
Oncotarget18924www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 12), pp: 18924-18934

Multiple functional SNPs in differentially expressed genes 
modify risk and survival of non-small cell lung cancer in chinese 
female non-smokers

Xue Fang1,2, Zhihua Yin1,2, Xuelian Li1,2, Lingzi Xia 1,2, Xiaowei Quan1,2, Yuxia Zhao3, 
Baosen Zhou1,2

1Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
2Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, 
Liaoning, China

3Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China

Correspondence to: Baosen Zhou, email: bszhou@mail.cmu.edu.cn
Keywords: differentially expressed genes, functional single nucleotide polymorphism, non-small cell lung cancer, risk, survival
Received: December 02, 2016    Accepted: January 11, 2017    Published: January 27, 2017

ABSTRACT
DNA genotype can affect gene expression, and gene expression can influence the 

onset and progression of diseases. Here we conducted a comprehensive study, we 
integrated analysis of gene expression profile and single nucleotide polymorphism 
(SNP) microarray data in order to scan out the critical genetic changes that participate 
in the onset and development of non-small cell lung cancer (NSCLC). Gene expression 
profile datasets were downloaded from the GEO database. Firstly, differentially 
expressed genes (DEGs) between NSCLC samples and adjacent normal samples were 
identified. Next, by STRING database, protein-protein interaction (PPI) network was 
constructed. At the same time, hub genes in PPI network were identified. Then, some 
functional SNPs in hub genes that may affect gene expression have been annotated. 
Finally, we carried a study to explore the relationship between functional SNPs and 
NSCLC risk and overall survival in Chinese female non-smokers. A total of 488 DEGs 
were identified in our study. There are 29 proteins with a higher degree of connectivity 
in the PPI network, including FOS, IL6 and MMP9. By using database annotation, we 
got 8 candidate functional SNPs that may affect the expression level of hub proteins. 
In the case-control study, we found that rs4754-T allele, rs959173-C allele and 
rs2239144-G allele were the protective allele of NSCLC risk. In dominant model, 
rs4754-CT+TT genotype were associated with a shorter survival time. In general, our 
study provides a novel research direction in the field of multi-omic data integration, 
and helps us find some critical genetic changes in disease.

INTRODUCTION

Lung cancer is one of the most common malignant 
tumors and has a relatively poor 5-year relative survival 
rate in the world [1, 2]. There are two major forms of 
lung cancer: non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC), and NSCLC accounts for 
more than 80% of lung cancer. The exact mechanisms of 
underlying lung cancer are not fully elucidated. Smoking 
is considered to be a major environmental risk factor for 
lung cancer, but there are still 15% of male lung cancer 
cases and 53% of female lung cancer cases are not due to 
smoking [3]. A growing number of studies have indicated 
that genetic aberrations may be important in the genesis 

and development of human cancer [4–6]. Therefore, deep 
exploration of the relationship between genetic aberrations 
and NSCLC is needed to enhance risk prediction and 
improve prognosis.

The genesis and development of cancer is a 
multistage process which involves many genes and 
their interactions, and traditional studies that focus on 
single gene could no longer meet the demand any more. 
Microarray technology has been widely applied to global 
assessment of differentially expressed genes (DEGs) in 
many diseases. And then, by using bioinformatics method 
and experimental technology, the key genes involved in 
the pathogenesis of disease were found from candidate 
DEGs [7–9].
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Any changes in DNA may influence the amino 
acid sequence or protein abundance. Single nucleotide 
polymorphisms (SNPs) are the most common type of 
genetic variation in human. It is characterized by a single 
nucleotide change in genome. The SNPs on exon usually 
brings the changes of amino acid sequence and further 
affect the function of protein. Those SNPs located at introns 
especially around 3ʹ untranslated regions (3ʹUTR), promoter 
elements and splicing sites are thought that they were likely 
to influence the expression level of proteins [10].

