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INTRODUCTION

Penile carcinoma (PeCa) is an aggressive and mutilating 
disease with high incidence in developing countries, with 
few therapeutic options available and high morbidity [1–3]. 

Several risk factors have been identified in PeCa etiology, 
including poor penile hygiene, phimosis and human 
papillomavirus (HPV) infection [4, 5]. A recent analysis of 
cancer registries showed that PeCa patient survival has not 
improved in Europe nor United States in the last 20 years [6]. 
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ABSTRACT
Penile carcinoma (PeCa) is an important public health issue in poor and developing 

countries, and has only recently been explored in terms of genetic and epigenetic 
studies. Integrative data analysis is a powerful method for the identification of 
molecular drivers involved in cancer development and progression. miRNA and mRNA 
expression profiles followed by integrative analysis were investigated in 23 PeCa and 12 
non-neoplastic penile tissues (NPT). Expression levels of eight miRNAs and 10 mRNAs 
were evaluated in the same set of samples used for microarray and in a validation set 
of cases (PeCa = 36; NPT = 27). Eighty-one miRNAs and 2,697 mRNAs were identified 
as differentially expressed in PeCa. Integrative data analysis revealed 255 mRNAs 
potentially regulated by 68 miRNAs. Using RT-qPCR, eight miRNAs and nine transcripts 
were confirmed as altered in PeCa. We identified that MMP1, MMP12 and PPARG and 
hsa-miR-31-5p, hsa-miR-224-5p, and hsa-miR-223-3p were able to distinguish tumors 
from NPT with high sensitivity and specificity. Higher MMP1 expression was detected 
as a better predictor of lymph node metastasis than the clinical-pathological data. In 
addition, PPARG and EGFR were highlighted as potential pathways for targeted therapy 
in PeCa. The analysis based on HPV positivity (7 of 23 cases) revealed five miRNA and 
13 mRNA differentially expressed. Although in a limited number of cases, HPV positive 
PeCa presented less aggressive phenotype in comparison with negative cases. Overall, 
an integrative analysis using mRNA and miRNA profiles revealed markers related 
with tumor development and progression. Furthermore, MMP1 expression level was 
a predictive marker for lymph node metastasis in patients with PeCa.
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The surgical approaches used for the management 
of PeCa patients are total or partial penectomy, which are 
associated with high morbidity [7]. The main prognostic 
factor in PeCa is the presence of lymph node metastasis, 
which is reported in 20 to 65% of cases [8, 9]. The overall 
five-year survival in patients with lymph node metastasis 
is 27% [10]. Novel molecular markers in association 
with lymph node metastasis [11], disease free survival 
or overall survival [12–14], recurrence and perineural 
invasion [15] have been described in PeCa. However, 
to date, none of them are used in the clinical practice to 
predict lymph node metastasis and prognosis.

Messenger RNA (mRNA) and micro-RNA (miRNA) 
expression signatures have diagnostic, prognostic and 
predictive values in a number of diseases [16]. To our 
knowledge, two reports described mRNA profiles in 
PeCa. In 56 PeCa samples, Kroon et al. [17] reported a 
44-probe classifier that predicted lymph node metastasis. 
However, this classifier was not able to predict lymph node 
metastasis in an independent set of cases. In a previous 
study by our group, integration of the transcriptome of 
33 PeCa samples with DNA methylation profiles [18] 
revealed several dysregulated oncogenic pathways 
associated with PeCa development and progression. 

To date, five reports have described the differential 
expression of miRNAs in PeCa. Our group has previously 
reported that down-expression of SLC8A1, mediated 
by hsa-miR-223, promotes lower intracellular calcium 
concentrations, reduced apoptosis and increased cell 
proliferation in penile tumors [19]. Recently, hsa-
miR-218 and miRNA-146a down-expression and EGFR 
overexpression were reported as associated with high-
risk HPV penile tumors [20, 21]. Using next generation 
sequencing, Zhang et al. [22] identified 56 differentially 
expressed miRNAs when comparing 10 matched PeCa 
with adjacent non-cancerous tissues. Hartz et al. [11] 
reported a miRNA-based signature associated with 
unfavorable prognosis in 24 PeCa and concomitant 
inguinal lymph node metastasis. Although these studies 
have contributed to our understanding of the disease, none 
have described an integrated analysis using miRNA and 
mRNA data in matched samples.

