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ABSTRACT

Large genomic datasets in combination with clinical data can be used as an 
unbiased tool to identify genes important in patient survival and discover potential 
therapeutic targets. We used a genome-wide screen to identify 587 genes significantly 
and robustly deregulated across four independent breast cancer (BC) datasets 
compared to normal breast tissue. Gene expression of 381 genes was significantly 
associated with relapse-free survival (RFS) in BC patients. We used a gene co-
expression network approach to visualize the genetic architecture in normal breast 
and BCs. In normal breast tissue, co-expression cliques were identified enriched for 
cell cycle, gene transcription, cell adhesion, cytoskeletal organization and metabolism. 
In contrast, in BC, only two major co-expression cliques were identified enriched for 
cell cycle-related processes or blood vessel development, cell adhesion and mammary 
gland development processes. Interestingly, gene expression levels of 7 genes were 
found to be negatively correlated with many cell cycle related genes, highlighting 
these genes as potential tumor suppressors and novel therapeutic targets. A 
forward-conditional Cox regression analysis was used to identify a 12-gene signature 
associated with RFS. A prognostic scoring system was created based on the 12-gene 
signature. This scoring system robustly predicted BC patient RFS in 60 sampling test 
sets and was further validated in TCGA and METABRIC BC data. Our integrated study 
identified a 12-gene prognostic signature that could guide adjuvant therapy for BC 
patients and includes novel potential molecular targets for therapy.

INTRODUCTION

Breast cancer (BC) is the leading female malignancy 
and the second leading cause of cancer deaths in U.S. 
women, with tumor metastasis being the underlying cause 
in most of these breast cancer related deaths [1, 2]. Breast 
carcinogenesis is a multi-step process in which epithelial 
cells accumulate genetic alterations, which in a permissive 
tissue microenvironment progress towards malignancy 
and may then metastasize to distant organs. Advances in 
imaging technologies and heightened public awareness of 
breast cancer have resulted in an increase in the diagnosis 
of early-stage breast cancer [3–5]. Furthermore, adjuvant 
systemic therapy has reduced the risk of recurrence and 

improved overall survival from BC [6]. However, not all 
patients who receive adjuvant therapy benefit from it and 
could have been spared the treatment-associated toxicity. 
Prognostic factors are critical to distinguish patients with 
poor prognoses, who would benefit from adjuvant therapy, 
from patients with good prognoses, who may not benefit 
sufficiently from adjuvant therapy to outweigh the risks 
associated with treatment [7].

Traditional prognostic factors currently used to 
guide the use of systemic therapy and predict outcome 
include tumor size, lymph node involvement, histological 
grade, age, race, estrogen receptor (ER), progesterone 
receptor (PR) and epidermal growth factor receptor 
(HER2) status [8]. However, a critical problem with BC 
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is the difference in clinical outcome among patients with 
the same disease. This heterogeneous clinical outcome 
is manifested by differences in disease susceptibility, 
progression, treatment response, and relapse, even among 
individuals with the same apparent histopathological 
disease. These differences seem to be in part controlled by 
so-called tumor modifier genes, multiple low-penetrance 
susceptibility genes that interact with each other and their 
environment to contribute to the disease process.

Clinical patient survival data, along with genomic 
datasets can be used to identify genes important in patient 
survival. Recently, a large gene expression database across 
normal human tissues became available and which can be 
used to identify the biological mechanisms underlying 
different diseases and identify potential novel therapeutic 
targets [9, 10]. We combined independent BC databases 
to identify a gene expression signature of differentially 
expressed genes. Using gene co-expression network 
analyses, we investigated the genetic architecture of 

this signature in normal breast tissue. We subsequently 
identified and validated a 12-gene signature that predicts 
BC survival.