In this study, we analyzed the microarray data 
downloaded from Gene Expression Omnibus (GEO) and 
screened the DEGs between NSCLC and adjacent tissues. 
We then integrated DEGs results to carry out protein-protein 
interaction (PPI) network construction. Thereafter, we scanned 
those SNPs in the significant nodes (hub proteins) in PPI 
network, and found those functional SNPs may affect hub 
proteins level. At last, we systematically analyzed the association 
between these SNPs and NSCLC risk and overall survival.

RESULTS

DEGs analysis

Finally, we got 2295 DEGs in lung squamous cell 
carcinoma and 967 DEGs in lung adenocarcinoma, after 
the two groups of DEGs took the intersection, finally we 
got 488 DEGs (118 up-regulated and 370 down-regulated). 
Volcano plots for DEGs in lung adenocarcinoma and lung 
squamous cell carcinoma were shown in Figure 1.

PPI network construction and hub genes in the 
PPI network

In order to further insight about the interaction 
between DEGs, we used STRING database to construct the 
PPI network. The PPI network (Figure 2) consisted of 376 
nodes interacting by 2418 edges, the remaining 112 DEGs 
failed to form the PPI pairs. A great number of proteins 
interacting with others have relatively high degrees, which 
were considered as hub proteins, which are more likely 
to play a critical role in the genesis and development 
of cancer. The hub proteins and the number of their 
interactions were shown in Figure 3. There are 29 proteins 
whose degree is greater than 15, FOS (degree = 60) is the 
protein with the highest degree in the PPI network.

Population characteristics

Finally 402 NSCLC patients and 395 cancer-
free controls were included in the present study, the 
basic information of all subjects have been described in 
Table 1. All subjects were Chinese female non-smokers, 
and there was no significant difference in age between 
two groups (p = 0.692). Among cases, there were 322 
adenocarcinomas, 66 Squamous cell carcinomas and 14 
other tumors with a variety of different pathologies.

Results of SNPs selection

After database annotation, we selected 8 SNPs in 
hub genes which may be related to gene expression. The 
detail of the 8 SNPs is listed in Table 2. Among them, 
1 SNPs located in 3′UTR region may fall into miRNA 
binding site; 2 SNPs located in splicing site; 2 SNPs may 
be an eQTL; and 3 SNPs were predicted fall intoTFBS.

Genetic polymorphisms and NSCLC risk

Genotype distributions of the 8 SNPs are consistent 
with HWE in control group (p > 0.05). The distribution 
of genotypes and allele frequencies between cases and 
controls were summarized in Table 3. For rs4754, the 
A allele is a protective allele for NSCLC risk (adjusted 
OR = 0.762, 95% CI = 0.614–0.946, p = 0.014). Take 
rs4754-CC genotype as reference, TT genotype showed a 
relatively low risk of NSCLC (adjusted OR = 0.530, 95% 
CI = 0.317–0.884, p = 0.015). Compared with homozygous 
carriers of rs959173-TT genotype, TC genotype and 
TC + CC dominant model showed a lower risk of 
NSCLC (adjusted OR = 0.567, 95% CI = 0.347–0.928,  
p = 0.024; adjusted OR = 0.576, 95% CI = 0.354–0.936, 
p = 0.026, respectively). For rs2239144 we observed 
significant differences, the GT and TT genotypes were 
associated with a 1.508-fold (95%CI=1.105–2.058, 
p = 0.010) and 2.183-fold (95% CI = 1.450–3.287, 
p < 0.001) increased risk of NSCLC compared with GG 
genotype, T allele is a risk allele for NSCLC (adjusted 
OR = 1.513, 95% CI = 1.237–1.850, p < 0.001).

Then, we performed a stratification analysis by 
pathological type. As shown in Supplementary Table 1, 
there were statistical differences between rs2239144, 
rs3181385, rs4754 and risk of lung adenocarcinoma. As 
the small sample size of squamous cell carcinoma in the 
present study, the significant associations on squamous 
cell carcinoma need to be validated in a large sample size 
population.