Approaches that integrate multiple omic profiles 
(i.e. mRNA and miRNA) provide a meaningful and 
comprehensive understanding of the biological processes 
involved in cancer development and progression. 
In addition, they may identify the genes that drive 
tumorigenesis, which have the potential to be applied in 
translational oncology [23–25]. 

In this study, integrated miRNA and mRNA profiles 
from the same set of PeCa samples were investigated, 
in order to gain insight into the mechanisms of penile 
carcinogenesis. In addition, miRNA and mRNA data 
were evaluated according to clinical and pathological 
characteristics, including lymph node metastasis and HPV 
infection status. 

RESULTS 

Distinct miRNA and mRNA expression profiles 
in PeCa 

The unsupervised clustering analysis using miRNA 
expression data revealed two clusters separating tumors 
(N = 23) from non-neoplastic penile tissues (NPT = 12) 
(Supplementary Figure 1). The miRNA profile was 
composed by 81 differentially expressed miRNAs in PeCa 
(17 down-expressed and 64 overexpressed, Supplementary 
Table 1) (P-value < 0.01 and FDR < 5%). hsa-miR-31-
5p showed the highest expression levels (FC = 352.4) in 
tumors compared to normal tissues, while hsa-miR-891a-
5p presented the lowest expression levels (FC = –149.3). 

The mRNA expression analysis comparing 23 PeCa 
samples with NPT revealed 2,697 differentially expressed 
transcripts (947 overexpressed and 1,750 down-expressed, 
CI = 99.9%, fold-change > 2). 

Potential molecular signatures related with 
prognosis in PeCa were investigated for tumor samples 
using unsupervised hierarchical clustering analyses for 
both, miRNA and mRNA profiles. Three main clusters 
were detected for the PeCa samples according to miRNA 
profiles (Figure 1A). Cluster 3 (eight cases) was mainly 
enriched by the tumors with aggressive features (five 
cases with T3-T4 tumor size and five with lymph node 
metastasis). A similar analysis was performed with mRNA 
profiles (Figure 1B), which also revealed three clusters, 
where cluster 3 (seven cases) was comprised of patients 
with poor prognosis (six cases with T3-T4 tumor size, 
five with lymph node metastasis, and four with perineural 
invasion). Although not statistically significant, cluster 3 
for both miRNA (P = 0.39) and mRNA (P = 0.49) profiles 
were enriched with patients with shorter overall survival 
(Supplementary Figure 2). 

Integration of miRNA and mRNA expression 
profiles reveals potential disrupted pathways in 
PeCa

Integrative analysis was performed using 81 
differentially expressed miRNAs and 2,697 mRNAs. 
Based on predicted (mirWalk 2.0) and/or experimentally 
validated interactions (miRTarBase), 68 miRNAs 
that potentially regulate 255 mRNAs were identified 
(Supplementary Table 2), representing 598 miRNA/
mRNA interactions with negative correlation (r Spearman 
< 0) and inverted fold change (Supplementary Figure 3).

The main canonical pathways detected by IPA 
and confirmed by KOBAS 2.0 revealed enrichment of 
the Human Embryonic Stem Cell Pluripotency, VEGF 
signaling, Molecular Mechanisms of Cancer, B Cell 
Receptor, PDGF, ERBB, Matrix Metalloproteases and 
PI3K/AKT signaling pathways involving transcripts 
detected in the integrative analysis (Figure 1C, Table 1).  
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Figure 1: mRNA and miRNA unsupervised hierarchical clustering and pathway analysis with the genes found in the 
integrative analysis. (A) The miRNA cluster 3 (blue color) was enriched with cases with lymph node metastasis (LN) and T3-T4 penile 
tumors. (B) mRNA cluster 3 (blue color) was mainly composed by cases with poor prognosis features: larger tumors (T3 and T4), LN and 
perineural invasion (PI). Most of the samples were HPV negative (miRNA and mRNA cluster 3 presented one and two HPV positive samples, 
respectively). (C) miRNA and mRNAs interaction networks in penile carcinomas (NAViGaTOR version 2.3). Circles in blue, red and green 
represent the mRNA belonging to the main canonical pathway altered in PeCa. Edges indicate the interaction between genes and miRNA 
according to the pathways (blue, red and green). Interactions among genes from different pathways are represented by non-continue edges. 
Triangles in the top left indicate the genes with highest number of interactions in PeCa. AR presented the highest number of interactions 
with other genes (1,182). Growth factor related pathway highlighted genes belonging to EGFR, VEGF and PDGF pathways. PI: Perineural 
invasion; LN-: absence of lymph node metastasis; LN+: lymph node metastasis confirmed by pathological analysis. T1 to T4: Tumor size. 
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miRNA and mRNA validation 

