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ABSTRACT
We developed a series of models to predict the likelihood of recurrence and the 

response to chemotherapy for the personalized treatment of stage I and II colorectal 
cancer patients. A recurrence prediction model was developed from 235 stage I/II  
patients. The model successfully distinguished between high-risk and low-risk 
groups, with a hazard ratio of recurrence of 4.66 (p < 0.0001). More importantly, 
the model was accurate for both stage I (hazard ratio = 5.87, p = 0.0006) and stage 
II (hazard ratio = 4.30, p < 0.0001) disease. This model performed much better than 
the Oncotype and ColoPrint commercial services in identifying patients at high risk for 
stage II recurrence. And unlike the commercial services, the robust model included 
recurrence prediction for stage I patients. As stage I/II CRC patients usually do not 
receive chemotherapy, we generated chemotherapy efficacy prediction models with 
data from 358 stage III patients. The predictions were highly accurate: the hazard 
ratio of recurrence for responders vs. non-responders was 4.13 for those treated 
with FOLFOX (p < 0.0001), and 3.16 (p = 0.0012) for those treated with fluorouracil. 
We have thus created a prognostic model that accurately identifies patients at high 
risk for recurrence, and the first accurate chemotherapy efficacy prediction model for 
individual patients. In the future, complete personalized treatment plans for stage  
I/II patients may be developed if the drug prediction models generated from stage III 
patients are verified to be effective for stage I and II patients in prospective studies.

INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes 
of cancer-related mortality worldwide. Currently, the 
prognosis for CRC patients is determined by pathological 
features and the stage of the tumor at diagnosis. Patients 
with American Joint Committee on Cancer defined stage I 
and II disease have up to a 30% chance of recurrence after 
surgical resection, whereas patients with stage III disease 
have a 50-60% chance of recurrence within five years [1–3].

For early-stage cancer patients who receive curative 
resection, the identification of their risk for recurrence (and 
thus the potential benefit of adjuvant therapy) could improve 
long-term outcomes. Both prognostic models that identify 
high-risk patients and chemotherapy efficacy prediction 
models that determine the efficacy of adjuvant treatments 
are necessary for building personalized treatment plans.

Currently, adjuvant therapy is standard care for 
patients with stage III CRC with survival benefit [4]. The 
role of adjuvant chemotherapy in stage I patients remains 
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controversial, as most patients have good prognoses [5] 
and the few high-risk patients are difficult to identify. 
Much effort has been made to identify high-risk stage II 
patients who might benefit from adjuvant therapy. The 
National Comprehensive Cancer Network guideline has 
identified several factors that predict poor prognosis, 
including emergency presentation (tumor obstruction, 
perforation), an inadequate number of assessed lymph 
nodes (< 12), T4 tumors, poor histological differentiation, 
lymphovascular invasion, perineural invasion, and the 
presence of positive resection margins. However, these 
clinicopathologic factors alone have not been effective 
in identifying high-risk stage II patients. High-risk 
patients identified by the National Comprehensive Cancer 
Network guideline received no benefit from adjuvant 
chemotherapeutic treatment [6–8], and low-risk patients 
incurred the additional risk of worse disease-free survival 
(DFS) [6]. Some studies on clinicopathologic variables 
have indicated that only a subset of factors, such as T4 
status and serum carcinoembryonic antigen (CEA) levels, 
effectively identified high-risk patients [9–11]. Adding 
DNA mismatch repair status to clinicopathologic variables 
has also been reported to improve prognostic predictions 
for stage II patients [12, 13]. 

Due to the limitations of clinicopathologic variables 
for prognostic prediction, genomic information has been 
increasingly used to determine the risk of recurrence  
[14–29]. Nevertheless, several comprehensive reviews have 
concluded that genomic predictions are only “marginally” 
better than clinicopathologic variables in predicting the 
prognosis for stage II CRC patients [12, 17, 30–32]. 

Chemotherapy efficacy prediction analysis is an 
important complement to prognostic analysis. For stage 
I and II high-risk CRC patients identified by prognostic 
analysis, chemotherapy efficacy prediction analysis can 
inform the selection of an effective adjuvant treatment 
[12]. Among stage III patients, about 40% will experience 
recurrence even after adjuvant treatment [33]; thus, 
chemotherapy efficacy predictions would help stage III 
patients weigh the benefits of treatment against potential 
adverse effects.