Genetic polymorphisms and overall survival

Of the patients in this study, there were 312 NSCLC 
patients with prognostic information. The results of the 
relationship between 8 SNPs and survival time were 
summarized in Table 4. Patients with rs4754-CC genotype 
showed a significantly longer survival time compared with 
those with CT or TT genotypes (25.124 months vs. 21.181 
months), as shown in Figure 4. The other 7 SNPs didn’t show 
any statistically significant correlation with survival time.

DISCUSSION

NSCLC is an aggressive and genomically unstable 
malignancy. A comprehensive genome-wide gene 
analysis by using bioinformatics and experimental 
methods to identify some potentially important genomic 
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alterations is imperative. To begin with, we conducted 
a systematic study, which identified 488 overlapped 
DEGs from two microarray datasets (Lung squamous 
carcinoma and lung adenocarcinoma). Next, some hub 
proteins with a relatively high degree were confirmed 
in PPI network, and some SNPs that may affect the 
expression of hub proteins were identified by SNP 
annotation databases. Finally, we investigated these 
SNPs as potential contributor to genetic risk and survival 
of NSCLC.

The results in our study suggested that there were 
29 proteins with a higher degree of connectivity in the PPI 
network, including FOS, IL6 and MMP9. In our study 
we found that FOS and IL6 both with down regulation 
expression and they were the most significant hub proteins 
with degree of 60 and 54, respectively. In the previous 
study on FOS and lung cancer, some of the results were 
contradictory. One study on NSCLC found that c-FOS 
(a major member of the FOS family) was down regulation 
expression in malignant tissues compared with normal 

Figure 1: Volcano plot of differentially expressed genes. (A) DEGs of lung adenocarcinoma (B) DEGs of lung squamous cell 
carcinoma.
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Figure 2: PPI network of differentially expressed genes (DEGs). Each node represents one DEG; edges indicate the interaction 
relationship.

Figure 3: The hub genes in PPI network and their corresponding degree. (A) The number of direct interactions of genes in 
the PPI network.
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tissues. Another study found that the patients with higher 
expression level of c-FOS were corresponding with a 
shorter survival time [11]. More study should focus on the 
relationship between FOS and lung cancer to explore the 
mechanism between FOS and lung cancer. FOS family 
dimerize with JUN proteins to form AP-1 transcription 
factor complex, AP-1 could binding to the promoter 
and enhancer regions of target genes and regulate the 
transcription of target genes [11]. Previous study found 
that FOS overexpression can strongly enhance IL-6 to 
induced STAT3 transactivation, and involved in some 
cellular processes, including differentiation, proliferation 
and apoptosis [12]. Matrix metalloproteinases (MMPs) 
have been confirmed to be involved in the degradation 
of extracellular matrix components, which affect the 
physiological remodelling processes [13]. Our results 
show that MMP9 is relatively high expressed in lung 
cancer tissues. Previous research found that MMP9 was 
involved in lung-specific metastasis and was inducted by 
VEGFR-1 [14]. In lung carcinoma cell line, inactivation 
of MMP9 can inhibit tumor invasion [15]. Suggest us 
high expression of MMP9 may be associated with a poor 
prognosis in lung cancer

DNA genotype can affect gene expression, and 
gene expression can influence the onset and progression 
of diseases [16, 17]. Gene expression can be considered 
as a bridge between genotype and disease. In the human 

genome, SNP is the most universal genetic variant, which 
is a single base change at a specific site with the least allele 
frequency of 1% or greater [18]. SNPs in different gene 
regions will play different roles in biological processes, 
such as those non-synonymous SNPs in coding exons, 
which are considered to change the structure of protein by 
altering the amino acid sequence and further influence on 
diseases [19]. 