RESULTS

Meta-analysis identified a 587-gene signature 
frequently deregulated in human breast cancer

We conducted a meta-analysis of genes consistently 
deregulated in human BCs. We collected gene transcript 
data from normal and tumor breast tissues represented 
by four independent gene expression data sets totaling 
160 invasive ductal carcinomas and 191 normal breast 
tissues (Figure 1A) [11–15]. The significant differential 
expression of genes was assessed by a fold change cutoff 
of 1.5 and adjusted p-value<0.01 (Supplementary Table 
1). This resulted in a gene signature of 795 probe IDs (590 
down-regulated and 205 up-regulated) represented by 587 

Figure 1: The human breast tissue data sets used in this study. A. Four independent gene transcript data sets containing invasive 
ductal carcinoma and normal breast tissue samples were used. B. Differential expression of tumor versus normal using a fold-change cut-off 
of 1.5 and adjusted p-value 0.01 identified the 795 common probe ID set.
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unique genes, for which the direction of expression was 
consistent across all four datasets (Figure 1B and Figure 
2; Supplementary Table 2).

381 genes significantly associated with relapse-
free survival in breast cancer patients

To investigate whether any of the 587 common 
deregulated genes were associated with relapse-free 

survival (RFS), we evaluated the prognostic value for 
each individual gene in a large public clinical microarray 
database using the Kaplan-Meier plotter (http://kmplot.
com/) (Figure 2) [16]. The BC patient cohort was divided 
into two equal groups based on median expression for 
each gene and compared by a Kaplan-Meier survival 
analysis. In addition, the hazard ratio with a 95% 
confidence interval and logrank p-value was calculated 
to evaluate the prognostic significance of each gene for 

Figure 2: Flow diagram for identifying and validating a prognostic biomarker panel for breast cancer. The 795 robustly 
deregulated probe IDs were identified using 4 breast tumor microarray data sets (blue). To identify individual genes associated with relapse-
free survival (RFS), Kaplan Meier survival analysis was run on the overlapping IDs (yellow). A gene expression correlation network 
approach was used to identify cliques of functionally related genes (green). Cox regression was run on 60 random tumor samples for 
381 genes significantly associated with RFS (turquoise) to generate the 12-gene signature. The 12-gene signature was used to generate a 
prognosis scoring system, which was validated using the TCGA and METABRIC BC data sets.
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RFS. This analysis identified 381 genes significantly 
associated with RFS (p-value<6.3E-05; Figure 3, Table 1 
and Supplementary Table 3); 249 genes had a hazard 
ratio < 1 (higher gene expression associated with good 
prognosis) and 133 genes had a hazard ratio > 1 (higher 
gene expression associated with poor prognosis).

Genes that predict prognosis are enriched 
for microenvironment- and cell cycle-related 
biological processes

To reveal the biological functions enriched in the 
381-gene set associated with RFS, we performed Gene 
Ontology analysis separately on the 249 genes that 
exhibited a HR<1 and 133 genes with HR>1. The 249-
gene signature (HR<1) was significantly enriched for 
tissue microenvironment related processes including 
cell adhesion (adj. p-value=6E-04), cell migration (adj. 
p-value=2.74E-05), wound healing (adj. p-value=3.1E-03), 
and vasculature development (adj. p-value=4.13E-05) 
(Supplementary Table 4). On the other hand, the 133-gene 
signature (HR>1) was strongly enriched for cell cycle 

related processes (adj. p-value=5.33E-51) (Supplementary 
Table 4). This strong dichotomy between RFS genes with 
HR<1 - associated with tumor processes enriched for 
tissue microenvironment-related biological functions (e.g. 
vasculature, wound healing, cell migration) - and RFS 
genes with HR>1 - almost exclusively associated with cell 
cycle related processes - prompted us to further investigate 
the genetic architecture of these genes in normal breast 
tissues and BCs.

