression network were required to 
be significantly co-expressed in at least 3 of the 28 RNA-
seq datasets. This criterion has been used in previous 
studies of co-expression among lncRNAs and genes 
[8, 11]. In addition, lncRNA-coding gene associations 
inferred from sequence similarity were evaluated using 
both hypergeometric tests and Jaccard Coefficients. 
Because the lncRNA-coding gene association network 
was constructed using computational methods that might 
introduce false positive associations, we further tested 

LncSubpathway by randomly removing 5%, 10%, 15%, 
20%, 25%, or 30% of the associations from the original 
network. The results indicated that LncSubpathway 
was robust; false positive rates remained relatively low 
even when tested under high disturbance conditions. As 
lncRNA target gene identification technology continues 
to improve, the numbers of experimentally identified or 
computationally predicted lncRNA-mRNA interactions, 
such as those predicted using the LncTar tool [53], will 
continue to grow. These associations are also feasible for 
LncSubpathway. We will also consider the positive or 
negative regulation of lncRNA on pathway in the future 
study.

Several methods and tools, such as 
lncRNA2function [12], Linc2GO [14], lncRNAtor [54] 
and Co-LncRNA [55], have previously been used to 
investigate lncRNA functions. Most of these methods can 
provide functional contexts only for individual lncRNA, 
while Co-LncRNA can evaluate the combinatorial effects 
of a maximum of three lncRNAs. However, multiple 
lncRNAs can cooperate to impact disease development 
and progression [15, 16]. Thus, the ability to investigate 
the functional roles of large lncRNA sets could help 
improve our understanding of the biological phenomena 
underlying various diseases. Furthermore, previous 
methods have not considered pathway topological 
information, which is important for functional analysis. 
LncSubpathway identifies transcriptionally dysregulated 
subpathway regions that associated with risk lncRNAs 
by integrating lncRNA-mRNA expression and pathway 
topologies. In addition, the degree of dysregulation of the 
lncRNAs, PCGs, and correlations between them were also 
considered in our approach. Additionally, LncSubpathway 
can provide more detailed information regarding lncRNA-
related transcriptional dysregulation, such as dysregulation 
of interactions associated with risk lncRNAs, than the 
other methods.

Another advanced feature that distinguishes 
LncSubpathway from previous methods is that it provides 
relevant functional contexts for risk lncRNAs at the 
subpathway level. Several studies have demonstrated that 
abnormalities in subpathway regions may be associated 
with diseases [17, 18, 56]. LncSubpathway can provide 
more detailed information about lncRNAs that are 
associated with transcriptional dysregulation. Interestingly, 
LncSubpathway identified different dysregulated 
subpathway regions within the same overall pathway for 
different breast cancer subtypes (HER2 and luminal B), and 
the subpathway regions identified corresponded to specific 
molecular and clinical characteristics of each subtype. This 
indicates that the high-resolution LncSubpathway method 
can provide novel insights into the molecular mechanisms 
underlying specific disease subtypes.

Taken together, our findings demonstrate that 
LncSubpathway identified biologically meaningful, 
risk lncRNA-associated subpathway regions for both 
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diseases and disease subtypes. LncSubpathway may 
therefore improve our understanding of the functional 
roles of lncRNAs and help to characterize the biological 
phenomena underlying various diseases. 

MATERIALS AND METHODS

Data sets

RNA-seq datasets for constructing the global 
lncRNA-mRNA co-expression network

We downloaded 28 human RNA-Seq datasets 
generated under different experimental conditions from 
the NCBI Sequence Read Archive (SRA) databases [57] 
(Supplementary Table 6) which were used to construct 
the lncRNA-mRNA co-expression network. All of these 
datasets had previously been used by Li et al. to predict 
isoform functions based on an isoform co-expression 
network [58]. Each data set contains at least six 
experiments; none of them were population studies. We 
downloaded lncRNA and protein coding gene annotations 
from the GENCODE database (http://www.gencodegenes.
org/). For each dataset, we aligned the RNA-seq reads of 
these samples to the human genome (GRCh38) using 
TopHat (V2.0.13) [59, 60] and then used Cufflinks 
(V2.2.1) [61] to evaluate the expression of lncRNAs and 
protein coding genes.

