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ABSTRACT
Over a half million new cases of Head and Neck Squamous Cell Carcinoma 

(HNSCC) are diagnosed annually worldwide, however, 5 year overall survival is only 
50% for HNSCC patients. Recently, high throughput technologies have accelerated 
the genome-wide characterization of HNSCC. However, comprehensive pipelines 
with statistical algorithms that account for HNSCC biology and perform independent 
confirmatory and functional validation of candidates are needed to identify the most 
biologically relevant genes. We applied outlier statistics to high throughput gene 
expression data, and identified 76 top-scoring candidates with significant differential 
expression in tumors compared to normal tissues. We identified 15 epigenetically 
regulated candidates by focusing on a subset of the genes with a negative correlation 
between gene expression and promoter methylation. Differential expression and 
methylation of 3 selected candidates (BANK1, BIN2, and DTX1) were confirmed in 
an independent HNSCC cohorts from Johns Hopkins and TCGA (The Cancer Genome 
Atlas). We further performed functional evaluation of NOTCH regulator, DTX1, which 
was downregulated by promoter hypermethylation in tumors, and demonstrated 
that decreased expression of DTX1 in HNSCC tumors maybe associated with NOTCH 
pathway activation and increased migration potential.
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INTRODUCTION

As the fifth most common cancer, Head and Neck 
Squamous Cell Carcinoma (HNSCC) is responsible for 
600,000 new cases and over 300,000 deaths per year 
worldwide [1, 2]. Nonetheless, the majority of HNSCC 
patients are diagnosed at an advanced stage due to 
the asymptomatic course of early stage disease and 
the absence of the routine screening techniques [3–6]. 
Development of low toxicity targeted therapeutics and 
biomarkers for early detection could improve survival rate 
and quality of life for HNSCC patients. 

Traditionally, research groups have focused on the 
roles of individual genes in HNSCC to develop candidate 
biomarkers for diagnosis and treatment selection [7]. 
The process of single-gene investigation is time and 
labor intensive, while high-throughput profiling enables 
more rapid discovery of targetable disease-specific 
modifications. Thus, recent high throughput profiling of 
HNSCC identified number of targetable disease-specific 
modifications, such as genetic mutations and differentially 
expressed genes in HNSCC primary tissues or cell 
lines compared to normal samples [8–16]. In addition, 
epigenetic based expression alterations are noted to drive 
key biologic processes in HNSCC [17, 18]. Integration 
of high throughput data from expression and methylation 
platforms may enhance accurate discovery of cancer-
driving genes so they can be used as disease biomarkers 
or therapy targets [19]. 

Therefore, a multi-platform high throughput 
analyses of gene expression and DNA methylation 
in primary HNSCC and normal samples and outlier 
statistics [20] were utilized to rank candidate genes and 
prioritize genes with the most prominent abnormalities 
in tumor samples that were absent in normal samples. 
Next, candidate genes were validated in separate clinical 
cohorts. Finally, the functional role of a lead candidate, 
DTX1, in HNSCC cell migration was demonstrated. DTX1 
expression was found to be increased in samples with 
decreased NOTCH pathway activity, suggesting that DTX1 
can serve as a biomarker of NOTCH pathway inhibition. 
The promoter DNA was exclusively methylated in tumors, 
suggesting that it can also serve as a HNSCC biomarker. 
This discovery was made possible due to employment 
of well-considered statistical approaches, cross cohort 
validation, and complementary detection tools.

RESULTS

Candidate genes with differential expression in 
HNSCC detected by outlier statistics

In order to identify relevant gene candidates in 
HNSCC, we used gene expression array data from a 
discovery cohort of 44 HNSCC primary tumors and 
25 non-cancer normal tissue samples described in our 

previous publications (Supplementary Table 1 and  
[21–23]). Notably, the clinical differences between tumor 
and control population of the discovery cohort were 
identified and discussed earlier [21–24]. 

The novelty of the current study was that we applied 
outlier analysis adopted from Ochs et al. [20] to rank and 
prioritize cancer-related alterations in HNSCC samples 
relative to normal controls (Figure 1). Outlier analysis 
is adapted for the study of heterogeneous samples, 
such as HNSCC primary tissues, because it is sensitive 
to alterations that maybe present in only a subset of 
samples. Given the high sensitivity of whole-genome gene 
expression analysis, thousands of differentially expressed 
genes can be detected while comparing tumor and normal 
samples. The heterogeneity of genetic and epigenetic 
alterations in solid tumors has presented challenges in 
using conventional statistical approaches, such as t-tests 
or signal-to-noise tests. There are several most-commonly 
accepted methods employed in cancer research for 
analysis of high-throughput data of heterogeneous cancers, 
including Cancer Outlier Profile Analysis (COPA)-based 
methodology, which compares outliers to an empirical 
null [25–28]. Outlier-based analysis has provided a 
mechanism to define significant, but diverse, alterations in 
cancers [20]. To eliminate low-signal outliers, this work 
implemented COPA-based statistics with a rank sum 
outlier approach as well as set a minimum level for the 
calling of an outlier. Such outlier analysis was recently 
successfully implemented and validated in a wet-lab 
setting for the discovery of tumor-specific signatures from 
DNA methylation array data for HNSCC [29]. 