Gene co-expression network analysis visualizes 
the genetic architecture of RFS associated genes 
in normal breast and breast cancer

Since gene sets that are correlated in expression 
across tissue samples often share a common function, 
co-expression network analysis has been used to identify 
clusters of genes with common biological functionality 
important in normal or tumor tissues. We used data 
obtained from the GTEX database of 214 normal human 
breast tissues and the TCGA database of 1100 BC samples 
to reveal the genetic architecture of RFS associated genes 

Figure 3: Kaplan-Meier survival curves for breast cancer patients according to tumor expression of genes with highest 
and lowest hazard ratios. The breast cancer patient cohort was divided into two equal groups based on median expression for each gene 
and compared by a Kaplan-Meier survival analysis. The estimate of the hazard ratio (HR) and log-rank p-value of the curve comparison 
between the groups is shown. Top three genes with the lowest HR values (top row): SCRN2, ADCY4 and ABCA9. Top three genes with the 
highest HR values (bottom row): UBE2T, CCNB2 and KIF23. Low and high risks indicated in black and red, respectively.
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in normal and tumor breast tissue (Figure 2). We first 
calculated correlation coefficients of 381 genes associated 
with RFS across 214 normal human breast tissues 
and 1100 breast cancer samples (Figure 4A). We then 
constructed a gene expression correlation network where 
nodes represented individual gene and edges connecting 
genes represented a correlation in their expression (Figure 
4B, R≥|0.6|; p-value<8E-08). In normal breast tissue, three 
main co-expression cliques were identified (Figure 4B). 
One clique was highly enriched for genes involved in 
cell cycle and mitosis, and whose genes all had a hazard 
ratio for RFS > 1 (Figure 4B, 4D). The remaining two 
co-expression cliques contained predominantly genes 
with a hazard ratio for RFS <1. One clique was enriched 
for genes involved in transcriptional regulation and cell 
adhesion, while the other clique was generally involved 
in cytoskeleton organization and metabolic processes. 
Interestingly, while expression levels of genes within 
each clique were predominantly positively correlated, 
expression levels of genes between these two cliques were 
negatively correlated (Figure 4C). The cell cycle clique 
is connected to these two cliques through EZH2, MCM2 
and MAD2L1.

A similar co-expression correlation analysis using 
TCGA data revealed two main co-expression cliques 
(Figure 5A, 5B). Similar to normal breast tissue, one 
clique was highly enriched for genes involved in cell 
cycle and mitosis, all of which had a hazard ratio for RFS 
> 1 (Figure 5B). The remaining clique contained genes 
with a hazard ratio for RFS <1 and was enriched for 
blood vessel development, cell adhesion and mammary 
gland development. These two co-expression cliques 

were negatively correlated through 7 genes: CREBRF, 
DIXDC1, AHNAK, CYBRD1, NOSTRIN, TNS2 and 
TNFSF12 (Figure 5C). Given the negative correlation 
with cell cycle related genes, these 7 genes could mediate 
negative regulation of cell growth and are potential 
therapeutic targets.

A 12-gene prognostic signature predicts breast 
cancer patient survival

Using the 381-gene set associated with RFS we 
developed a gene signature that accurately predicts 
BC patient survival (Figure 2). We created 60 training 
sets through randomly selecting 300 patients each time 
from the BC gene expression dataset GSE6532, which 
has RFS information of 393 patients. The residual 93 
patients from all 60 training sets formed the 60 test sets. 
We then performed Cox regression analysis on all 60 
training sets to simultaneously assess the importance of 
the genes within the 381-gene in the RFS. The genes 
that recurred in at least half of the training sets were 
included in our final 12-gene signature: EPS15, MELK, 
NUF2, PLEKHH2, PLPP1, RNASEH2A, S100P, 
THYN1, TIMM17A, TSC1, USP47, ZBTB16 (Table 
1). The average beta-value (Cox regression coefficient) 
of each of the 12 genes was calculated and used as a 
weighting factor for the expression value of each gene. 
A prognostic score was estimated for each patient: gene 
expression values were multiplied by their respective 
beta-value and the prognostic score was determined as 
the sum of resulting weighted gene expression values. 
The patients were ranked by their prognostic score, 