Colorectal cancer datasets

(1) Colorectal cancer dataset 1: we obtained the 
RNA-seq dataset for colorectal cancer (SRP029880) from 
Kim et al.’s study, which contains 54 samples (normal 
colon, primary colorectal cancer, and liver metastases) 
collected from 18 colorectal cancer patients [62] .The 
expression of lncRNAs and protein coding genes was 
quantified using both the TopHat [60] and Cufflinks [61] 
RNA-seq data processing tools. Matched lncRNA-mRNA 
expression profiles were filtered to include only profiles 
with non-zero lncRNA/mRNA expression values in at 
least 20% of the samples. We used both the DEGSeq [63] 
and fold-change (FC) methods to identify differentially 
expressed lncRNAs, which were designated risk lncRNAs. 
A lncRNA was considered differentially expressed when 
it was identified as significant using the DEGSeq method 
(FDR < 0.25) and had an FC value of either > 1.5 or < 
2/3. (2) Colorectal cancer dataset 2: the gene expression 
profile for colorectal cancer from Hong et al.’s study, 
which includes 70 tumor samples and 12 healthy controls, 
was downloaded from the GEO database (GSE9348). We 
re-annotated the probes corresponding to protein coding 
genes and lncRNAs in the microarray using strategy 
similar to the computational pipeline of Liao et al. [10].  
Using this re-annotation strategy, we obtained matched 
sample expression profiles for both lncRNAs and protein 

coding genes. Differentially expressed lncRNAs were 
identified using both t-tests and the FC method. A lncRNA 
was considered differentially expressed when it was 
identified as significant by the t-test method (FDR < 0.25) 
and had an FC value of either > 1.5 or < 2/3. (3) Colorectal 
cancer dataset 3: the gene expression profile for colorectal 
cancer including both tumor and metastasis samples 
was downloaded from the GEO database (GSE41568). 
Differentially expressed lncRNAs were identified using 
t-tests (FDR < 0.25), and the re-annotation pipeline was 
used as described for colorectal cancer dataset 2.

Breast cancer subtype dataset

We downloaded level 3 RNA (Illumina-
HiSeqRNASeqV2) expression data for breast cancer from 
the TCGA database (version: April, 2015) through the Data 
portal (http://cancergenome.nih.gov/). We then extracted 
protein coding gene expression data for each sample as 
described in our previously study [64]. The TCGA breast 
cancer sample lncRNA expression data were obtained 
from Li et al. [65]. Samples for which both lncRNA and 
mRNA expression were available were retained in the 
analysis. Breast cancer samples were assigned to either 
the Luminal A, Luminal B, Her2-enriched, or Basal-
like subtypes according to the guidelines in Ciriello 
et al. [66] using a 50-gene signature (PAM50)-based 
subtype classification. Ultimately, we obtained matched 
lncRNA and protein coding gene expression profiles 
for 232 luminal A, 110 luminal B, 40 HER2-enriched, 
and 77 basal-like samples. The matched breast cancer 
lncRNA-mRNA expression profiles were filtered using 
the same method applied to the colorectal cancer dataset. 
Differentially expressed lncRNAs were obtained for each 
subtype by comparing lncRNA expression for samples 
with that subtype to samples belonging to the other three 
subtypes using both DEGSeq [63] and FC methods. A 
lncRNA was considered differentially expressed when 
it was identified as significant with the DEGSeq method 
(FDR < 0.25) and had an FC value of either > 1.5 or < 2/3.

Methods

LncSubpathway has been implemented as a freely-
available web server (http://www.bio-bigdata.com/
lncSubpathway/). A schematic overview of LncSubpathway 
is shown in Figure 7. A detailed description of method 
is provided in the following sections and in the 
Supplementary Text.

Constructing the global lncRNA-protein coding 
gene association network

In this study, we constructed the global lncRNA-
mRNA association network by integrating two distinct 
but complementary data sets: (1) the lncRNA-mRNA co-
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expression network; and (2) the lncRNA-mRNA ceRNA 
network.

We constructed a lncRNA-mRNA association 
network based on correlations between lncRNA and 
mRNA expression across 28 RNA-seq datasets that 
reflected different experimental conditions. Detailed 
processing for each RNA-seq dataset was conducted 
as follows: (i) individual lncRNAs or protein coding 
genes were used to construct the co-expression network 
only if the coefficient of variation for its expression 
across samples in the dataset was ≥ 0.3 and also ranked 
in the top 75 percentile of all coefficients. (ii) Pearson 
correlation coefficients (PCC) were calculated for 
each gene pair that met the above criteria based on the 
expression profiles. (iii) The statistical significance 
of each PCC value was determined using Fisher’s 
asymptotic test to calculate P-values for each gene pair 
with the WGCAN R package [67]; these P-values were 
corrected using the Bonferroni adjustment for multiple 
tests. (iv) For each gene, co-expression pairs of it and 
other genes with adjusted P < 0.01 and PCC values 
ranked in the top or bottom 0.1% of all co-expression 
pairs were retained. Finally, only lncRNA-mRNA pairs 
for which the direction of the significant correlation 

(positive or negative) was consistent in at least three 
different datasets were included in the final co-expression 
network.