Based on the number of outlier samples and the 
relative signal intensity, 76 of the top ranking candidates 
were chosen for further analysis (Supplementary Table 2). 
Overall, 50 candidate genes demonstrated increased gene 
expression and 26 candidate genes demonstrated decreased 
gene expression in tumor samples. (Supplementary 
Table 2). Notably, the standard and more stringent 
t-test demonstrated that 70 out of 76 genes (92%) had 
statistically significant difference in gene expression 
between normal and tumor samples. 

Negative correlation between expression and 
methylation identifies candidate genes that are 
epigenetically silenced in HNSCC

High gene promoter methylation if often associates 
with decreased gene expression and can result in 
epigenetic silencing [17, 18]. Therefore, DNA methylation 
array data was integrated with gene expression analysis 
(Figure 1) to identify gene expression changes potentially 
driven by methylation, as well as to eliminate biases 
from individual high-throughput platform [23]. The 
Illumina 27 DNA methylation array was utilized, which 
contained 27,000 probes covering approximately 15,000 
genes, including gene promoter probes for 19 of the 
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76 candidates. Spearman correlation coefficients were 
calculated (Supplementary Table 2), and 15 out of 19 
genes had negative correlation between expression and 
methylation. The description of these 15 candidates can 
be found in Table 1.

Of the list of 15 candidates, BANK1 (a scaffold 
protein) and BIN2 (a bridging integrator protein) had the 
highest combined outlier score and negative Spearman 
coefficient. DTX1 was chosen for its relatively high 
outlier score and its regulatory role in the NOTCH 
pathway, which is commonly dysregulated in HNSCC 
[12–14, 22]. All 3 genes have been implicated as potential 
cancer drivers in other non-head and neck solid tumors 
[30–33]. Notably, all 3 genes were downregulated and 
hypermethylated in tumor samples compared to normal 
controls (Figure 2). Therefore these 3 genes were selected 
for further validation. Other candidates, such as CD79B, 
MAP4K1, GRAP, TNFRSF13C, and INA, had comparable 
scores and are candidates for further study, as they have 

also been implicated in carcinogenesis of other cancer 
types [34–38].

Independent validation of differential expression 
and methylation of BANK1, BIN2 and DTX1

To confirm the differential expression and 
methylation of BANK1, BIN2 and DTX1, an independent 
validation cohort was assembled of 61 HNSCC primary 
tumors and 28 UPPP samples, with similar clinical 
characteristics as the discovery cohort (Supplementary 
Table 1). BANK1, BIN2 and DTX1 gene expression 
was evaluated by qRT-PCR, and DNA methylation 
was evaluated by bisulfite sequencing (Figure 3, 
Supplementary Table 3). Gene expression was significantly 
decreased in tumor tissues for all 3 genes (t-test p-values: 
9.4 × 10−6, 7.1 × 10−6, and 0.0013 for DTX1, BANK1, and 
BIN2, respectively), and DNA methylation was present 
in significantly more tumor samples (Fisher exact test 

Figure 1: Experimental flow. Expression array probes, 1.4M total, were normalized using RMA package. Gene level estimates were 
produced by choosing the highest mean expression levels among all probes linked to the same gene for expression, yielding 22,011 genes. 
We applied outlier analysis [20] to the gene expression data set, containing 22,011 genes. The outlier score cut-off for expression data was 
set at 2.3, resulting in prioritizing 76 top scoring expression candidates. Spearman gene expression-methylation for these 76 candidates was 
calculated via integration of normalized methylation array data available for the samples.  Fifteen out of 76 candidates were found to have 
a negative Spearman coefficient. Differential expression and methylation of BIN2, BANK1 and DTX1 were validated in the validation and 
TCGA-HNSCC cohorts. Functional study was performed for DTX1.
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p-values: 0.105, < 0.0001, and 0.0006 for DTX1, BANK1, 
and BIN2, respectively). Utilization of the independent 
cohort of HNSCC samples analyzed by complementary 
methodology (Figure 3) enhanced the rigor of the data 
through technical validation and eliminated potential 
sample biases. Notably, for DTX1 differential methylation 
did not reach statistical significance (p = 0.105). However, 
DTX1 showed almost no methylation in normal tissues, 
resulting in high tumor specificity. Therefore, DTX1 was 
maintained as a gene candidate for further study. 

High throughput gene expression and DNA 
methylation analysis was also recently performed by 
TCGA (The Cancer Genome Atlas), including 222 
matched HNSCC tumors and 50 normal samples 
(Supplementary Table 1 and [39]). TCGA used RNA-
Seq for gene expression evaluation and Illumina Infinium 

HumanMethylation450 BeadChip platform for DNA 
methylation analysis. We used the TCGA dataset for 
BANK1, BIN2 and DTX1 validation (Figure 4). TCGA 
was not used for initial discovery because use of adjacent 
normal tissue from cancer patients was a concern. In the 
HNSCC population, high rate of tobacco and alcohol 
exposure lead to field of cancerization effect, as well as 
genetic and epigenetic changes can be seen in tumor 
adjacent apparently normal tissue [40, 41].