For early-stage colon cancer patients, the most 
commonly used adjuvant treatments are 5FU (5-fluorouracil 
and leucovorin) and FOLFOX (5-fluorouracil, leucovorin, 
and oxaliplatin). Many population-based studies have been 
performed [33–37] to compare the efficacy of 5FU and 
FOLFOX in patients of different ages and disease stages, 
examine the adverse effects of treatment in elderly or stage 
II patients, and evaluate the adverse effects [38] and cost 
effectiveness of adding Oxaliplatin [39, 40].  Many of these 
reports were based on two large clinical trials (MOSAIC 
and NSABP C-07).

On the other hand, there have been limited results 
from genomic studies addressing the issues raised by 
the population-based studies [41–45]. In almost all 5FU 
and FOLFOX efficacy studies, individual marker genes 

have been used to predict the effectiveness of the drug 
regimens. The goal of these studies was to validate the 
target gene functions, rather than to identify global 
gene signatures that would best distinguish treatment 
responders from non-responders. Microsatellite instability 
(MSI) is a successful marker that has been confirmed as 
a prognostic indicator, but not as a chemotherapy efficacy 
prediction indicator [13, 4]. Studies combining markers 
for the prediction of 5FU efficacy are still in their early 
stages [41, 42]; therefore, no markers are currently being 
used to predict drug efficacy in the clinic [46, 47]. 

In addition, many studies have been designed for 
stage IV patients, such that drug efficacy has been defined 
by a reduction in tumor size. However, in early-stage CRC 
patients, efficacy is better defined by recurrence after 
curative resection. In this study, recurrence will be used 
for the determination of efficacy for stage I and II patients.

In most published prognostic CRC studies, stage II 
patients have been evaluated; stage III patients have been 
included in some studies, but stage I patients have only 
been assessed in one publication, with a very small sample 
size of 15 [26].  The focus on stage II cancer patients is 
understandable, as such patients would be more likely 
to benefit from treatment, and would be easier to study 
than stage I patients. Prediction models are often effective 
for patients at one stage, but not for another. Predicting 
recurrence for early-stage patients requires excellent 
sensitivity so that rare recurrence cases can be detected, 
whereas predicting recurrence for later stage patients 
requires better specificity so that patients do not undergo 
unnecessary adjuvant treatment. Since adjuvant therapy 
is already recommended for patients with stage III CRC, 
the goal of the present recurrence study was to develop a 
robust prognostic model for stage I and II patients. We also 
developed the first chemotherapeutic efficacy prediction 
models for 5FU and FOLFOX. The goal was not only to 
predict the efficacy of 5FU and FOLFOX independently, 
but also to generate consistent predictions from these two 
models so that a rational choice could be made between 
the two treatment options.  

RESULTS

Recurrence prediction

Clinical data

One hundred fifty-seven samples were used as a 
training set to generate a prognostic prediction model. 
An additional 78 samples were used as a blind test set 
to validate the prediction model. Patients with positive 
resection margins were excluded from this study. Only 
four of the total 235 stage I/II CRC patients had T4 status. 
Table 1 displays the clinicopathologic features of the 
patients in the training and testing sets. The follow-up 
times and disease–free intervals did not differ significantly 
between the training and testing sets. 
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Univariate analyses of all training and test samples 
revealed that recurrence was associated with pre-operative 
CEA values, emergent operations, mucinous components, 
lymphovascular invasion, and adjuvant chemotherapy.  
Only preoperative CEA values and adjuvant chemotherapy 
were significant risk factors in multivariate analyses 
(Supplementary Table 1). 

Training set results

The training set consisted of 157 samples from 64 
recurrent CRC patients and 93 non-recurrent patients. 
During the training, samples were randomly divided 
into two groups: 150 samples were used to generate the 
prediction model, and seven samples were used to test the 
performance of the model generated from the 150 samples 
by the k-nearest neighbor (KNN) method, as described 
in the Materials and Methods. Although the recurrence 
information of the seven test samples was known, the 
computer program was carefully designed to avoid using 
the recurrence information to generate the model. The 
training model was able to separate recurrent from non-
recurrent patients effectively. The hazard ratio (HR) of 
recurrence in the high-risk group vs. the low-risk group 
was 2.90 (95% CI: 1.69 to 4.98 P = 0.0001; Figure 1A). In 
addition, in terms of overall survival, the HR in the high-risk 

group vs. the low-risk group was 5.61 (95% CI: 2.33 to 
13.54, P = 0.0001; Figure 1B). 