Alternative splicing of pre-mRNA is a critical 
regulatory mechanism for gene expression. Previous 
studies suggested that approximately 76% of genes 
produce alternatively spliced products, and about half 
of the transcript variants are caused by splicing variants 
[10, 20]. Abnormal splicing can affect mRNA and further 
influence the protein function. Some SNPs in exonic 
splice enhancer (ESE) or exonic splice silencer (ESS) 
have been confirmed to be likely to affect the risk of 
disease by causing aberrant splicing [21–24]. Secreted 
phosphoprotein 1 (SPP1) is a kind of important cytokine, 
which has been proved to play an important role in 
tumor progression and metastasis by regulating the cell 
signaling [25]. Rs4754 located at the fifth exon of SPP1 
gene, and it was predicted located at ESE or ESS binding 
sites. Our study found that rs4754 could change the risk 
and survival of NSCLC. Previously, there were three 
studies on the relationship between rs4754 and cancer risk. 
The results of one study on gastric cancer are consistent 

Table 1: Characteristics of NSCLC cases and cancer-free controls
Variables Cases (%) Controls (%) P value

Females 402 395
Mean age (years) 56.45 ± 11.45 56.13 ± 11.64 0.692
Histological 
 Adenocarcinoma 322 (80.1%)
 Squamous cell carcinoma 66 (16.4%)
 Othersa 14 (3.5%)

a including adenosquamous carcinoma, and large cell lung cancer.

Table 2: Single nucleotide polymorphism in hub genes
SNP Chr location Gene position Major/minor allele Function predication

rs4754 chr4:88902691 SPP1 synonymous C/T Splicing (ESE or ESS)a

rs959173 chr7:116182053 CAV1 intron T/C eQTLb + TFBSb

rs2069837 chr7:22768026 IL6 intron A/G TFBSabc

rs2066992 chr7:22768248 IL6 intron T/G TFBSabc

rs2239144 chr12:6196182 VWF intron G/T TFBSbc

rs7306706 chr12:6215633 VWF intron G/A eQTLb

rs3181385 chr14:24787587 ADCY4 3′UTR T/C miRNA binding sitea

rs423490 chr19:6697405 C3 synonymous G/A Splicing (ESE or ESS)a

Abbreviations: ESE, exonic splicing enhancer; ESS, exonic splicing silencer; eQTL, expression Quantitative Trait Loci; TFBS, transcription 
factor binding site.
apredict by SNPinfo web server; b predict by Regulome DB database, c predict by HaploReg database.
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Table 3: Distribution of genotypes and ORs for NSCLC cases and cancer free controls

SNP Genotype NSCLC cases 
(%) N = 402

Controls  
(%) N = 395 p of HWE Adjusted ORa 95% CI P

Rs4754 CC 214 (53.2) 183 (46.3) 0.464 Ref
CT 160 (39.8) 167 (42.3) 0.820 0.612, 1.100 0.185
TT 28 (7.0) 45 (11.4) 0.530 0.317, 0.884 0.015*

Dominant model 0.759 0.574, 1.002 0.052
Recessive model 0.583 0.356, 0.955 0.032*

Additive model T allele 0.762 0.614, 0.946 0.014*

Rs959173 TT 373 (92.8) 348 (88.1) 0.686 Ref
TC 28 (7.0) 46 (11.6) 0.567 0.347, 0.928 0.024*

CC 1 (0.2) 1 (0.3) 0.949 0.059, 15.327 0.971
Dominant model 0.576 0.354, 0.936 0.026*

Recessive model 1.019 0.063, 16.444 0.990
Additive model C allele 0.600 0.376, 0.957 0.032*

Rs2069837 AA 260 (64.7) 264 (66.8) 0.548 Ref
AG 123 (30.6) 120 (30.4) 1.039 0.766, 1.408 0.806
GG 19 (4.7) 11 (2.8) 1.754 0.819, 3.759 0.148

Dominant model 1.099 0.820, 1.473 0.527
Recessive model 1.731 0.813, 3.688 0.155
Additive model G allele 1.141 0.888, 1.467 0.301
Rs2066992 TT 185 (46.0) 201 (50.9) 0.658 Ref