Nonetheless, data from TCGA was able to provide 
additional independent validation. Within TCGA, DTX1 
was found to have significantly decreased expression 
(p-value = 8 × 10-6) and promoter hypermethylation 
(p-value = 3.11 × 10−20), validating prior results. 
However BANK1 shared promoter hypermethylation 
(p-value = 6.36 × 10-19) without significant changes in 

Table 1: Fifteen candidate genes with negative expression-methylation correlation

# Gene Description

Expression-
Methylation 
Correlation, 
Spearman 
coefficient

Outlier 
score

Alteration in different 
tumor types Reference

1 ATP2A3 ATPase −0.120 2.45
HNSCC, lung, colon, 

cancers of central nervous 
system 

[50]

2 ATP8A1 ATPase −0.195 2.60 Lung cancer [73]

3 BANK1 Scaffold protein −0.420 4.97 Lymphoma, colorectal 
cancer [30, 32]

4 BIN2 Bridging integrator −0.693 2.94 myeloproliferative 
neoplasm [31]

5 CD79B immunoglobulin-beta 
protein −0.556 3.16 Myeloma, CLL [74, 75]

6 CYP1B1 Cytochrome −0.183 2.50 Smoking related cancers, 
ovarian cancer [51, 52]

7 DTX1 Notch-pathway regulator −0.274 3.40
thymic tumor, 
glioblastoma, 
osteoblastoma

[46, 47]

8 FZD3 Frizzled receptor −0.161 3.02 Colorectal, non−melanoma 
skin cancer, CLL [53−55]

9 GRAP cytoplasmic signaling 
protein −0.444 2.93 medullary thyroid 

carcinoma [34]

10 INA Neurofilament −0.333 2.69 colorectal cancer, 
adenomas [35]

11 MAP4K1 MAP kinase −0.590 2.58 Bladder, colorectal cancer [36, 38]
12 ORAOV1 Oral cavity oncogene −0.064 4.00 oral SCC [56]
13 PDE5A phosphodiesterase −0.10 3.51 melanoma [76]
14 TNFRSF13C TNF receptor −0.295 3.12 non-Hodgkin lymphoma [37]

15 VAV1
proto-oncogene, a member 

of guanine nucleotide 
exchange factors

−0.208 2.64 neuroblastoma, lung, 
pancreatic cancer [77, 78]

Genes are in alphabetic order. Spearman coefficient and Outlier score are provided.
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gene expression (p-value = 0.38). For BIN2 neither gene 
expression downregulation nor hypermethylation changes 
were validated in TCGA. Since DTX1 showed the best 
performance in TCGA cross validation, we focused our 
further functional validation only on the DTX1 gene. 

The role of DTX1 in the NOTCH pathway for 
HNSCC

DTX1 is a regulator of the NOTCH pathway 
[42, 43]. Since the NOTCH pathway is dysregulated in 
HNSCC [12, 13, 22], we evaluated the role of DTX1 
relative to other NOTCH pathway genes (KEGG database 
and [22]). Overall, we analyzed gene expression for 44 
NOTCH related genes for 44 HNSCC and 25 normal 
controls from the discovery cohort using Affymetrix Exon 

Array data (Supplementary Figure 1). Genes were sorted 
by unsupervised hierarchical clustering. DTX1 was noted 
to cluster together with DTX3 (NOTCH regulator), MFNG 
(NOTCH modifier) and DLL3 (NOTCH ligand). 

Interestingly, separation of HNSCC samples by 
DTX1 expression separated the tumor samples into two 
subsets of samples, with different expression of NOTCH 
pathway genes in each group (Supplementary Figure 1). 
To confirm this observation, we separated 44 tumors 
into two equal groups by DTX1 expression: lower DTX1 
expression (n = 22) and higher DTX1 expression (n = 22) 
and compared the expression of NOTCH genes in each 
group (Supplementary Table 4). Indeed, 34 out of 43 
NOTCH pathway genes excluding DTX1 (79%) were 
significantly differentially expressed between DTX1 low 
and high expressed tumors. According to Supplementary 

Figure 2: Differential expression and methylation of DTX1 (A), BANK1 (B) and BIN2 (C) in the original discovery cohort. Gene expression 
(left) was evaluated by Affimetrix HuEx1.0 GeneChip. DNA methylation (right) was evaluated by Illumina Infinium HumanMethylation27 
BeadChip platform, and the data was normalized and processed as described in methods. P-value were calculated by t-test.
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Figure 1 and Supplementary Table 4, the majority of 
NOTCH pathway genes were significantly upregulated 
in the group of samples with lower DTX1 expression  
(n = 28 genes, including NOTCH1-3, HES1, HEY1, and 
JAG1) relative to DTX1 high expression samples. Fifteen 
genes had lower expression in the DTX1 lower-expression 
group relative to DTX1 high expression samples, including 
DLLs, DTXs and NOTCH4 genes. Gene set analysis 
confirmed that the set of NOTCH pathway genes were 
significantly overexpressed in DTX1 low samples relative 
to DTX1 high (p-value of 0.0012, Supplementary Figure 2) 
and relative to Normal samples (p-value of 0.0024, 
Supplementary Figure 2). These findings confirm that 
downregulation of DTX1 results in a strong difference in 
activation of the NOTCH pathway in HNSCC samples. 