Eight miRNAs and 10 transcripts were evaluated 
by RT-qPCR analysis in the same set of samples used 
for microarray and in an additional group of tumors 
(validation set) (Figure 2; Supplementary Table 3). The 
candidates for validation were selected according to 
the following criteria: (a) negative correlation between 
the mRNA and its miRNA regulator detected in the 
integrative analysis, (b) prognostic association, (c) high 
FC, (d) low FDR, and (e) low P-value in the miRNA 
and mRNA microarray analysis. Overexpression of 
hsa-miR-20a-5p, hsa-miR-29b-3p, hsa-miR-31-5p, hsa-
miR-224-5p, hsa-miR-106a-5p, hsa-miR-17-5p, hsa-
miR-223-3p and down-expression of hsa-miR-145-5p 
were confirmed by RT-qPCR analysis in the validation 
samples set (Figure 2A). All, with the exception of hsa-
miR-20a-5p and hsa-miR-29b-3p, were also confirmed as 
significantly dysregulated in the same set of samples used 
for microarray (Supplementary Table 3).  

Significant down-expression of AR, ERBB4, FGFR1, 
NRN1 and PPARG and overexpression of MMP1, MMP12, 
NRAS and SPP1 were confirmed by RT-qPCR assays in 
the validation set of samples (Figure 2B; Supplementary 

Table 3). Although not significant, DNMT3A presented 
decreased expression in the tumor samples.

In order to optimize the accuracy to distinguish 
tumors from non-neoplastic tissues, a higher discriminating 
power for the assessed markers was prioritized over the 
miRNA/mRNA interaction results. Three miRNAs and 
three mRNAs, presenting higher AUC (AUC for hsa-miR-
31-5p = 0.861, hsa-miR-224-5p = 0.739 and hsa-miR-223-
3p = 0.733, MMP1 = 0.923, MMP12 = 0.865 and PPARG 
= 0.851) were selected to construct a molecular classifier. 
miRNA and mRNA classifier accuracy was 79% and 89%, 
respectively. Sensitivity and specificity were 82% and 
74% for miRNA classifier and 92% and 83% for mRNA 
classifier, respectively (Supplementary Figure 4).

MMP1 is a potential prognostic marker for 
lymph node metastasis in PeCa 

The integrative analysis results were compared 
with clinical and pathological data including lymph 
node metastasis, tumor size and perineural invasion 
(Supplementary Table 4). Statistically significant 
associations were identified for lymph node metastasis 
(12 genes and three miRNAs), tumor size (eight genes 

Table 1: Top ranked canonical pathways identified by in silico analysis
Ingenuity Canonical 

Pathways (IPA)
Molecules 

(IPA) P-value KOBAS 2.0 
Related Pathways P-value

Human Embryonic Stem 
Cell Pluripotency

FGFR1,TGFB3,PDGFRB,PDGFRA, 
NTF3,FGF2,PIK3R1,TCF7L1,NOG,

TGFBR2,FZD3,NTRK2,FOXO1,S1PR1
P < 0.001 Developmental 

Biology (Reactome) 0.031

VEGF Signaling NRAS,KDR,BCL2,ACTC1,FIGF,PRKC, 
ROCK1,PIK3R1,ROCK2,FOXO1 P < 0.001 Signaling by VEGF 

(Reactome) 0.009

Molecular Mechanisms of 
Cancer

PLCB1,TGFB3,CDC25A,PIK3R1,
SMAD9,ADCY1,NRAS,TGFBR2,

ARHGEF17,CDKN1B,BCL2,RHOB,
PRKCB,FZD,CDK6,FOXO1,PMAIP1

P < 0.001 Pathways in cancer 
(KEGG PATHWAY) 0.017

B Cell Receptor Signaling
BCL6,NRAS,MAP3K12,PRKCB,EGR1,

PIK3R1,PPP3CA,FOXO1,MEF2C,
CFL2

P < 0.001
Signaling by the B 

Cell Receptor (BCR) 
(Reactome) 

0.008

PDGF Signaling NRAS,PDGFRB,SRF,PDGFRA,
PRKCB,PIK3R1 0.003 Signaling by PDGF 

(Reactome) 0.003

ErbB Signaling NRAS,BTC,ERBB4,PRKCB,PIK3R1,
FOXO1 0.004

Signaling by EGFR, 
ERBB2, ERBB4 

(Reactome) 
0.003

Matrix Metalloproteases RECK,MMP12,MMP1 0.032
Extracellular 

matrix organization 
(Reactome)