Blind validation results

To confirm the performance of the prediction model, 
we used 78 additional samples (from 33 recurrent and 45 
non-recurrent CRC patients) as a true blind test in which 
the recurrence status was not known at the prediction. The 
HR of recurrence in the high-risk group vs. the low-risk 
group in this blind test set was 2.44 (95% CI: 1.13 to 5.29, 
P = 0.0235; Figure 1C). In terms of overall survival, the 
HR in the high-risk group vs. the low-risk group was 4.68 
(95% CI: 1.17 to 18.70, P = 0.0293; Figure 1D). These 
results confirmed the effectiveness of the recurrence 
prediction model. 

Final recurrence prediction results

The consistency of the validation and training results 
demonstrated that the prediction model was robust and 
unbiased. To better characterize the recurrence prediction 
model, we studied all 235 samples (the original 157 training 
samples and the 78 testing samples) together, and used a 
leave-five-out method to characterize the final prediction 
performance. The HR of recurrence in the high-risk  

Figure 1:  Recurrence prediction separates patient into high-risk and low-risk groups. Disease-free (A) and overall survival 
(B) of the training samples. Disease-free (C) and overall survival (D) of the test samples. The training (A and B) and blind testing (C and D)  
performed similarly.
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group vs. the low-risk group was 4.66 (95% CI: 2.66 
to 6.25, P < 0.0001; Figure 2A), and the area under the 
curve for the Receiver Operating Characteristic curve of 

this prediction model was 0.77 (P < 0.0001; Figure 2B), 
with a sensitivity of 0.80 and a specificity of 0.68 when the 
default cutoff was used (Table 2).

Table 1: Demographics of patients in the recurrence study

Variable
Total Training Set Test Set

p value
n = 235 % n = 157 % n = 78 %

Age  (Mean ± SD) 67.8 ± 11.7 68.7 ± 11.2 66.0 ± 12.5 0.516
Follow-up (Months± SD) 65.1 ± 23.6 64.5 ± 24.3 66.5 ± 22.0 0.718
Gender 

  Male
  Female

145
 90

61.7
38.3

100
 57

63.7
36.3

45
33

57.7
42.3 0.373

Location
  Right colon
  Left colon
  Rectum

68
106
61

28.9
45.1
26.0

47
67
43

29.9
42.7
27.4

21
39
18

26.9
50.0
23.1

0.561

Preoperative CEA level
  < 5 ng/mL
  > 5 ng/mL
  NA

160
64
11

68.1
27.2
 4.7

104
 47
  6

66.2
29.9
 3.9

56
17
 5

71.8
21.8
6.4

0.325

Stage
  I
  II

39
196

16.6
83.4

 26
131

16.6
83.4

13
65

16.7
83.3

0.984

Emergent operation
  No 
  Yes

225
10

95.7
 4.3

151
  6

96.2
3.8

74
 4

94.9
 5.1

0.640

Mucinous component (> 50%)
  No
  Yes

228
7

97.0
 3.0

153
  4

97.5
2.5

75
 3

96.2
3.8

0.581

Lymphovascular invasion
  No
  Yes

222
13

94.5
5.5

148
9

94.3
 5.7

74
4

94.9
 5.1

0.849

Perineural invasion
  No
  Yes

229
  6

97.4
 2.6

153
  4

97.5
 2.5

76
 2

97.4
 2.6

0.994

Grade of differentiation
   Well/moderate  
  Poor/undifferentiated

221
  4

98.3
 1.7

154
  3

98.0
 2.0

77
 1

98.7
 1.3

0.726

Lymph nodes harvested

  ≥ 12

  < 12

176

59

74.9

25.1

120

 37

76.4

23.6

56

22

71.8

28.2

0.456

Adjuvant chemotherapy*
  Yes
  No

 25
210

10.6
89.4

 17
140

10.8
89.2

 8
70

10.3
89.7

0.894

Recurrence
  Yes
  No

97
138

41.3
58.7

 65
92

41.4
58.6

32
46

41.0
59.0

0.956

Abbreviations: CEA, carcinoembryonic antigen.
*Only patients who had recurrence despite adjuvant chemotherapy were included in the study. No patients received 
neoadjuvant therapy.
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The performance reported above was based on a 
235-sample set that included both stage I and stage II 
CRC patients. To evaluate the prediction performance for 
stage I or stage II patients separately, we segregated and 
re-examined the samples. The HR of recurrence in stage 
I patients was 5.87 (95% CI: 2.99 to 53.51, P = 0.0006; 
Figure 2C), and in stage II patients was 4.30 (95% CI: 2.15  
to 5.39, P < 0.0001; Figure 2D). Figure 2 displays the 
similar long-term recurrence rates for stage I and II patients, 
demonstrating the robustness of the prediction model.