We further evaluated relative expression of DTX1 
with NOTCH downstream targets (Supplementary  
Figure 3). DTX1 expression co-clustered with the 
expression of GATA4 (regulated by HEY1) [44] and 
NEUROG3 (negatively regulated by HES1) [45] by 
unsupervised hierarchical clustering. The set of NOTCH 
downstream targets were not significantly differentially 
expressed between DTX1 sample groups or relative to 
normal samples with gene set analysis. Nonetheless, 
GATA4 and NEUROG3 were all downregulated in 
samples with low DTX1 expression relative to high DTX1 
expression (p-values of 7 × 10−7 and 6 × 10−10, respectively; 
Supplementary Table 5). In addition, DTX1 low samples 
had significantly higher expression of HES1 relative to 
DTX1 high samples (p-value of 0.01; Supplementary 
Table 5), consistent with NEUROG3 downregulation [45], 
but significant changes were not observed from gene set 
statistics (data not shown).

Functional role of DTX1 dysregulation in 
HNSCC

Since DTX1 was downregulated in HNSCC tumor 
samples, (Figures 2–4) it is expected to have tumor-
suppressor properties. Overexpression and silencing of 
DTX1 expression in vitro did not affect cell proliferation 
(3 immortalized normal keratinocyte and 6 HNSCC cell 
lines were tested, data not shown). On the other hand, 
recent data suggest that DTX1 may play a role in inhibition 
of invasion in osteosarcoma [33]. In order to evaluate if 
DTX1 could modify the invasiveness of HNSCC cells as 
well, we performed matrigel cell migration assays. UM-
SCC-047 and UM-SCC-22B were selected due to their 
increased mobility relative to other HNSCC cell lines 
necessary for invasion assay. Base-line DTX1 expression 
analysis determined that UM-SCC-047 had relatively 
lower gene expression and, therefore, was used for ectopic 
DTX1 expression (Supplementary Figure 4A). On the 
other hand, UM-SCC-22B had a higher DTX1 expression 
rate and, therefore, was used for knock-down RNAi 
experiments. Upregulation of DTX1 via ectopic expression 
leaded to significant decrease of UM-SCC-047 cell 
invasion (p = 0.014, Figure 5A and Supplementary Figure 
5A), while downregulation of DTX1 by RNAi leaded to 
strong enhancement of cell invasiveness in UM-SCC-22B 
cell line (p = 0.004, Figure 5B and Supplementary Figure 
Supplementary 5B). 

DISCUSSION

Five year survival for HNSCC is only 50%, and 
there is a clear need for identification of novel cancer-

Figure 3: Differential expression and methylation of DTX1, BANK1 and BIN2 in the validation cohort. Gene expression 
(A) was evaluated by quantitative RT-PCR. P-values were calculated by t-test. DNA methylation (B) was evaluated by bisulfite 
sequencing. Box color-code: white–unmethylated (hypomethylated); grey–hemimethylated, black–hypermethylated. P-values were 
calculated by Fisher exact test, as unmethylated signal vs methylated signal (hemi- or hypermethylated) in two groups. P-values for  
DTX1 = 0.105, for BANK1 < 0.0001, for BIN1 = 0.0006.
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specific therapeutic targets.  This study integrated DNA 
methylation and gene expression to define cancer-
related alterations. We performed genomic analysis with 
thorough confirmatory and functional validation, which 
identified DTX1 as a potential regulator of migration in 
HNSCC. 

The integrated analysis and outlier statistics allowed 
us to correlate gene expression with promoter methylation 
and discriminate candidates that were biologically 
relevant. Indeed, all 15 high-value candidates identified 
through these methods (Table 1) have been described 
as cancer drivers in other cancer types. Thus, DTX1 

Figure 4: Differential expression and methylation of DTX1 (A), BANK1 (B) and BIN2 (C) in the TCGA-HNSCC cohort. Gene expression 
(left) was evaluated by RNA-Seq. DNA methylation (right) was evaluated by Illumina Infinium HumanMethylation450 BeadChip platform, 
and the data was normalized and processed as described in methods. P-values were calculated by t-test. 
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is a regulator of the NOTCH pathway; this pathway 
was recently found both downregulated in HNSCC 
via NOTCH1 mutations and upregulated in HNSCC 
via amplifications of NOTCH’s ligands and receptors  
[12–14, 22]. DTX1 is upregulated in thymic tumors and in 
glioblastoma [46, 47], and it inhibits osteoblastoma cell 
invasion [33]. Moreover, multiple DTX1 polymorphisms 
were found in non-small cell lung and B-cell precursor 
acute lymphoblastic leukemia patients [48, 49], which 
most likely associate with inactivation of DTX1 and 
further NOTCH activation in these cancers. BANK1 
is downregulated in lymphoma and colorectal cancers 
[30, 32]. Overexpressed BIN2 fusions were detected 
in myeloproliferative neoplasms [31]. Out of other 
candidates, ATP2A3 has been shown to be mutated and 
downregulated in HNSCC, lung, colon and central nervous 
system cancers [50]. Several polymorphism of CYP1B1 
are found in many cancer types, including tobacco-
related cancers; CYP1B1 is also overexpressed in ovarian 
cancer [51, 52]. Wnt-pathway receptor FZD3 is strongly 
expressed in colorectal and non-melanoma skin cancer 
and during chronic lymphocytic leukemia, CLL [53–55]. 
ORAOV1 is an overexpressed marker of oral SCC [56]. 
Information about other genes can be found in Table 1. 