0.018

PI3K/AKT Signaling NRAS,CDKN1B,BCL2,PIK3R1,
FOXO1 0.043 PI3K/AKT activation 

(Reactome) 0.003

The integrative analysis revealed 22 over- and 233 down-expressed genes which were used as input in IPA and KOBAS 2.0 
software.
In bold: genes experimentally validated as regulated by miRNAs (miRtarbase).
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and one miRNA) and perineural invasion (UHMK1 gene) 
(P < 0.01, FDR < 20%). Among these genes, increased 
expression of MMP1 was observed in cases with lymph 
node metastasis, further confirmed by RT-qPCR in the 
validation set of samples (Figure 3A).

MMP1 expression was a better predictor factor of 
lymph node metastasis than well established pathological 
parameters (AUC: MMP1 = 0.751; histological grade = 

0.672; perineural invasion = 0.596; tumor size = 0.376) 
(Figure 3B, Supplementary Table 5). Higher MMP1 
expression levels (in both microarray and RT-qPCR 
analysis) were associated with shorter survival, although 
not significant (Figure 3C). The hsa-miR-145, which 
regulates MMP1, was down-expressed compared with 
NPT. However, no association with this miRNA and 
pathological characteristics was observed.

Figure 2: (A) Relative expression of eight selected miRNAs and ten (B) mRNAs by RT-qPCR in validation set of samples. RNU48 
(miRNAs) and GUSB (mRNAs) were used as references for RT-qPCR analysis. Parametric t test was applied to compare tumors with non-
neoplastic penile tissue. NPT: Non-neoplastic penile tissue; PeCa: Penile Carcinoma, NS: not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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Differentially expressed miRNA and mRNA 
according to HPV status

Seven of 23 PeCa samples (30.4%) presented 
high-risk HPV genotype (6 HPV16 cases and 1 HPV18). 
The mRNA hierarchical clustering analysis revealed 
four of seven HPV-positive cases grouped together in 
cluster 1. In addition, the miRNA analysis presented 
the cluster 2 enriched with five of seven HPV-positive 
tumors. The cluster 3, which comprised patients with 
poor prognosis, showed a limited number of HPV-
positive cases (2 for mRNA and 1 for miRNA cluster 
analysis) (Figure 1A and 1B). 

The integrative analysis revealed five miRNAs 
(hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-185-5p, 
hsa-miR-29b-3p and hsa-miR-505-3p) down-expressed 

in HPV positive cases compared with negative cases. 
Thirteen transcripts (down-expression of CSF1 and 
PKD2 and overexpression of PPM1B, INPP5A, LONRF1, 
WASF3, PRKG1, NTF3, NBEA, EGR1, RGS5, NTRK2 
and OLFM1) were also detected as dysregulated in HPV 
positive cases (FDR > 20%) (Supplementary Table 4).

DISCUSSION

Dysregulation of the transcriptome and miRNA 
machinery is a common process in cancer development 
and progression. In the present study, gene expression 
and miRNA profiles were able to distinguish one cluster 
(cluster 3), which contained the majority of cases 
presenting aggressive clinicopathological features (lymph 
node metastasis and T3-T4 tumor size). 

Figure 3: (A) Microarray and RT-qPCR data revealed higher MMP1 expression in primary tumors from patients that 
presented inguinal lymph node metastasis (LN+). (B) MMP1 was a better predictor of lymph node status compared with histological 
grade, primary tumor size (T1-T4) and perineural invasion. Area under the curve (AUC) for MMP1 expression: 0.751, histological grade: 
0.672; primary tumor size (T1-T4): 0.376 and perineural invasion: 0.596. (C) Overall survival analyses of PeCa patients according to 
MMP1 expression patterns detected by microarray and RT-qPCR analyses. Kaplan-Meier curves show high expression of MMP1 (defined 
as values above the median expression) associated with shorter survival.
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Integrative analysis of miRNA and mRNA is 
an important tool to identify potential diagnostic and 
prognostic markers in a variety of tumors [23, 24]. 
Recently, Zhang et al. [22] described 384 differentially 
expressed miRNAs with potential involvement in penile 
malignant transformation. Comparison of the differentially 
expressed miRNAs found in the present study with those 
described by Zhang et al. [22] revealed a 15% overlap. 
A plausible explanation for this is the use of different 
methods in the two studies (next generation sequencing of 
a pool of 10 samples versus the Taqman Low density array 
with a larger number of cases used in our study).