TG 174 (43.3) 159 (40.3) 1.185 0.883, 1.590 0.257
GG 43 (10.7) 35 (8.9) 1.342 0.823, 2.190 0.239

Dominant model 1.213 0.918, 1.602 0.174
Recessive model 1.229 0.768, 1.965 0.390
Additive model G allele 1.169 0.944, 1.447 0.152
Rs2239144 GG 124 (30.8) 169 (42.8) 0.270 Ref

GT 190 (47.3) 171 (43.3) 1.508 1.105, 2.058 0.010*

TT 88 (21.9) 55 (13.9) 2.183 1.450, 3.287 < 0.001*

Dominant model 1.675 1.252, 2.240 0.001*

Recessive model 1.733 1.197, 2.509 0.004*

Additive model T allele 1.513 1.237, 1.850 < 0.001*

Rs7306706 GG 168 (41.8) 154 (39.0) 0.064 Ref
GA 181 (45.0) 171 (43.3) 0.970 0.718, 1.313 0.845
AA 53 (13.2) 70 (17.7) 0.695 0.457, 1.056 0.086

Dominant model 0.890 0.670, 1.181 0.419
Recessive model 0.705 0.479, 1.039 0.077
Additive model A allele 0.855 0.698, 1.047 0.130
Rs3181385 TT 343 (85.3) 355 (89.9) 0.074 Ref

TC+CC 59 (14.7) 40 (10.1) 1.523 0.992, 2.337 0.054
Additive model A allele 1.373 0.915, 2.061 0.126
Rs423490 GG 347 (86.3) 323 (81.8) 0.155 Ref

GA 54 (13.4) 71 (18.0) 0.708 0.482, 1.041 0.079
AA 1 (0.2) 1 (0.3) 0.941 0.059, 15.126 0.966

Dominant model 0.711 0.485, 1.043 0.081
Recessive model 0.993 0.062, 15.939 0.996

Additive model A allele 0.736 0.512, 1.058 0.098
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with our findings that rs4754-C allele is a risk allele for 
cancer risk [26]. The results of the other two studies 
on nasopharyngeal carcinoma from a same Chinese 
population did not reach statistical significance [27, 28].

Transcription factor (TF) is a group of protein 
which can regulate gene expression and can be regarded 
as master regulators of gene expression. There are 
several factors that can affect the function of TF, such 
as availability of transcription factor binding site 
(TFBS) [29]. Some SNPs lie within the TFBS have been 
proved to be able to regulate gene expression by modif 
TFBS, such as abrogating an existing TFBS, creating a 
new TFBS or affecting the affinity between TF and TFBS 
[30–32]. IL-6 was initially thought to play a major role 

in immune and inflammatory responses, however IL6 
abnormalities were found in many types of cancer, and 
some evidence showed that in cancer IL6 may play its 
downstream effects through JAK/STAT pathway [33–35]. 
Rs2069837 were predicted located at TFBS of IL6 gene. 
There are three articles about the association between 
rs2069837 and cancer risk, and their results consistently 
showed that the rs2069837-AA genotype was a protective 
factor for cervical cancer and hepatocellular carcinoma, 
one study found that rs2069837 were related to the IL6 
expression level in cervical tissues. [36–38]. In our study 
the results were not statistically significant, further studies 
with lager sample size are needed to be conducted to 
explore the inconsistent result.

Table 4: Distribution of genotypes and survival time of patients

SNP Genotype NSCLC (%) (n = 312) MST (mon) Log-rank P Adjusted 
HRa 95% CI

Rs4754 CC 168 (53.8) 25.124 Ref
CT 121 (38.8) 20.583 0.054 1.354 1.051,1.743*

TT 23 (7.4) 24.172 1.037 0.638,1.685
Dominant model 21.181 0.039* 1.289 1.013,1.642*

Recessive model 23.218 0.625 0.908 0.567,1.454
Rs959173 TT 289 (92.6) 22.875 Ref

TC+CC 23 (7.4) 28.555 0.195 0.720 0.445,1.163
Rs2069837 AA 203 (65.1) 23.116 Ref

AG 94 (30.1) 22.876 0.552 1.013 0.777,1.319
GG 15 (4.8) 28.470 0.717 0.379,1.357

Dominant model 23.627 0.811 0.968 0.751,1.248
Recessive model 23.039 0.278 0.711 0.378,1.338
Rs2066992 TT 142 (45.5) 23.086 Ref