In order to confirm the role of identified candidate 
genes, the 3 candidates were independently validated 
in multiple cohorts. As acknowledged by Mirghani et 
al [57], high throughput data is often poorly validated, 
with biases inherent to a single institution cohort or 
single methodology. To improve the candidate discovery 
pipeline, we employed both single-institution and multi-
institutional HNSCC cohorts, and utilized diverse 
detection platforms: Illumina exon array, RNA-Seq and 
qRT-PCR for gene expression; and Methylation arrays 

27 and 450, as well as bisulfite sequencing for DNA 
methylation. Moreover the 3 genes were confirmed to be 
hypomethylated and upregulated in healthy tissues of non-
cancer patients and in non-cancer tumor-adjacent tissues 
of HNSCC patients with minor exclusions. While only 3 
exemplary candidate genes out of the total 15 candidates 
were evaluated, the others may be expected to have 
strong differential expression and methylation in HNSCC 
regardless of sample cohort and detection tool. 

Analysis of gene expression of NOTCH pathway 
members suggested that DTX1 downregulation in HNSCC 
is correlated with downregulation of some NOTCH 
pathway genes including DTX3, DLL3, and MFNG, as 
well as genes downstream of NOTCH (NEUROG3 and 
GATA4). Furthermore, DTX1 expression was inversely 
correlated with HES1 expression. These results confirm 
prior data that HES1 is a negative regulator of NEUROG3 
and DTXs expression [33, 45]. DTX1 carries a putative 
SH3-binding domain and binds to the intracellular 
domain of NOTCH (ICN) [42]. One mechanism by 
which DTX1 may negatively regulate NOTCH is through 
ubiquitination; DTX1 may be an E3 ubiquitin ligase, 
as it contains a RING finger and two WWE domains 
[58]. Zhang and colleagues [33] proposed that DTX1 
may bind and ubiqutiniate NOTCH’s ICN, leading to 
negative regulation of NOTCH pathway, which was 
consistent with our findings (Supplementary Figure S6). 
HEY1 also negatively regulates GATA4 [44], which was 
downregulated in parallel with DTX1.

Overall, DTX1 was downregulated in the entire 
HNSCC discovery cohort, together with 20 other NOTCH 
pathway genes including DLLs, NOTCH1, NOTCH2 
and NOTCH4 (Supplementary Table 4). JAG1, JAG2, 
HEY1 and HES1 had relatively higher expression in 

Figure 5: DTX1 blocks HNSCC invasiveness. Migration assay was performed using UM-SCC-047 (A) or UM-SCC-22B (B) cells 
using transient transfection.  The image of cells that had invaded through matrigel (Supplementary Figure 5) was processed and quantified 
in Photoshop. Both UM-SCC-047 and UM-SCC-22B cells had similar 60% invasion when treated with control constructs (empty vector 
for ectopic expression or non-targeting siRNA pool for RNAi). The migration of each cell was dysregulated significantly by ectopic DTX1 
overexpression (a, UM-SCC-047 cells) or by transient DTX1 downregulation (b, UM-SCC-22B cells). P-value were calculated by t-test for 
experiments performed in triplicate. Transfection efficiency for each experiment was confirmed by qRT-PCR (Supplementary Figure 4).
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tumor samples compared to the pool of normal controls 
(Supplementary Table 4). This data suggested that DTX1 
expression can serve as biomarker of NOTCH pathway 
inhibition. While the NOTCH pathway is activated in 
many cancer types, DTX1 is seen to be downregulated 
in osteoblastoma and HNSCC, while it is upregulated 
in glioblastoma [22, 33, 46, 59]. In addition, the 
NOTCH pathway was also found to be downregulated 
in thyroid cancer and in subgroup of HNSCC patients  
[22, 60]. Notably, genetic alterations of NOTCH1 were 
recently found to dysregulate the NOTCH pathway 
in HNSCC [12, 13]. However, we did not find any 
correlation of DTX1 expression with presence of NOTCH1 
mutations [14, 22, 61, 62]. Interestingly, 1/3 of NOTCH 
pathway genes are co-downregulated with DTX1 (such 
as DLLs, DTXs, and NOTCH4), while the rest of the 
NOTCH pathway genes were upregulated in the low 
DTX1 expression subgroup (genes including NOTCH1-3, 
HES1, HEY1, and JAG1, Supplementary Tables 4–5). 
These results correlate with recent discovery that NOTCH 
pathway has complex gene interactions and dual function, 
where it is activated in some tumors while inactivated in 
others [22, 61]. Notably, there were more HPV-related 
(HPV+) patients in the lower DTX1 expression group 
(n = 9 HPV+ patients), compared to the higher DTX1 
expression group (n = 4 HPV+ patients, Fisher’s exact 
test p-value = 0.185). There were 4 times more oral 
cavity patients in the higher DTX1 expression group (n 
= 8, 0.069). Unfortunately, those or other correlations 
with clinical characteristics did not reach statistical 
significance. This is the first report that has demonstrated 
that DTX1 blocks HNSCC migration, which is in 
agreement with recently published data suggesting that 
DTX1 blocks osteosarcoma invasiveness [33]. Results of 
current analysis suggests that in HNSCC, downregulation 
of DTX1 by DNA methylation leads to more aggressive 
behavior of HNSCC cells. 