Using in silico molecular analysis, we described 
598 interactions involving 68 miRNAs and 255 
mRNAs. hsa-miRNA-31-5p was identified as having the 
highest fold change (FC = 352.4) in tumor samples, as 
previously described in several epithelial tumors (head 
and neck squamous cell, colorectal, prostate and lung 
cancer) [26,  27], as well as in premalignant colonic 
lesions [27]. In addition, this miRNA in combination 
with hsa-miR-224-5p and hsa-miR-223-3p were able to 
distinguish tumors from NPT, indicating its importance 
in PeCa development. A variety of experimentally 
validated target genes regulated by hsa-miR-31-5p has 
been described in different tumor types [26], including 
AR and DNMT3A genes. The androgen receptor (AR) 
is a critical transcription factor with prognostic value in 
breast cancer and prostate [28, 29] as well as in bladder 
carcinomas [30].

The expression of AR was significantly decreased 
in penile tumors, both in the microarray and in the set of 
cases used for validation (p < 0.001). Interestingly, the 
ESR1 mRNA was also down-expressed in PeCa, with 
several miRNAs that potentially regulate this gene being 
overexpressed (Supplementary Table 2). In addition, AR 
and ESR1 presented the highest number of predicted 
functional interactions with other genes (Figure 1C), 
suggesting their potential as molecular drivers in 
PeCa. Functional loss of the AR gene by promoter 
hypermethylation has been described as involved in 
PeCa development [31]. A previous study by our group 
on penile tumors did not reveal AR hypermethylation 
[18]. In addition to hypermethylation, dysregulation 
of the miRNAs that target AR may also contribute to 
PeCa development and progression. We found four 
overexpressed miRNAs predicted as involved in the 
regulation of the AR gene (hsa-miR-31-5p, hsa-miR-34a-
5p, hsa-miR-205-5p and hsa-miR-185-5p) and possibly 
associated with its down-expression.

Potential dysregulation of the VEGF signaling 
pathway was also observed by in silico analysis. Genes 
involved in this pathway have already been shown to 
be regulated by miRNAs [32]. The hsa-miR-424-5p 
overexpression, which has previously been associated 
with angiogenesis [33], was described in our study. This 
miRNA regulates the FGFR1 gene, confirmed by RT-qPCR 

as down-expressed. A clinical trial to test anti-angiogenic 
therapy in PeCa patients (NCT02279576) started in 
2014. Overall, our findings give additional support to 
the relevance of genes and miRNAs associated with 
angiogenesis in PeCa.

While the role of VEGF and angiogenesis remains 
unexplored in PeCa, the involvement of the EGF pathway 
has been reported. Recently, EGFR gene mutation, 
amplification and overexpression have been described in 
PeCa, suggesting the potential of using therapeutic strategies 
targeting EGFR in a selected group of patients [34, 35]. 
Currently, EGFR-targeted therapies are found to be clinically 
useful in PeCa patients (approximately 30 cases) [34–39]. 
Although the EGFR expression levels were not identified 
in this study, four ligands of EGFR (AREG, EREG, TGFA 
and EPGN) were overexpressed, as well as the downstream 
effector NRAS. These data suggest that this pathway is 
dysregulated and, hence contribute to penile carcinogenesis.

Previously, we have shown the association of 
PPARG loss with poor prognostic features in PeCa 
(advanced clinical and T stage and lymph node metastasis) 
[12]. We have also demonstrated that PPARG loss leads 
to its down-expression as a result of a gene dosage 
effect. Increasing PPARG activation using agonists has 
been shown as a powerful strategy to either inhibit cell 
proliferation or induce apoptosis [40]. The use of PPARG 
gene as a therapeutic target is already being applied in a 
considerable number of tumors, including breast, prostate, 
colorectal and thyroid [40]. 

The metalloprotease genes family was shown 
to have the highest fold-changes, including MMP1 
(FC = 51.1), MMP10 (FC = 52.5) and MMP12 
(FC = 89.9). In the validation set of PeCa samples, 
overexpression of MMP1 and MMP12 was confirmed 
by RT-qPCR. In addition, a classifier with MMP1 
and MMP12 in combination with PPARG was able to 
discriminate PeCa from NPT. Molecular alterations 
have been reported as preceding morphological and 
pathological changes [41, 42]. Therefore, markers that 
could indicate regions with genetic alteration may be of 
great value to define margin assessment. Along with the 
fact that matrix metalloproteinase was one of the most 
important pathways dysregulated in PeCa, these results 
suggest that MMPs genes might act as oncogenic drivers 
for PeCa development.