We then constructed a lncRNA-mRNA association 
network based on the ceRNA hypothesis. Briefly, lncRNA 
and mRNA pairs were retained for use in constructing the 
network only if they shared enough miRNAs. The details 
of this selection process were as follows: (i) We integrated 
experimentally validated mRNA-miRNA interactions 
from the TarBase [68], mirTarBase [69], mir2Disease 
[70], and miRecords (V4.0) [71] databases. (ii) lncRNA-
miRNA interactions identified in our previously study 
[64], which examined lncRNA-associated competing 
triplets, were included. In addition, lncRNA and miRNA 
associations stored in the StarBase database [72] were 
also integrated. (iii) We constructed lncRNA-mRNA 
association relationships based on shared miRNAs. 
We identified protein coding genes as associated with a 
lncRNA when the lncRNA-mRNA pair simultaneously 
satisfied these two criteria: (1) the hypergeometric test for 
shared miRNAs was statistically significant (P < 0.05); (2) 
the Jaccard Coefficient of the shared miRNAs was in the 
top 20% of the overall mRNA list. The hypergeometric 
test formula was as follows:

Figure 7: Schematic overview of LncSubpathway.
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Where N is all of miRNAs that interact with lncRNA/
mRNA, M is the number of miRNAs that interact with the 
given mRNA, n is the number of miRNAs that interact 
with the given lncRNA, m is the number of miRNAs that 
interact with both the given lncRNA and mRNA.

We then integrated the lncRNA-protein coding gene 
co-expression network and the lncRNA-protein coding 
gene association network constructed based on ceRNA 
hypothesis. Ultimately, the global lncRNA-protein coding 
gene network included 6,037 lncRNAs, 8,967 PCGs, and 
24,393 associations.

Locating subpathways with risk lncRNA-
associated transcriptional dysregulation

First, we converted KGML files containing protein-
protein interaction and biochemical reaction information 
for a total of 281 pathways downloaded from the KEGG 
database in April 2015 into undirected graphs using our 
previously developed package [17]. Briefly, for each 
pathway, we extracted all genes identified as nodes in 
the corresponding graph. If a protein node in the KEGG 
graph interacted with another protein, an edge was used 
to connect the genes associated with one protein node to 
those associated with the other. For metabolic pathways, if 
a metabolite was both the product of the reaction involving 
one enzyme and the substrate of the reaction involving 
another enzyme in the pathway (i.e. two enzymes shared 
common metabolites), an edge was used to connect the 
two enzymes (genes). We thus used the original KEGG 
pathways to generate new graphs that maintained the 
original pathway topologies. Disease pathways and 
pathways for which structures could not be efficiently 
extracted were excluded. 214 pathways were retained for 
further analysis after screening.

Next, we calculated node weights and edge weights 
for each pathway based on the matched lncRNA-mRNA 
expression profiles, pathway topologies, and the global 
lncRNA-mRNA association network. Pathways that 
involved at least one gene regulated by lncRNAs of interest 
were assigned weights. Node (PCGs in given pathway) 
weights were assigned based on differential expression 
of each gene between the experimental condition and 
the corresponding controls, the differential expression of 
lncRNAs associated with the node, and the change in the 
correlation between the gene and lncRNAs. Specifically, 
for a given node (PCG) v, L1,…,Lm represents each of the 
m lncRNAs that are associated with v, and the weight of 
node v, bv, is calculated using the following formula:

2 2
1

log (1 ) ( * | log |)
j j

m

v v vL L
j

w FC d FCα α
=

= + − ∑  (2)

1 | | 
j j j

T N
vL vL vLd Cor Cor= + −  (3)

Where FCv is the fold-change in expression for node 
v, FCLj is the fold-change in expression of lncRNA Lj;

   and 
j j

T N
vL vLCor Cor correspond to the Pearson Correlation 

Coefficient between gene V and lncRNA Lj in tumor and 
normal states, respectively; and α is a constant value, 
which was 0.5 in this study. We then normalized the 
weight of each node within a given pathway as follows:

*( ) /v v min maxb w w wβ= −  (4)

Where wmin and wmax are the minimum and maximum 
weight values, respectively, of nodes within a given 
pathway, and β is a constant value, which was 15 in this 
study. The edge weight for each pathway corresponds 
to the change in the interaction between connected gene 
pairs within the pathway. The edge weight for gene pair 
(gi, gk),Ce, was calculated using the following formula:

1 | |
i k i k

T N
e g g g gw Cor Cor= − −  (5)

( ) /e e emin emaxc w w w= −  (6)

Where wemin and wemax correspond to the minimum 
and maximum weight values, respectively, of edges within 
a given pathway, and  and  

i k i k

T N
g g g gCor Cor  refer to the 

Pearson Correlation Coefficient between gene gi and gene 
gk in tumor and normal states, respectively. 

Finally, we used the PCST algorithm [21–23] 
to locate subpathway regions containing the most 
dysregulated genes related to risk lncRNAs with 
connections that were substantially altered within the 
overall pathway graph G = (V, E) . Formally, the PCST 
algorithm identifies a connected subgraph G' = (V', E)  
that minimizes the following function:

' '

' '' '

,

( , )

min E E V V e v
e E v VE V connected

c b∈ ∈
∈ ∈

−∑ ∑  (7)

We used the same solution to the PCST algorithm 
that was used in Bailly-Bechet et al. [21] to locate 
dysregulated subpathways that were functionally 
associated with risk lncRNAs.

Evaluating the statistical significance of 
subpathways

For each subpathway, we defined the subpathway 
node (edge) weight,  ( )v e

obs obsS S , as the mean value of 
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all node (edge) weights which have not been normalized 
(i.e. wv (We)) within the subpathway. We performed 1000 
randomizations on the node and edge set to evaluate the 
significance of each identified subpathway. For each node 
set, we randomly selected the same number of nodes 
contained in the subpathway from the background node 
set, which included all PCGs that were associated with 
at least one lncRNA of interest. For each edge set, we 
randomly selected the same number of edges contained 
in the subpathway from the background edge set, which 
included all edges from all pathways. Then,  ( )v e

rand randS S  
was calculated as the mean value of the random node 
(edge) weights for each permutation. The P-value estimate 
for each subpathway was computed as follows:

1

( )p
#

randomizations
i obs

i

I S S
randomizations=

≥
= ∑  (8)

where Si represents  ( )v e
rand randS S  and  ( )i obsI S S≥  

is an indicator function which equals 1 when the ith random 
node (edge) weight, Si, is equal or greater than the 
observed value (Sobs); otherwise, it equals 0.

Finally, we joined the subpathway P-values at both 
the node and edge levels to evaluate the significance of 
individual subpathways using the formula pji = pvi pei where  
pji, pvi, and pei represent the joint P-value and the P-values 
obtained at the node and edge levels for subpathway i, 
respectively.

Identifying key lncRNAs

We identified key lncRNAs that were associated 
with transcriptional dysregulation for each subpathway 
by considering lncRNA dysregulation, alterations in the 
correlation between a lncRNA and the PCGs with which 
it interacted, and the topological position of these PCGs 
within the subpathway. Briefly, we aimed to identify 
a minimum core lncRNA set that was associated 
with most of the PCGs within the subpathways that 
exhibited transcriptional dysregulation. To do this, 
we first ranked the lncRNAs associated with a given 
subpathway according to the importance score (IS) of 
the lncRNA, which was calculated as follows:

2
1

IS log (1 ) *
j j

n

LG G
j

FC d Dγ
=

= γ + − ∑  (9)

Where FC denotes the fold-change value for 
lncRNA L, G1,…,Gn represents the n PCGs that interact 
with L within the subpathway, 

jGD  denotes the degree (a 
topology measurement) of gene Gj within the subpathway, 
and  jLGd represents the change in the correlation between 
L and Gj, which is calculated as in equation (3). γ is 0.3 
in this study.

We then identified the key lncRNAs as follows:
(i)  After designating the lncRNA with the highest IS 

value the core lncRNA, the proportion (q) of genes 
with which it was associated within the subpathway 
was calculated.