Since the expression of NEUROG3 and GATA4 
(downstream of HES1 and HEY1 respectively) was 
downregulated in parallel with DTX1, we speculate, 
that NEUROG3 and GATA4 have a negative effect on 
cell migration (Supplementary Figure 6). The molecular 
mechanism by which DTX1 blocks HNSCC cell migration 
needs to be further evaluated. Additional analysis of role 
of DTX1 on cell proliferation did not show any significant 
changes of cell growth depending of DTX1 expression 
(data not shown). 

We have to acknowledge several limitations of our 
study: 1) clinical characteristics between tumor and non-
tumor groups do not match in patients in both discovery 
and validation cohorts (Supplementary Table 1), due to 
peculiarity of UPPP and HNSCC populations [21–24]. 
Nonetheless the employed UPPP population helped 
revealing strong cancer-specific signatures of HNSCC 
in previous studies [21–24]. Moreover, employment 

of TCGA’s control population with matched clinical 
characteristics confirmed our original discovery of 
hypermethylation and downregulation of candidate genes, 
especially the leading candidate, DTX1, in tumor samples. 
2) Utilization of older generation DNA methylation array 
data (Illumina Infinium HumanMethylation27 BeadChip) 
narrowed down the list of candidates by lack of available 
promoter-methylation data for several genes. Nonetheless 
this is one of the largest HNSCC cohorts, after the 
employed TCGA, with publicly available matched gene 
expression and promoter methylation data [21–24]. We see 
this study as confirmation of our pipeline for discovery 
of biologically-relevant candidates and smaller number 
of candidate genes helped us focus only on the limited 
number of genes within a limited time frame. 3) Not all 
candidates were functionally evaluated within given time 
frame, but will be used for further independent analyses. 
The complete list of high priority candidates discovered 
during this project will become available for the research 
community for their prospective studies.

Thousands of alterations can be detected by 
different independent high throughput platforms, given 
their high sensitivity. Integration of gene expression and 
DNA methylation high throughput data focused study 
to a limited list of relevant genes with potential roles in 
HNSCC carcinogenesis. Employment of well-considered 
statistical approaches, cross cohort validation, and 
complementary detection tools allowed us to discover an 
epigenetically regulated tumor suppressor gene, DTX1, 
which controls HNSCC cell migration. 

MATERIALS AND METHODS

Specimen cohort assembly 

We used two independent cohorts of specimens, 
each composed of primary head and neck squamous 
cell carcinoma (HNSCC) tissue specimens and control 
specimens comprising normal mucosal samples from 
uvulopalatopharyngoplasty (UPPP) surgeries of non-
cancer affected patients. The discovery cohort comprised 
of 44 HNSCC and 25 normal UPPP samples, as described 
in previous publications [22, 23]. The validation cohort 
comprised of 61 HNSCC and 28 normal UPPP samples, 
is reported for the first time. The demographic and clinico-
pathological characteristics of patients from the discovery and 
validation cohorts are listed in Supplementary Table 1. The 
clinical differences between tumor and control populations 
in the discovery cohort were previously identified and 
acknowledged [21–24]. 

All tissue samples were obtained from the Johns 
Hopkins Tissue Core, as a part of the Head and Neck 
Cancer Specialized Program of Research Excellence 
(HNC-SPORE). These samples were acquired under 
Internal Review Board-approved research protocol 
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#NA_00036235. Informed consent was obtained from all 
patients recruited under this protocol prior to participation 
in the study. 

Tissue processing 

Two Johns Hopkins Hospital Pathologists (WHW 
and JAB) independently confirmed that all primary tumor 
samples were consistent with HNSCC. After this, all tumor 
tissues were microdissected to yield at least 80% tumor 
purity. All tissue specimens were stored at −140°C until a 
cut and extraction were performed. For each extraction, a 
0.35 mm thick cut of tissue was used. 

RNA preparation

RNA was isolated from 0.35 mm thick frozen tissue 
cuts with the mirVana miRNA Isolation Kit (Ambion, 
Forster City, CA) at room temperature as per manufacturer’s 
recommendations. The concentration of the isolated RNA 
was quantified using the NanoDrop spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA).

DNA preparation 

Similarly, 0.35 mm thick frozen tissue cuts were 
digested in 1% SDS (Sigma-Aldrich, St. Louis, MO) 
and 50 μg/ml proteinase K (Invitrogen, Carlsbad, CA) 
solution at 48°C for 48 hours. The DNA was purified by 
phenol-chloroform extraction and ethanol precipitation as 
previously described [63]. DNA was resuspended in LoTE 
buffer, and the DNA concentration was quantified using 
the NanoDrop spectrophotometer. 

High throughput transcriptional and 
methylation profiling data

High throughput data of gene expression and DNA 
methylation was obtained from the discovery cohort which 
was previously published using the methods described 
previously [22, 23]. The gene expression data for the 
discovery cohort was obtained from Affymetrix HuEx1.0 
GeneChips (containing 1.4 million probes) and is available 
on the NCBI Gene Expression Omnibus (GEO) public 
repository (GEO33205). DNA methylation data for the 
discovery cohort was obtained using Illumina Infinium 
HumanMethylation27 BeadChip (probing 27,578 CpG 
dinucleotides) is also publically available (GEO33202). 
The data from both platforms can be downloaded from 
the combined superSeries GSE33232. 