Integrative analysis revealed that MMP1 and 
MMP12 may be regulated by hsa-miR-145-5p, which 
was down-expressed in PeCa. Similarly, Zhang et al. [22] 
reported down-expression of this miRNA in 10 PeCa. 
Down-expression of hsa-miR-145 has been described 
in several cancer types, mediating suppression of cell 
growth, invasion and metastasis [43]. In prostate cancer, 
hsa-miR-145 down-expression has been reported as a 
predictor of poor prognosis [44].

Although hsa-miR-145 down-expression was unable 
to predict poor prognosis in our cohort of cases, its target 
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MMP1 showed increased expression levels in patients with 
lymph node metastasis. MMP1 gene expression levels 
were a better predictor of lymph node metastasis than 
tumor size, histological grade and perineural invasion. In 
agreement with this finding, Zheng et al. [45] showed that 
hsa-miR-145 overexpression altered MMP1 and MMP9 
mRNA and protein levels, with subsequent inhibition of 
invasion, metastasis and angiogenesis in gastric cancer 
cells. Although some prognostic molecular makers have 
been reported in PeCa, the stratification of the patients 
is currently based on clinical and histopathological 
features [11, 31, 39, 46, 47]. In the present study, MMP1 
showed superior performance in discriminate lymph 
node metastasis in PeCa compared with established 
clinical-pathological parameters. The Supplementary 
Table 4 shows a list of transcripts and miRNA potentially 
associated with prognosis and clinical features in PeCa 
(P < 0.01 and FDR < 20%). However, none of them were 
confirmed as predictors of lymph node metastasis (data 
not shown).

Although controversial, HPV infection has been 
reported as a risk factor involved in the PeCa etiology 
influencing the prognosis [5]. Gregoire et al. [48] 
reported an association between HPV positive infection 
and poor prognosis in penile cancer patients. However, 
HPV infection was also reported as conferring a survival 
advantage in these patients [49, 50]. Lont et al. [50] 
reported a 5-year cancer-specific survival rate of 93% 
for HPV-positive and 78% for HPV-negative cases. The 
cluster 3 (enriched with cases showing poor prognosis 
features) of our miRNA and mRNA profiles revealed a 
limited number of HPV positive cases, which suggests 
a less aggressive phenotype. In addition, a set of five 
miRNAs was down-expressed in HPV positive cases, 
including the hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-
185-5p, hsa-miR-29b-3p and hsa-miR-505-3p. Recently, 
Peta et al. [21] reported lower expression levels of hsa-
miR-146a in high-risk HPV positive than in negative 
tumors. 

In conclusion, our integrative analysis was able 
to identify miRNA and mRNA related with cancer 
development and progression. Furthermore, MMP1 is 
a predictive marker of lymph node metastasis in PeCa. 
We also pinpointed PPARG, VEGF, EGFR and matrix 
metalloproteinase pathways as dysregulated in PeCa 
samples, endorsing their involvement as potential targets 
for PeCa treatment.

MATERIALS AND METHODS 

Patients and sample collection

A total of 101 samples was included in this study: 
59 penile carcinomas (PeCa), 26 surrounding normal 
tissues (SNT) and 16 normal glans (NG) (Supplementary 
Figure 5). Fresh frozen PeCa tissue and SNT were obtained 

from untreated patients who underwent tumor resection 
at A.C. Camargo Cancer Center, São Paulo, Barretos 
Cancer Hospital, Barretos, and Faculty of Medicine, 
Botucatu, SP, Brazil. Normal glans samples were obtained 
from autopsies. The majority of the penile cancer tissue 
samples were confirmed histologically as usual penile 
carcinomas. All samples used in this study, including 
SNT, were submitted to cellular macrodissection and 
histology confirmation. Tumor samples presented at least 
80% of tumor cells and SNT were composed by normal 
epithelial cells. Written informed consent was obtained 
from all patients or relatives. The Human Research Ethic 
Committees of the aforementioned Institutions approved 
the study (Protocols #1230/09: A.C. Camargo Cancer 
Center; #363–2010: Barretos Cancer Hospital, and 
#501.229/2013: Faculty of Medicine, Botucatu, SP, Brazil).  