(ii)  If the proportion of genes associated with the 
above lncRNA(s) was less than a given cutoff 
pert, then the next lncRNA in the ranked list was 
considered for addition to the core lncRNA set and 
the new proportion parameter q', which indicated 
the proportion of genes associated with the new 
core lncRNA set, was calculated. If q' ˃ q, the 
relevant lncRNA was added to the core lncRNA set; 
otherwise, it was removed.

(iii)  The above step was repeated until q ≥ pert ; 
lncRNAs included in the core lncRNA set were 
identified as key lncRNAs. In this study, pert was 
set at 0.8.

Simulation designs

We performed three simulation experiments to 
evaluate the LncSubpathway method. Briefly, datasets 
with 150 genes and 50 lncRNAs each were generated 
from two genetic systems (i.e. two pathway networks). 
The two pathway network models are the linear pathway, 
with 20 genes that were connected in a linear fashion 
(Supplementary Figure 6A), and the ERBB signaling 
pathway, with genes that interacted with each other 
according to the ERBB signaling pathway in the KEGG 
database (Supplementary Figure 6B). These two pathways 
were assumed to have no interactions with each other. The 
lncRNA/mRNA expression profiles were generated using 
a multivariate normal distribution model, and the lncRNA-
mRNA association network was generated using a random 
network model (details see Supplementary Text).

The first simulation explored the characteristics of 
LncSubpathway by varying the following parameters: 
sample size, differentiality of lncRNAs/PCGs, 
differentiality of interactions between PCG-PCG within 
subpathways, and associations between pathway PCGs 
and lncRNAs. This simulation experiment was conducted 
to demonstrate that the subpathway node (edge) weights 
increased, and the corresponding P-values decreased, as 
the differentiality of pathway-associated nodes (edges) 
increased. To that end, we generated simulated lncRNA 
and mRNA profiles by varying parameters n, e and p as 
follows: n, which controls to the fold-change of lncRNAs/
PCGs, was varied from 2.0 to 7.0 in increments of 
0.5; e, which controls the extent to which interactions 
changed, was varied from 0.1 to 0.9 in increments of 
0.1; and p, which determines the proportion of pathway-
associated lncRNAs/PCGs or associations that changed, 
was varied from 0.1 to 0.9 in increments of 0.2 (see 
the Supplementary Text). The sample size, N, was set 
at 250, 300, or 500. Each unique combination of these 
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parameters (e.g. n = 2.0, p = 0.1, and N = 250) was 
defined as a single simulation case. For each simulation 
case, simulated datasets were generated and analysis 
using LncSubpathway was repeated 100 times. A detailed 
description of the simulation experiments is provided in 
the Supplementary Text.

The second simulation evaluated the false positive 
rates of LncSubpathway using two other simulation 
strategies from Choi et al. [73] and Goel et al. [74] to 
generate a simulated dataset. Statistically significant 
simulation cases obtained when the method is applied to 
a dataset with p=0 (i.e. no changes between two sample 
groups) were designated false positives. In the dataset 
generated using both strategies, the mean expression of 
PCGs/lncRNAs was equal (μ1 = μ2) and the correlations 
among lncRNAs/PCGs were equal (∑1 = ∑2) in the 
two sample groups. Simulation dataset generation was 
repeated 100 times under each simulation parameter 
condition for both strategies. False positive rates were 
estimated by observing the proportion of replicates with 
a P < 0.01. The two strategies differed in the parameter 
settings used to generate the simulated datasets; a detailed 
description of the two simulation scenarios is provided in 
the Supplementary Text.

The third simulation evaluated whether 
LncSubpathway accurately located dysregulated 
subpathway regions that were associated with lncRNAs 
of interest. We assumed that one subpathway region in the 
linear pathway and three subpathway regions in the ERBB 
pathway were dysregulated (Supplementary Figure 1).  
Then, we generated simulation datasets that satisfied 
the requirement for differential expression in the focal 
subpathway regions. Simulated datasets were generated 
independently 100 times each using node (lncRNA/PCG) 
fold-changes of 1.15, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 
5.5, 6.0, 6.5, or 7.0, interaction changes of 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, or 0.9, and sample sizes of 250, 300, 
or 500 as input conditions (see the Supplementary Text 
for details). We then calculated the ratio of genes involved 
in the given subpathway region from Supplementary 
Figure 1 that was recovered in each replicate. The average 
values of repeats for each simulation condition were used 
to evaluate the accuracy of LncSubpathway in locating 
dysregulated subpathway regions. A detailed description 
of this method is provided in the Supplementary Text.
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