This recurrence prediction model also performed 
well for all three types of CRC. The HR of recurrence 
was 6.81 (95% CI: 2.34 to 10.78, P < 0.0001) in patients 
with right-sided colon cancer, 4.51 (95% CI: 1.97 to 7.81, 
P < 0.0001) in patients with left-sided colon cancer, and 
3.27 (95% CI: 1.43 to 6.79, P = 0.0042) in patients with 
rectal cancer.

Currently, there are two commercial services for stage 
II colon cancer recurrence prediction. ColoPrint obtained 
a five-year DFS difference of about 14% and a HR of 
recurrence of 2.65 between high-risk and low-risk patients 
using fresh frozen tissue [15]. Oncotype determined a HR of 
1.43 for a recurrence score difference of 25 using formalin-
fixed, paraffin-embedded (FFPE) tissue; the maximum 

three-year DFS difference was 14% between patients with 
the highest and lowest recurrence scores [14]. The actual 
DFS difference will be lower, and depends on the cutoff 
between high-risk and low-risk patients. In contrast, in this 
study, much better results were achieved with FFPE tissue. 
The HR of recurrence in high-risk patients vs. low-risk 
patients was 4.66 (Table 1), the five-year DFS difference 
between high-risk and low-risk patients was 46%, and the 
three-year DFS difference was 40% (Figure 2A). Thus, the 
DFS difference in this study was about three times greater 
than those of the previous studies. 

Biomarker comparison among different studies

We compared the genes selected for our recurrence 
prediction model (Supplementary Table 3) with those 
selected by the two commercial services, Oncotype 
and ColoPrint. While Oncotype used seven genes and 
ColoPrint used 18 genes (listed in the Materials and 
Methods section), we used 120 genes to generate our 
recurrence prediction model. Among these three gene 
signatures, there was only one common gene, BGN, which 
was selected by both Oncotype and us. The remaining 
genes from these three biomarker panels were all different. 

Figure 2: The final performance of the recurrence prediction model including all stage I and II samples is shown in (A) and 
(B). The performances with separated stage I and II samples are shown in (C) and (D). Patients in stages I and II had similar long-term 
DFS rates.
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Chemotherapy efficacy prediction

In total, 192 stage III CRC patients treated with 5FU 
were used for the efficacy study, of whom 119 did not 
experience recurrence during the follow-up period. Another 
set of 166 stage III patients treated with FOLFOX were 
used for the efficacy study, of whom 102 did not experience 
recurrence during the follow-up period. The efficacy of 
each drug was defined by the patients’ recurrence status.  
Responders were patients who had no recurrence for at 
least 48 months after the surgery, while non-responders 
were patients who experienced recurrence during the 
follow-up. Supplementary Table 2 lists the demographics 
of the patients in the chemotherapy study. 

The training for these two drugs followed the two-
stage procedure described above for the recurrence study. 
In the first stage, about one-third of the patients were 
reserved as the blind test set, and the remaining two-thirds 
were used as the training set. The training set was used to 
generate a prediction model, and the test set was used to 
validate the prediction model. The final performances of the 
prediction models were then determined with the use of all 
samples from both data sets and the leave-five-out iteration 
method during the second stage. The 5FU (Figure 3A) and 
FOLFOX (Figure 3B) prediction models both performed 
well, with excellent performance indicators (Table 2). 

The sensitivity of the drug efficacy models was 
defined as the ability to detect patients who would benefit 
from adjuvant treatment (i.e., no recurrence after adjuvant 
treatment), in contrast to the first part of the study, where 
sensitivity was defined as the ability to detect patients 
who would relapse, so they could be targeted for adjuvant 
treatment. When the default cutoff of zero was used, the 
FOLFOX model had a sensitivity of 0.88 and a specificity 
of 0.47, while the 5FU model had a sensitivity of 0.76 and 
a specificity of 0.59 (Table 2). 