Reverse transcription and quantitative real time 
PCR

Validation of gene expression was performed in the 
independent validation cohort using reverse transcription 

and quantitative real-time PCR.  One microgram of RNA 
from each sample in the validation cohort was reverse 
transcribed using the High Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, Forster City, CA). 
Quantitative real-time PCR (qRT-PCR) was performed 
using gene-specific expression assays (Supplementary 
Table 3) and Universal PCR Master Mix on a 7900HT 
real-time PCR machine (Applied Biosystems) as per 
manufacturer’s recommendations. Expression of the gene 
of interest was quantified in triplicate relative to GAPDH 
expression using the 2-ΔΔCT method [64]. We also 
confirmed that GAPDH expression was not significantly 
different in normal and HNSCC samples. 

Bisulfite treatment and bisulfite genomic 
sequencing

Validation of DNA methylation was performed 
in the validation cohort through bisulfite genomic 
sequencing. The EpiTect Bisulfite Kit (Qiagen, Valencia, 
CA) was used to convert unmethylated cytosines to uracil 
in genomic DNA. Touch-down PCR was performed 
on bisulfite-converted DNA with primers designed 
to span areas of CpG islands for each gene promoter 
(Supplementary Table 3). −[65]. The PCR products 
were purified using the QIAquick 96 PCR Purification 
Kit (Qiagen). The purified PCR product from bisulfite-
converted DNA for each sample and gene was sequenced 
(Genewiz, South Plainfield, NJ). Relative heights of C and 
T peaks measured on sequencing were then used to assign 
the DNA methylation status as unmethylated, methylated 
or hemimethylated. 

TCGA sample selection

The TCGA project for HNSCC was recently 
completed and published [39]. Overall, the analysis 
included n = 279 HNSCC samples. Such a cohort was 
different from the employed Johns Hopkins cohorts by 
increased number of oral cavity samples, samples with 
TNM stage II–III, and decreased HPV-positive samples. 
In order to “match” clinical characteristics of the analyzed 
TCGA cohort, we removed oral cavity samples with TNM 
stage II and III. We did not do any additional manipulation 
of the TCGA cohort to keep the “matching” procedure 
simple and randomized, as well as to avoid any potential 
biases due to non-random sample selection. Since oral 
cavity samples are predominately HPV-negative, this 
helped to increase relative percentage of HPV-positive 
HNSCC samples within the new “matched” TCGA 
population (n = 222 total). Notably, the new “matched” 
TCGA cohort did not significantly change other clinical 
characteristics that were relevant to the Johns Hopkins 
cohort. This “matched” TCGA cohort (Supplementary 
Table 1) was used for validation purposes (Figure 4). 
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Cell culture

Cell lines and cell culture conditions

Human HNSCC cell lines UM-SCC-047 and UM-
SCC-22B were provided by Dr. Thomas Carey (University 
of Michigan) for the functional experiments. Each cell line 
was authenticated using a Short Tandem Repeat (STR) 
Identifiler kit (Applied Biosystems). Cells were grown on 
high-glucose DMEM media (Clontech, Mountain View, 
CA), supplemented by 10% fetal bovine serum (FBS) and 
1% Penicillin-Streptomycin at 37°C in 5% CO2. 
Transient transfection

For knockdown assays, the expression of DTX1 
gene was downregulated by ON-TARGETplus siRNA 
SMARTpool RNA (L-006525-00-0005, Thermo 
Scientific, Waltham, MA) using RNAiMAX transfection 
reagent (Life Technologies, Carlsbad, CA). Non-targeting 
SMARTpool RNA (D-001810-10-05, Life Technologies) 
was used as a control. The transfection efficiency was 
confirmed by qRT-PCR.

The ectopic overexpression of DTX1 was achieved 
with pCMV6-Entry-DTX1 plasmid (RC208338, Origene, 
Rockville, MD) using FuGENE Extreme 9 transfection 
reagent (Roche, Nutley, NJ). Empty pCMV6-Entry 
(PS100001, Origene) was used as a control. Transfection 
efficiency was confirmed by DTX1-specific qRT-PCR 
using the same qRT-PCR technique as described earlier 
for tissue RNA analysis.
Matrigel invasion assay

We performed the Matrigel invasion assay to assess 
the migration and invasion ability of transfected cells 
with over expression and under expression of DTX1 using 
techniques described in previous publications [66]. In 
short, 8-µm pore filter inserts in 24-well plates (Sigma-
Aldrich) coated with Matrigel (BD Biosciences, San Jose, 
CA) was used. Cells were transfected for 24 hours and 
then were trypsinized, washed three times with serum-free 
DMEM media and resuspended in serum-free DMEM to 
obtain the concentration of 106 cells/ml. An aliquot of 100 
µl of cells were plated onto each insert. Chemo-attractant 
media with 10% FBS (600 µl) was added to the bottom 
of a 24-well plate. Each insert, with cell suspensions, 
was placed into the individual well with chemo-attractant 
media. After 24 hours of incubation at 37°C in 5% CO2, 
the inserts were removed from the media. Cells on the 
upper surface of the insert that did not invade through the 
membrane were removed with a cotton swab. The cells 
that had migrated to the lower surface of the membrane, 
facing the chemo-attractant media, were fixed by 10% 
formaldehyde and stained by 1% crystal violet. The 
membranes with fixed and stained cells were removed, 
mounted onto slides and photographed by microscopy 
at 4× magnification. Each experiment was performed in 
triplicate.