Table 1: Twelve-gene prognostic gene signature

Gene symbol Gene name Affymetrix ID Hazard Ratio p-value

EPS15 Epidermal growth factor receptor substrate 15 217886_at 0.73 9.30E-08

MELK Maternal Embryonic Leucine Zipper Kinase 204825_at 1.89 1.00E-16

NUF2 NDC80 Kinetochore Complex Component 223381_at 1.63 2.30E-09

RNASEH2A Ribonuclease H2 Subunit A 203022_at 1.56 1.90E-14

S100P S100 Calcium Binding Protein P 204351_at 1.45 2.50E-10

THYN1 Thymocyte Nuclear Protein 1 218491_s_at 0.76 2.70E-06

TIMM17A Translocase Of Inner Mitochondrial Membrane 
17 Homolog A 201821_s_at 1.55 3.70E-14

TSC1 Tuberous Sclerosis 1 209390_at 0.74 4.00E-07

USP47 Ubiquitin Specific Peptidase 47 223119_s_at 0.65 2.40E-07

ZBTB16 Zinc finger and BTB domain containing 16 205883_at 0.6 1.00E-16

PLPP1 Phospholipid Phosphatase 1 209147_s_at 0.77 4.10E-06

PLEKHH2 Pleckstrin Homology, MyTH4 And FERM 
Domain Containing H2 227148_at 0.59 1.70E-10
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divided into two equal sized cohorts based on the 
median score, and Kaplan-Meier analysis was performed 
to determine differences in RFS between two cohorts. 
Using the mean beta values developed in the training 

set, prognostic scores were calculated for all patients 
in the 60 test sets. Patients were again ranked on their 
prognostic score and divided into two cohorts based on 
the average prognostic-score cut-point in the 60 training 

Figure 4: Visual representation of correlations in gene expression in normal human breast tissue samples. A. The 
heat map shows the correlation in gene expression between normal breast tissue samples obtained from GTEX. Positive correlations 
are indicated in red, while negative correlations are indicated in blue. B. Gene expression correlation network of RFS significant genes 
in normal breast tissue samples. Individual genes are indicated as nodes. Red edges indicate a positive correlation in gene expression (r 
≥ 0.6) between two genes. Green edges indicate a negative correlation in gene expression between two genes (r ≤ -0.6). Labels indicate 
significant biological enrichment (adjusted p-value<0.05). Pink colored genes are present in the 12-gene prognostic signature. Three major 
functional cliques were separated based on gene-ontology. Clique 1 (yellow): cytoskeleton organization, cell substrate organization, and 
metabolic processes. Clique 2 (orange): regulation of cell proliferation, regulation of gene transcription, and cell adhesion. Clique 3 (blue): 
ell division, DNA replication, and mitosis. Genes with hazard ratio for RFS >1 are indicated as circles and those with HR<1 as squares. 
C. Enlargement of negative correlations and the genes associated with them. D. Enlarged cell division, DNA replication, and mitosis clique.
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sets. Kaplan-Meier analysis was performed and a log-
rank test was used to determine if there was a significant 
difference in RFS between two cohorts. The hazard ratio 
was calculated for each of the 60 test sets. In only 2 
out of 60 (3.3%) test sets, the hazard ratio confidence 
interval crossed “1” (Figure 6A).

Validation of 12-gene prognostic signature

We then tested our 12-gene prognostic signature in 
an independent set of 1100 BC patients obtained from the 
TCGA database. Prognostic scores for all 1100 patients 
were calculated and patients were ranked based on their 