Previously, we reported a transcriptomic analysis 
(4 × 44K, Agilent Technologies, Santa Clara, CA, USA) 
of 33 PeCa and a pool of four NG [18]. Twenty-three 
PeCa samples had tissue available for miRNA expression 
analysis. Seven SNT  (paired with 7 PeCa) and five NG 
samples were also included in the miRNA expression 
analysis as control. Integrative analysis of mRNA and 
miRNA expression data was performed for 23 PeCa 
samples.  

Quantitative RT-PCR was applied in the same group 
of samples used in the array experiments (21 PeCa, 6 
SNT and 5 NG for miRNA microarray analysis and 20 
PeCa and 3 NG for mRNA microarray analysis) and in 
the validation set of samples (33 PeCa, 20 SNT and 7 NG 
for miRNA and 36 PeCa, 9 SNT and 10 NG for mRNA 
analysis). Non-neoplastic penile tissues (NPT) composed 
by SNT and NG samples were compared with tumor 
tissue. Clinical and histopathological data for the PeCa 
samples are shown in Table 2. 

Human papilloma virus (HPV) status was 
investigated for all PeCa samples (Linear Array HPV Test 
Genotyping, Roche Molecular Diagnostics, Branchburg, 
NJ, USA). HPV-positive cases were detected in seven of 
the 23 cases (30.4%) used for microarray analysis and in 
nine of the 36 PeCa (25%) in the validation set (Table 2). 

miRNA and mRNA profiles in PeCa 

Total RNA was obtained from macrodissected fresh 
frozen tissues using miRNAeasy Kit (Qiagen, Venlo, 
Limburg, Netherlands). TaqMan Human MicroRNA 
Assay System Set v2.0 (Applied Biosystems, Foster City, 
CA, USA) was used for miRNA expression analysis. A 
set of pre-defined primers (Megaplex RT primers™, 
Pool A, Applied Biosystems, Foster City, CA, USA) 
was used for cDNA synthesis as recommended by the 
manufacturer. Data was normalized using the Pfaffl model 
[51] with MammU6, RNU44 and RNU48 as references. 
Low abundant miRNAs (undetermined quantification 
cycle) that were observed in more than 20% of samples 
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from each comparison were excluded from the analysis. 
Biological groups were compared using the two-sample 
t-test with BRB ArrayTools software (v. 4.4.0) [52], 
establishing a two-tailed P-value of < 0.01 with a low 
false discovery rate ratio (FDR< 5%) and at least two fold 
changes (FC > 2) as significant. 

mRNA expression analysis was performed using 
the Whole Human Genome 4x44K microarray platform 
(Agilent Technologies) as described by Kuasne et al. [18] 
Transcriptomic data are available on the Gene Expression 
Omnibus (GEO) database (GSE57955). Unsupervised 
hierarchical clustering analysis of miRNA and mRNA 

expression was accomplished using one minus correlation 
metric and complete linkage. The Kaplan Meier curve 
and log rank test were undertaken to estimate the overall 
survival [53]. 

Integrative analysis

Integrative analysis using miRNA and mRNA 
expression data from 23 tumor samples was based on 
predicted and experimentally validated miRNA/mRNA 
interactions. Predicted miRNA/mRNA interactions were 
performed using miRWalk 2.0 [54], in at least 10 of 12 

Table 2: Clinical and histopathological features of PeCa cases (N = 59) 

Variable Samples used for microarray 
N (%)

Validation set of samples 
N (%)

Number 23 36
Age (years)
  Median (range) 59.2 (31–91) 58.6 (30–92)
Follow-up (months)
  Median (range) 15.3 (1.6–60) 20.3 (1–60)
Histological classification
  Usual SCC 20 (87%) 33 (91.7%)
  Mixed* 1 (4.3%) 3 (8.3%)
  Papillary 2 (8.7%) 0 (0.0%)
Histological grade
  I 5 (21.7%) 12 (33.3%)
  II 9 (39.2%) 17 (47.2%)
  III 7 (30.4%) 7 (19.5%)
  NI 2 (8.7%) 0 (0.0%)
HPV infection
  HPV-Positive# 7 (30.4%) 9 (25%)
  HPV-Negative 16 (69.6) 27 (75%)
Lymph node metastasis
  Presence 9 (39.2%) 13 (36.1%)
  Absence 13 (56.5%) 21 (58.3%)
  ND 1 (4.3%) 2 (5.6%)
Perineural Invasion
  Presence 5 (21.7%) 13 (36.1%)
  Absence 18 (78.3%) 23 (63.9%)
T Stage
  1–2 14 (60.8%) 22 (61.1%)
  3–4 9 (39.2%) 14 (38.9%)

Patients were divided in two groups, the same set of samples used in the microarray experiments (N = 23) and a validation 
set of samples (N = 36).
SCC: squamous cell carcinoma; HPV: human papilloma virus; ND: Not determined. *Mixed tumors comprised: 3 usual - 
sarcomatoid subtype and one usual - papillary subtypes. NI: Not informed (two papillary carcinomas). #Sixteen cases were 
HPV positive: seven cases were evaluated by microarrays (6 HPV16  and 1 HPV18) and nine for data validation (8 HPV16 
and 1 HPV33).