Matrigel migration quantification 

The 4× magnified images of the insert membrane 
were analyzed using Adobe Photoshop SC6 (Adobe 
Systems, McLean, VA). Stained cell-occupied image area 
(purple) was selected by the “Color Range” tool with 70% 
fuzziness. The number of pixels in the entire image and 
the number of pixels within areas occupied by cells were 
calculated by the “Histogram” tool of Photoshop. The 
percentage of image field occupied by cells was calculated 
as total number of pixels occupied by cells relative to the 
total number of pixels. Triplicate images were analyzed 
for each experiment and the mean of percentage of the 
cell-occupied image field was calculated. 

Statistical analysis 

Expression array normalization

 The gene expression data from GEO33205 used 
Robust Multiarray Average (RMA) implemented in the 
Bioconductor oligo package [67, 68] for normalization, as 
previously described [21, 22]. The gene level expression 
estimates were calculated as the mean expression levels 
among all core probes linked to the same gene, yielding 
22,011 genes. 
DNA methylation array normalization 

For promoter methylation data available at 
GEO33202, beta values (percent methylation) were 
estimated from unmethylated (U) and methylated (M) 
measurements on a probe level basis: β = M/(M+U)  
[23, 24]. The gene level estimates were produced by 
choosing the highest methylation levels among all probes 
linked to the same gene yielding, 14,477 individual genes. 
Outlier analysis

HNSCC is a heterogeneous disease with cancer-
related changes detected in only a small portion of the 
samples [12–14, 39]. Unfortunately, such changes are 
poorly detected by conventional statistical approaches 
such as the t-test. A standard method employed in cancer 
research for outlier analysis is Cancer Outlier Profile 
Analysis (COPA) and its derivatives [28, 69], which 
generate statistics by comparing the outlier distributions 
to an empirical null generated by permutation of class 
labels. However, these methods have limitations when 
counting outliers since the distribution of medians and 
median absolute deviations permits outliers to be called in 
cases where the deviations are biologically insignificant. 
Therefore, we recently implemented a rank sum outlier 
approach, modified from Ghosh [70], where a minimum 
change levels was set for the calling of an outlier [20]. 
Such methods allowed us to eliminate many outliers 
where change is not biologically meaningful (e.g., a gene 
expression change of less than 10%, or 2.35 log fold 
change, between any two samples). The outlier statistics 
was used exclusively for discovery purposes. 
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To discover the genes with changes in expression, we 
applied the outlier statistics described above in reference 
[20] to the array gene expression data set, containing 
the 22,011 genes for each of 44 HNSCC tissue samples 
from the discovery cohort. The signals from 25 normal 
samples from the same cohort were used to establish the 
empirical null level for each gene. We calculated outlier 
score for both left-tail (10th percentile) and right-tail (90th 
percentile) cases, which allowed us to define outliers 
that were downregulated and upregulated, respectively  
[20, 70]. The outlier statistics yielded an outlier score, 
which quantified the number of tumors with gene 
expression values that were outliers from the distribution 
defined by normal as defined in previously published work 
[20]. Each of the 22,011 genes was assigned its outlier 
score and ranked from the largest to the smallest. Outlier 
analysis does not have a cut-off value of significance, 
such as 0.05 for p-value; therefore for the convenience 
we manually selected the genes with the top 76 outlier 
scores as candidates (manual outlier score cut-off set  
= 2.3, Supplementary Table 2). All outlier analyses were 
performed with custom scripts in R adapted from [20]. 

The pathway enrichment analysis

The pathway enrichment analysis utilized gene 
expression data was used for 43 NOTCH pathway genes 
(KEGG database and [22] without DTX1) with available 
Affymetrix Exon Array data. Differential expression 
analysis of NOTCH pathway and downstream genes was 
performed with empirical Bayes moderated t-statistics 
using limma R package 2.12.0 [71]. Contrasts were 
formulated to define the difference between different gene 
expression in groups of patient samples: tumor samples 
with higher DTX1 expression, tumor samples with lower 
DTX1 expression, and non-cancer samples. P-values for 
differential expression statistics were reported after FDR 
adjustment with Benjamini-Hotchberg correction [72] 
among 43 NOTCH pathway and 9 downstream genes, 
including DTX1 in both sets. Genes with FDR adjusted 
p-values below 0.05 were called significantly differentially 
expressed. Pathway-level statistics were computed by 
applying the limma function geneSetTest to the empirical 
Bayes moderated t-statistics for each contrast with the 
alternative hypothesis of “either” specifying that genes in 
the set are up or down regulated as a group. 

Expression-methylation correlation

We utilized a correlation analysis to associate 
changes in gene expression with epigenetic regulation. 
Specifically, we computed Spearman correlation 
coefficients between gene-level estimates of DNA 
methylation and expression for each candidate gene 
inferred from outlier statistics. Candidate genes with 
negative correlations between expression and methylation 
were selected. All correlation analyses were performed 
using limma R package 2.12.0 [71]. 

P-value calculation

Log transform of gene expression values from 
array, normalized qRT-PCR gene expression values, DNA 
methylation β-values, and image field percentage values 
were compared for HNSCC and control samples using the 
Student t-test. We used t-test for all our validation step 
as it is more stringent than outlier test, used exclusively 
for discovery purposes. Bisulfite sequencing results were 
compared for HNSCC and control samples using the two-
tailed Fisher exact test. 
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