Figure 5: Visual representation of correlations in gene expression in breast cancer samples. A. The heat map shows the 
correlation in gene expression between breast cancer samples obtained from TCGA. Positive correlations are indicated in red, while 
negative correlations are indicated in blue. B. Gene expression correlation network of RFS significant genes in breast cancer samples. 
Individual genes are indicated as nodes. Red edges indicate a positive correlation in gene expression (r ≥ 0.6) between two genes. Green 
edges indicate a negative correlation in gene expression between two genes (r ≤ -0.6). Labels indicate significant biological enrichment 
(adjusted p-value<0.05). Pink colored genes are present in the 12-gene prognostic signature. Two major functional cliques were separated 
based on gene-ontology. Clique 1 (orange): blood vessel development, cell adhesion, regulation of cell proliferation and mammary gland 
development. Clique 2 (blue): cell division, DNA replication, and mitosis. Genes with hazard ratio for RFS >1 are indicated as circles 
and those with HR<1 as squares. C. Correlation network with negatively correlated genes and its association with cell division, DNA 
replication, and mitosis genes, as well as some blood vessel development, cell adhesion, regulation of cell proliferation, and mammary 
gland development genes.
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score and divided into two equal sized cohorts. Kaplan-
Meier analysis revealed a significant difference between 
the two patient cohorts. Patients with a high prognostic 
score had a significantly shorter overall survival 
compared to patients with a low prognostic score (Figure 
6B; p<0.001). To determine if our prognostic score was 
independent of age at diagnosis, tumor stage, estrogen- 
and progesterone-receptor status, we ran multivariate 
Cox regression force-entry with these factors including 
the prognostics scores as covariates. We found that 
prognostic score, age at diagnosis and tumor stages III and 
IV (compared to stage I) were significantly associated with 
overall survival (Figure 6C). These data confirmed that our 
prognostic score has clinical validity independent of tumor 
stage and age at diagnosis (p-value=0.007, HR=2.1, 95% 
CI:1.2-3.7) (Figure 6C).

We further validated our 12-gene prognostic 
signature in a second independent breast cancer dataset 
consisting of 1980 BC patients and containing data for 
individual breast cancer molecular subtypes (METABRIC; 
[17, 18]). Prognostic scores for all 1980 patients were 
calculated as described above for the TCGA cohort and 
patients were ranked based on their score and divided into 
two equal sized cohorts. Kaplan-Meier analysis revealed 
a significant difference between the two patient cohorts 
(Figure 7A; p=1.01E-17). To address the interaction of 
our signature with breast cancer molecular subtypes we 
stratified our patient cohort by molecular subtype (based 
on PAM50; [19]) and used Kaplan-Meier analysis to 
investigate differences in survival between the low and 
high prognostic score cohorts. We found that higher 
prognostic score was significantly associated with shorter 

Figure 6: A 12-gene signature predicts breast cancer patient prognosis. A. For each of 60 test sets the hazard ratio and the 95% 
confidence interval was calculated using a Cox model based on the prognostic score with groups as covariates, and subsequently plotted 
in a forest-plot diagram. The red line indicates a HR value of 1, or the null hypothesis. The two red boxes indicate the insignificant trials 
(confidence interval included HR value of 1) B. Kaplan-Meier overall survival curve for breast cancer patients according to prognostic 
score using the 12-gene signature. The BC patient cohort was divided into two equal groups based on the prognostic score. The log-rank 
p-value of the curve comparison between the groups is shown. C. The hazard ratio and the 95% confidence interval was calculated using 
a Cox model based on tumor stage (I-IV), estrogen receptor and progesterone receptor status, age at diagnosis and prognostic score as 
covariates.
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survival in “normal-like”, “luminal A” and “HER2” 
subtypes (Figure 7B). To determine, in this data set, if 
our prognostic score was independent of age at diagnosis, 
tumor grade, estrogen- and progesterone-receptor status 
and molecular subtype (PAM50) we ran multivariate Cox 
regression force-entry with these factors including the 
prognostics scores as covariates. We further confirmed that 
our prognostic signature has clinical validity independent 
of age at diagnosis, estrogen receptor status, tumor grade 
and molecular subtype.

DISCUSSION

Selecting patients who would most likely benefit 
from adjuvant systemic therapy is important considering 
the associated risks of treatment; the development of 
prognostic biomarkers is useful in this regard. While 
it remains difficult to identify good targets for the 
development of targeted therapies, cancer genome analysis 
has shown great promise in identifying key aberrations 
in tumor growth and survival pathways that could serve 