For the purpose of choosing between FOLFOX or 
5FU for adjuvant treatment, it will be necessary to have 
high specificity for the 5FU prediction and high sensitivity 
for the FOLFOX prediction. The default cutoff yielded a 
high sensitivity of 0.88 for FOLFOX prediction, whereas a 
cutoff score of -1.1 achieved a high specificity of 0.86 for 
5FU prediction. With these cutoffs, only high-confidence 
5FU responders would be treated with 5FU, while lower-

confidence responders and non-responders to 5FU would 
be treated with FOLFOX. 

DISCUSSION

Stage I and II CRC patients were chosen for the 
prognostic study

In published studies, it has been common for 
prediction models to perform differently for different 
stages of disease. The recurrence rate in stage I CRC 
patients is the lowest, and is the most difficult to predict 
accurately. In creating this prognostic prediction model, 
our objective was to achieve good performance for both 
stage I and II patients. Thus, samples from stage I and II 
patients were chosen for training and for determining the 
gene expression separation boundaries between high-risk 
and low-risk patients. Our results demonstrated that the 
model using targeted stage samples performed better than 
using non-targeted stage samples.

Some studies used samples from non-targeted 
stage I and IV patients (who exhibit a clean separation) 
to distinguish between targeted high-risk and low-risk 
stage II and III patients [20, 23, 27]. By this design, 
the true boundary between recurrent and non-recurrent 
patients could not be determined in these studies, since 
targeted stage II and III patients were not included in the 
training. This could explain the contradictory conclusions 
of different studies in which this approach was used; for 
instance, one model predicted recurrence for stage III 
patients but not for stage II patients [20], while another 
model predicted recurrence for stage II patients but not for 
stage III patients [27]. In a third study, recurrence could 
be predicted for both stage II and III patients; however, 
the results were obtained from two different platforms, so 
further validation of the models was needed [23] . 

Binary training

In many gene studies, three classifications have 
been used for patients: high-risk, intermediate-risk, and 
low-risk. Since an intermediate-risk classification does 
not allow a clinician to make a clear treatment decision, a 
binary high-risk and low-risk classification separation was 

Table 2: Performance of All three prediction models at default cutoff
Model Sensitivity Specificity Accuracy AUC HR HR Range P-Value

Recurrence 0.80 0.68 0.73 0.77 4.66 2.69 to 6.27 < 0.0001
5FU 0.76 0.59 0.70 0.67 3.16 1.69 to 8.23 = 0.0012
FOLFOX 0.88 0.47 0.72 0.68 4.13 4.07 to 14.90 < 0.0001

Abbreviations:
HR: Hazard Ratio of High-Risk vs Low-Risk Recurrence.
HR Range: HR 95% Confidence Interval Range.
AUC: Area Under the ROC Curve.
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chosen for this study. The binary training process forces the 
prediction model to learn the gene expression separation 
boundaries between two classifications of samples.  A 
binary-decision-based prediction model still allows low-
confidence high-risk and low-risk patients to be reclassified 
as intermediate-risk after the training prediction model is 
made. Such reclassification would yield a much smaller 
intermediate-risk population than training without the 
constraint of forced binary classification. 

Larger numbers of genes are needed for 
heterogeneous CRC

Many prognostic recurrence studies have included 
a small number of biomarkers, such as gene [19, 25, 26], 
microRNA [18], or protein expression markers [21], and 
have had limited success. In fact, when published gene 
or protein markers were retested in a separate study, 
these markers failed to predict recurrence [21]. Due to 
the limited performance of prediction models, some 
investigators have added clinicopathologic variables 
to gene-based prediction models to enhance the overall 
system performance [48, 49]. However, the addition of 

clinicopathologic variables seems contrary to the basic 
notion of using genomic information for prediction. 
Conceptually, for a gene-based prognostic analysis 
to be robust, the relevant gene information related to 
clinicopathologic variables should be extracted to ensure 
that the prediction does not require information from 
clinical variables to be added externally.  

The heterogeneity of cancer could be one factor that 
has limited the performance of studies in which smaller 
numbers of biomarkers were used. Marisa et al. [28] found 
a relationship between heterogeneity and recurrence when 
unsupervised hierarchical clustering of gene expression 
data was used to identify six molecular subtypes. Different 
subtypes were independently associated with different 
relapse-free survival times after adjustment for age, sex, and 
stage. Shibayama et al. reviewed all published prognostic 
models and found that there was little overlap among the 
gene lists. The authors cited the tumor heterogeneity of 
CRC as one of the reasons for this lack of overlap [30]. 
To overcome this heterogeneity issue, we chose to use 
microarrays so that a larger number of genes could be 
included in the models. In addition, the large number of 
genes detected by the microarray (most of which were not 

Figure 3: Drug efficacy prediction results for 5FU (A) and FOLFOX (B). 
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useful for the prediction) provided a stable baseline for 
calibrating the relevant genes used for prediction.