Oncotarget15303www.impactjournals.com/oncotarget

target prediction tools (Last access: October 2015). 
In addition, experimentally validated miRNA/mRNA 
interactions by reporter assays were obtained from 
miRTarBase database [55] (Last access: October 2015). 
Subsequently, negative miRNA/target mRNA correlation 
(r < 0) presenting inverted FC was considered. 

Transcripts regulated by miRNAs were submitted 
to in silico analysis using Ingenuity Pathways Analysis 
(IPA, Ingenuity® System) and KEGG Orthology Based 
Annotation System (KOBAS 2.0) software [56]. Protein-
protein interactions were assessed with known and 
predicted physical interactions using I2D version 2.0 
(http://ophid.utoronto.ca/i2d). The resulting networks 
were visualized using NAViGaTOR version 2.3 [57]. http://
ophid.utoronto.ca/navigator. Clinical associations were 
performed using two-sample t-test (P < 0.01, FDR < 20%).

Evaluation of differentially expressed miRNAs 
and mRNA by reverse transcription quantitative 
PCR (RT-qPCR)

Eight miRNAs (hsa-miR-20a-5p, hsa-miR-29b-
3p, hsa-miR-31-5p, hsa-miR-224-5p, hsa-miR-106a-5p, 
hsa-miR-17-5p, hsa-miR-223-3p, and hsa-miR-145-
5p) and ten mRNAs (AR, DNMT3A, ERBB4, FGFR1, 
MMP1, MMP12, NRAS, NRN1, PPARG, and SPP1) were 
evaluated by RT-qPCR. The candidates for validation were 
selected according to the following criteria (in descending 
order of importance): (a) miRNA-mRNA pair detected 
in the integrative analysis with negative correlation, (b) 
prognostic association, (c) high FC, (d) low FDR, and (e) 
low P-value in the individual miRNA and mRNA analysis.

The RT-qPCR experiments followed the MIQE 
guideline recommendations [58]. RNU48 and GUSB 
were used as references for miRNAs and mRNA, 
respectively, as previously reported [19]. cDNA 
synthesis was performed using total RNA and the 
TaqMan miRNA Reverse Transcription Kit (Applied 
Biosystems, Foster City, CA, USA), according to the 
manufacturer’s recommendations. MicroRNA expression 
was assessed using the TaqMan® MicroRNA Assay 
(Applied Biosystems, Foster City, CA, USA). For mRNA 
expression analysis, cDNA synthesis was conducted as 
previously described [59]. The reactions were carried out 
by automated pipetting (QIAgility, Qiagen, Courtaboeuf, 
France) in duplicate using TaqMan® Universal PCR 
Master Mix, No AmpErase® UNG (Applied Biosystems, 
Foster City, CA, USA) (miRNA) or Syber Green Master 
Mix (mRNA) using the 7900 Real time PCR System 
(Applied Biosystems, Foster City, CA). 

Relative quantification of the expression levels was 
calculated according to Pfaffl method [51]. Parametric t 
test was applied to compare tumors with non-neoplastic 
penile tissue (NPT) (comprising SNT and NG samples) 
and according to clinicopathological features. Statistical 
analysis was performed using GraphPad Prism5 (San 

Diego, CA, USA) and SPSS version 21.0 (SPSS, Chicago, 
IL, USA). 

Classifiers were designed to distinguish PeCa 
from NPT, using the markers presenting the higher area 
under the ROC (Receiver Operating Characteristic) curve 
(AUC). The support vector machine (SVM) method was 
applied and performance was assessed by leave-one-
out-cross-validation (LOOCV) using BRB ArrayTools 
software (v. 4.4.0). A similar approach was carried out 
to predict lymph node status. Overall survival analysis 
was performed using Kaplan-Meier and log rank test. In 
this analysis, gene expression was dichotomized as low 
(bellow median) and high (above median) expression.
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