Figure 7: The 12-gene signature predicts overall survival independent of clinical factors and molecular subtypes. 
A. Kaplan-Meier overall survival curve for breast cancer patients according to prognostic score using the 12-gene signature. The BC patient 
cohort was divided into two equal groups based on the prognostic score. The log-rank p-value of the curve comparison between the groups 
is shown. B. Kaplan-Meier overall survival curve for breast cancer patients stratified by molecular subtype. The log-rank p-value of the 
curve comparison between the groups is shown. C. The hazard ratio and the 95% confidence interval was calculated using a Cox model 
based on tumor grade, estrogen receptor and progesterone receptor status, age at diagnosis, molecular subtype (PAM50) and prognostic 
score as covariates.
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as prognostic biomarkers and targets for therapeutic 
intervention. We created a 12-gene prognostic scoring 
system, which robustly predicted BC patients’ RFS in 
independent breast cancer data sets. Our gene signature 
could guide adjuvant therapy for breast cancer patients 
and includes novel potential molecular targets for therapy. 
Genes in our signature did not overlap with existing 
gene signatures that predict breast cancer outcome and 
metastasis [20–22]. Multiple reasons can explain the lack 
of overlap between these signatures, including differences 
in sample size and data sets, clinical phenotypes and 
methods of signature development. Also, we have shown 
using co-expression network analysis that functionally 
related genes often strongly correlate in expression. 
Even though different signatures select different genes, 
they may still originate from co-expression cliques 
representing the same biological function. For example, 
the Oncotype DX gene signature, which is prognostic 
of breast cancer recurrence, consists of 16 cancer genes. 
Five of these genes were also included in our analysis 
(MKi67, STK15, BIRC5, CCNB1 and MMP11), but 
were not selected in our final gene signature. However, 
MKi67, STK15, BIRC5 and CCNB1 were all part of the 
same strongly interconnected and cell-cycle enriched co-
expression clique. Our analysis selected NUF2, MELK 
and RNASEH2A from the same clique, however, given 
the strong correlations in expression, any one of the highly 
connected genes is likely to perform equally well. Using 
multivariate Cox regression with our 12-gene signature 
and the Oncotype DX 16-gene signature, we determined 
that our 12-gene signature was independent (p<0.005; 
HR=2.4, 95% CI:1.7-3.4), but equally important as the 
Oncotype DX gene signature (p<0.005; HR=2.2, 95% CI: 
1.3-3.7). Another important variable associated with breast 
cancer survival is molecular subtype. Using a cohort of 
1980 breast cancer patients with approximately 30 years 
of follow-up we determined that our signature could 
predict breast cancer patient survival for “normal-like”, 
“luminal-A” and “HER2” subtypes, but not “luminal-B”, 
“basal” and “claudin-low” subtypes. We should point out 
that in our analysis patients were stratified into two equally 
sized cohorts based on the median prognostic score and 
then further stratified by molecular subtype. This resulted 
in unequally sized cohorts for each subtype, which could 
potentially have confounded our analysis. To test this, we 
generated equally sized cohorts based on prognostic score 
for each individual subtype. We first stratified patients 
by molecular subtype and then further stratified patients 
inside each subtype by the median of the prognostic score. 
This analysis revealed similar observations as presented in 
Figure 7B confirming that our results are not confounded 
by unequally sized cohorts within different score groups. 
Future studies are granted to investigate whether our 
prognostic score can predict sensitivity to radiation- and/
or chemotherapy.