TG 135 (43.3) 23.150 0.929 0.995 0.770,1.285
GG 35 (11.2) 24.772 0.919 0.616,1.372

Dominant model 23.468 0.886 0.977 0.767,1.244
Recessive model 23.110 0.701 0.930 0.636,1.360
Rs2239144 GG 97 (31.1) 21.946 Ref

GT 138 (44.2) 23.096 0.262 0.923 0.698,1.220
TT 77 (24.7) 25.583 0.770 0.556,1.068

Dominant model 23.972 0.255 0.860 0.666,1.110
Recessive model 22.517 0.125 0.808 0.606,1.075
Rs7306706 GG 134 (42.9) 23.807 Ref

GA 137 (43.9) 22.759 0.855 1.090 0.841,1.413
AA 41 (13.1) 23.553 1.052 0.719,1.539

Dominant model 22.926 0.592 1.074 0.842,1.371
Recessive model 23.248 0.976 0.998 0.699,1.426
Rs3181385 TT 267 (85.6) 23.298 Ref

TC+CC 45 (14.4) 23.372 0.903 0.982 0.691,1.396
Rs423490 GG 268 (85.9) 23.821 Ref

GA+AA 44 (14.1) 19.818 0.197 1.250 0.889,1.758
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MiRNAs are short single-stranded noncoding 
RNAs, which regulate gene expression by post-
transcriptionally regulation. MiRNAs through base pairing 
to the 3'UTR of target mRNAs lead to RNAs silencing 
[39]. SNPs located at miRNA binding sites can effect 
the base pairing between miRNA and target mRNA, 
which further affect miRNA-mediated genes expression. 
A number of studies have proved that SNPs mapping to 
miRNA binding sites can affect the expression level of 
target genes, thus involved in initiation and progression of 
disease [40–43]. Rs3181385 is a SNP located at miRNA 
binding site of ADCY4 gene, in the present study there 
is a bordering significant association with the risk of 
NSCLC. There was no previous studies that have explored 
the relationship between rs3181385 and disease. Further 
studies are needed to verify the result.

eQTL is those SNPs that can regulate gene expression 
levels, and can be simply defined as the SNPs which were 
statistically associated with mRNA expression levels [44–46].  
In the field of disease risk prediction and precision medicine, 
eQTL is likely to become a potentially high efficiency 
and effective biomarker. In our study, CAV1 rs959173 
was annotated as eQTL. One previously study found that 
rs959173-C allele was a protective allele and with a higher 
CAV1 protein level in systemic sclerosis patients. In our 
study, rs959173-C allele was a protective allele for NSCLC 
risk and the expression of CAV1 was down regulated in lung 
cancer tissue, which suggested us that rs959173 is likely 
to participate in the onset and development of NSCLC by 
affecting the expression of CAV1.

Over the last decade, genomewide association studies 
(GWAS) have identified a large number of disease-related 
SNPs covering more than 150 distinct diseases with a quite 
robust p value (p < 5 × 10–8). These disease-related SNPs, 
most of which we don’t know how they affect the disease 
[44, 47]. Here we conducted a joint analysis to find out 
those SNPs which may affect diseases mediated by gene 

expression, and further explore the relationship between 
functional SNP and NSCLC risk and prognosis. Today, a 
very large amount of multi-omic data was produced along 
with the rapid development of biological technology. 
Life science has entered the post-genomic era, and how 
to effeciently process and integrate these biological 
information has become the problem that we should pay 
attention to. In general, our study provides a novel research 
direction in the field of multi-omic data integration.