The majority of the genes in our signature have 
previously been associated with cancer progression 
and patient outcome. MELK, NUF2 and ZBTB16 play 
important roles in cell cycle-related processes. Loss of 
ZBTB16 expression has been reported in a number of 
different tumor types including prostate cancer, non-small 
cell lung cancer, melanoma [23–25]. Overexpression 
of MELK, a serine/threonine kinase implicated in 
embryogenesis and cell cycle control has been identified 
in numerous human cancer types including breast, 
prostate, brain, colorectal and gastric cancer [26–30]. 
In BC, overexpression of MELK correlated with poor 
prognosis, whereas knockdown decreased proliferation 
[28, 30, 31]. NUF2 is part of a conserved protein complex 
associated with the centromere and plays a regulatory role 
in chromosomal segregation. Down regulation of NUF2 
in pancreatic cancer cell lines inhibited tumor growth 
and enhanced apoptosis [32] whereas upregulation of 
NUF2 in colon cancer cells promoted tumorigenicity 
[33]. Overexpression of EPS15, which plays a role in 
terminating growth factor signaling, was shown to be a 
favorable prognostic factor in BC [34, 35]. Our signature 
also included the inner mitochondrial membrane protein 
TIMM17A. Decreased expression of TIMM17A reduced 
the aggressiveness of BC cells and TIMM17A expression 
was significantly associated with BC survival [36–38]. 
PLEKHH2 and TSC1 are involved in cell adhesion 
and actin dynamics. Loss of TSC1 was shown to result 
in the deregulation of cell motility and adhesion [39]. 
A polymorphic variant of TSC1 was associated with 
delayed age at diagnosis of ER-positive ductal carcinomas 
[40]. Also, TSC1, in coordination with TSC2, inhibits 
MTOR, which promotes cell growth and cell cycle 
progression [41]. PLPP1 degrades lysophosphatidate and 
is often down-regulated in tumor types. Using syngeneic 
and xenograft mouse models showed that PLPP1 
overexpression in BC cells decreased tumor growth and 
the metastasis [42]. S100P is overexpressed in a variety 
of human tumor types [43]. S100P transcription is 
influenced by a number of signaling molecules including 
progesterone, androgens, glucocorticoids, BMP4 and IL6 
and through interactions with a various proteins integrates 
and regulates multiple signaling pathways involved 
in degradation of extracellular matrix, invasion and 
metastasis and tumorigenesis (reviewed in [44]).

The role of PLEKHH2, USP47 and THYN1 has not 
been extensively studied in cancer progression. PLEKHH2 
protein was enriched in renal glomerular podocytes, and 
shown to interact with focal adhesion proteins and actin 
to stabilize the actin cytoskeleton [45]. USP47 plays an 
important role in base-excision repair and the maintenance 
of genome integrity [46]. Depletion of USP47 induced 
accumulation of Cdc25A and decreased cell survival 
[47]. However, our results indicate that patients with 
high breast tumor expression of USP47 have significantly 
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better relapse-free survival compared to patients with 
low breast tumor expression of USP47 (HR=0.65; 
p-value=2.40E-07). Thus, the exact role of USP47 in BC 
has yet to be determined. The role of THYN1 in BC is 
currently unknown, however, downregulation of THYN1 
has been correlated with the induction of apoptosis in a 
specific B-cell lymphoma cell line [48].

Our gene co-expression network analysis identified 
a number of potential therapeutic targets. We found 
that 7 genes CREBRF, DIXDC1, AHNAK, CYBRD1, 
NOSTRIN, TNS2 and TNFSF12 were negatively 
correlated with the strongly interconnected cell cycle 
and mitosis clique. Indeed, a number of these genes have 
been identified as candidate tumor suppressor genes 
including CREBRF, DIXDC1, AHNAK and TNS2 [49–
52]. Furthermore, NOSTRIN was found to be a potential 
negative regulator of disease aggressiveness in pancreatic 
cancer and CYBRD1 was identified as part of an iron 
regulatory gene signature that predicts outcome in BC 
[53, 54]. TNFSF12 (TWEAK) can promote cell death 
in tumor cell lines under certain conditions [55–57], and 
may also activate local macrophages to inhibit tumor 
progression [58]. The negative correlation of these 7 genes 
with the cell cycle enriched gene co-expression clique was 
observed in the co-expression network of breast tumor 
samples, but not the normal breast tissue co-expression 
network. This suggests that a therapeutic approach that 
increases expression of one or more of these 7 genes could 
collapse the tumor cell cycle machinery, while sparing 
adverse effects in healthy tissue.

In summary, we have generated a prognostic 
scoring system and 12-gene signature that is prognostic 
of BC patient relapse-free survival. Furthermore, using 
co-expression network analysis, we investigated the 
genetic architecture of RFS associated genes in normal 
and tumor tissues and identified 7 potential therapeutic 
targets that could be developed to target the tumor cell 
cycle machinery. Our analysis pipeline could furthermore 
be applied to other tumor types.

MATERIALS AND METHODS

Data sets used in this study

Gene transcript data of normal and tumor breast 
tissues was obtained from NCBI GEO accession numbers: 
GSE3744 (40 invasive ductal carcinoma samples and 7 
normal breast samples), GSE10780 (42 invasive ductal 
carcinoma samples and 143 normal breast samples), 
GSE21422 (5 invasive ductal carcinoma samples and 
5 normal breast samples) and GSE29044 (72 invasive 
ductal carcinoma samples and 36 normal breast samples). 
Normal breast gene transcript data used for generating 
gene expression correlation networks was obtained from 
GTEX (http://www.gtexportal.org/home/datasets) using 
the RPKM normalized gene transcript counts table [9, 10].

Statistical analysis

GEO2R was used to calculate the differential 
expression of tumor versus normal using a fold-change 
cutoff of 1.5 and adjusted p-value 0.01. Association of 
differentially expressed genes and relapse-free survival 
in breast cancer patients was assessed using Kaplan- 
Meier plotter (http://kmplot.com) including KM survival 
analysis, hazard ratio with 95% confidence interval and 
logrank p-value for each gene using all available patients 
(not restricted to any clinical parameters such as grade, PR 
status, etc) [16].

Gene ontology enrichment analysis was performed 
using the web-based gene set analysis toolkit (adjusted 
p<0.05 was used as a threshold for significance) (http://
bioinfo.vanderbilt.edu/webgestalt/) [59, 60].

Gene co-expression network construction

Gene expression Spearman correlation coefficients 
were calculated in “R” for 795 probes (587 genes) that 
were differentially expressed between breast tumor 
and normal tissues samples. A gene network was 
generated where nodes represent individual genes 
and edges connecting nodes were drawn when the 
correlation coefficient exceeded |R|≥0.6 (adjusted 
p-value≤7.911E-08). The gene co-expression network was 
visualized using Cytoscape 3.1.1. (http://www.cytoscape.
org).

Prognostic gene signature

BC microarray data (GSE6532), describing 
RFS status and gene expression for our 357-gene 
panel, was collected for 393 patients. Sixty random 
samplings of 300 patients were extracted from this 
dataset and used as training sets to identify a biomarker 
panel associated with RFS. The residual 93 patients 
from each sample were used as test sets to validate 
the prognostic significance of the biomarker panel. A 
forward-conditional Cox regression using all 357 genes 
as covariates was performed using SPSS on each of the 
training sets in order to identify the biomarker panel. 
The results of each test were recorded and the genes 
that appeared in more than half of the training sets were 
included in our biomarker panel.

Cox regression was repeated on all 60 training sets 
using our 12-gene signature as covariates using the forced-
entry (enter) method to obtain the beta values (coefficient) 
for each biomarker. The resulting 60 beta values of each 
biomarker were averaged to estimate the true beta value of 
each gene. A prognostic scoring system was created based 
on this formula:

gene i x gene i expression level    (    )
i 1

12

å b)(
=
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The patients were ranked by their prognostic score 
and divided into two equal sized cohorts. Kaplan-Meier 
plots were constructed and a long-rank test was used to 
determine differences among relapse free survival.

Prognostic scores for each of the test set samples 
were then calculated using the same set of mean beta 
values developed in the training set. Patients were ranked 
based on their prognostic score and divided into two 
cohorts based on the average prognostic-score cut-point in 
the training sets. Kaplan-Meier plots were constructed and 
a log-rank test was used to determine differences among 
RFS.

To further validate our biomarker panel, mRNA 
expression levels (normalized RNA-seq mRNA expression 
z-scores) for our 12-gene signature were obtained from 
cBioPortal for 1100 breast cancer samples (TCGA; http://
www.cbioportal.org/data_sets.jsp) [61, 62] and for 1980 
breast cancer samples (METABRIC) [17, 18]. New beta 
values for each of the twelve biomarkers were obtained 
using Cox regression. Prognostic scores were calculated 
and patients were ranked based on their score and divided 
into two equal sized cohorts. Kaplan-Meier analysis and 
a log-rank test were used to determine differences in 
survival.
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