MATERIALS AND METHODS

Data preprocessing and identification of DEGs

We systematically searched the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/) with the following 
keywords and their combinations: “lung cancer, 
homo sapiens, expression profiling by array”. Finally, 
we selected two datasets suitable for our study. We 
downloaded the gene expression profiles of GSE18842 
[48] and GSE32863 [49] from GEO. We included all the 
32 lung squamous cell carcinoma samples and 32 adjacent 
non-tumor lung samples from the GSE18842 dataset. The 
GSE32863 dataset, we included 58 lung adenocarcinoma 
and 58 adjacent non-tumor lung tissues.

We downloaded the raw data from the GEO database. 
Logarithmic transformation (base 2) was performed on 
the expression value for a global normalization. When 
multiple probes corresponding to the same gene, average 
values of these probes were treated as the expression level 
of the gene. One probe corresponding to more than one 
gene, this value will be ignored as the nonspecificity.

The limma package [50] in R language was adopted 
to identify the DEGs between cancer samples and normal 
sample. Only genes exhibiting with adjusted p < 0.05 and 
│log2fold change (FC) │> 1.0 were selected as significant 
DEGs.

Figure 4: Genotypes of rs4754 SNP site in SPP1 and its association with NSCLC survival time.
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PPI network construction

In order to reveal functional associations between 
proteins in a genome-wide scale, STRING online tool 
[51, 52] was used to construct a PPI network. In the PPI 
network, each node represents a protein, and each edge 
represents an interaction of pairwise proteins. The nodes 
with a relatively large number of edges were defined as 
hub proteins. In our study, the proteins with more than 15 
edges were defined as hub protein.

Study subjects and follow-up

In the present study, we recruited 402 NSCLC 
patients and 395 age matched (± 5 years) controls during 
March 2010 to May 2013 in accordance with the China 
Medical University Review Board approval. In order to 
control the impact of smoking, all participants included in 
our study were Chinese female non-smokers. All of them 
have signed the informed consent. Patients were recruited 
from the First Affiliated Hospital of China Medical 
University and Liaoning Cancer hospital, and controls 
were recruited from medical examination centers in the 
same hospital during the same period.

The clinical data was obtained from clinical records. 
Demographics and environmental exposure information 
were collected by face-to-face interviews. Each subject 
was drawn blood of 10 ml. Patients were followed up by 
telephone every 3 months until April 1st, 2015 to ensure 
that each patient has sufficient follow-up time. In the 
present study, death from NSCLC cancer is defined as the 
outcome event.

SNPs selection and genotyping

Genomic DNA was isolated from blood samples 
by standard Phenol-chloroform Method. SNPs were 
genotyped by using the Illumina 660W SNP microarray 
(Illumina Inc San Diego, CA).

From dbSNP database, we obtained the candidate 
SNPs of those hub genes. Functional annotation of 
candidate SNPs were performed by SNPinfo web server 
[53], HaploReg resource V4.1 [54] and Regulome DB 
database [55]. We selected some SNPs that may affect 
gene expression with the following criterions: a. can be 
capture by Illumina 660 W SNP microarray probes; b. 
located at transcription factor binding site (TFBS), splicing 
sites or microRNA (miRNA) binding site; c. probably an 
expression Quantitative Trait Loci (eQTL); d. the minor 
allele frequency (MAF) > 0.05 in Chinese Han Beijing 
(CHB) population. and Followed these standards we finally 
got 8 SNPs which were investigated in the present study.

Statistical analysis

Hardy-Weinberg’s equilibrium (HWE) in controls 
was assessed by Pearson chi-squared test. Differences 

between cases and controls were calculated by t-test 
(continuous variable) or chi-squared text (categorical 
variable). The odds ratios (ORs) and their 95% confidence 
intervals (CIs) were calculated by logistic regression while 
adjusting for age to assess the relationship between SNP 
and lung cancer risk. Kaplan-Meier method and log-rank 
text were performed to evaluate the correlations between 
overall survival (OS) and genotypes. Hazard ratios 
(HRs) and their 95% CIs for OS were estimated by Cox 
proportionally hazards model. All data were analyzed by 
SPSS 22.0 (IBM, New York, NY, USA). A p < 0.05 was 
considered statistically significant.
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