Different gene lists among studies

The genes selected for our recurrence prediction 
model were very different from those selected by 
Oncotype and ColoPrint. When we tested our samples 
for each of the 18 ColoPrint genes, we were not able to 
distinguish between recurrent and non-recurrent samples, 
most likely because of the different platforms and sample 
types used (PCR and fresh-frozen samples for ColoPrint 
vs. microarray and FFPE in this study). On the other hand, 
Oncotype used PCR, as ColoPrint did, but used FFPE 
samples for training, as we did in this study. In addition 
to BGN, Oncotype genes MK167 and MYBL2 could 
also be used to distinguish between recurrent and non-
recurrent samples in our dataset; however, their prediction 
performances were inferior to those of the other genes 
selected in our final model.  

This issue of divergent gene lists generated from 
different platforms was previously examined by the FDA’s 
Microarray Quality Control workshop. The disparity was 
found to be due to the different probes and labels used 
by each platform [50]. Tan et al. demonstrated that even 
when the same RNA samples were tested on three different 
commercial platforms, the resultant differentially expressed 
gene panels were very different [51]. The number of 
differentially expressed genes identified ranged from 34 to 
113, and only four genes were commonly selected across 
all three platforms. Therefore, it is not surprising that the 
biomarker panels generated by ColoPrint, Oncotype, and 
our study were so disparate, as they were generated with 
different platforms and types of samples. 

Results of recurrence prediction

The present method of genomic study allowed us 
to generate a much-improved recurrence prediction model 
for all three types of CRC: right-sided colon cancer, left-
sided colon cancer and rectal cancer. More importantly, 
the model was effective not only for stage II patients, but 
also for the more statistically challenging stage I patients. 
The consistency of performance for stage I and II patients 
over the three types of CRC indicated the robustness of 
this prediction model, and was an important improvement 
over other published results and the commercial services 
of Oncotype and ColoPrint.

The performance of our model was best represented 
by the high area under the curve of 0.77 for the Receiver 
Operating Characteristic curve. At the default cutoff value 
of 0, the sensitivity was 0.80, and the HR of recurrence in 
high-risk vs. low-risk CRC patients was 4.74. An important 
point is that the current results were generated by a forced 
binary decision approach. If the marginal patients between 
high-risk and low-risk patients were reclassified as 

intermediate-risk patients, the HR values would be higher. 
This HR value allows better identification of high-risk 
patients than those of the existing models. The five-year 
DFS difference between high-risk and low-risk patients 
was 46% (Figure 2A), about three times higher the DFS 
differences of Oncotype and ColoPrint.

Results of chemotherapy efficacy prediction 

The second part of this study addressed the problem 
of selecting the most effective adjuvant chemotherapeutic 
regimen. Currently, the efficacy of some chemotherapy 
drugs can be predicted by one or two markers; for instance, 
the efficacy of Cetuximab is predicted by KRAS/BRAF 
expression [52]. This approach is possible when the 
pathway information of a drug is known; however, this is 
not true for many drugs, especially cytotoxic therapeutics. 
At present, combination drug treatments including cytotoxic 
compounds are commonly used, and their efficacies depend 
on many factors and cellular pathways [47]. Even when 
the mechanism is understood, the prediction of efficacy is 
limited by knowledge of the specific pathway. For example, 
KRAS and BRAF are negative predictors (i.e., of who will 
not benefit from Cetuximab), but do not provide positive 
predictions of who will benefit from Cetuximab as part of a 
combination therapy. On the other hand, a whole-genome-
based analysis can extract information from many unknown 
pathways in the training process. Pathway analysis is 
critical for new scientific discoveries, but is not as efficient 
as whole-genome analysis in capturing discriminate factors 
for phenotype classification. 

In addition, chemotherapy efficacy prediction is more 
than just the ability to predict the efficacy of an individual 
drug. A critical component of treatment determinations is 
the ability to compare several drug efficacy predictions 
before selecting the optimal plan. In general, different 
prediction models are trained independently, and each 
model retains the characteristics of the training process. 
Since the conditions of each training are different, it is very 
difficult if not impossible to compare results from different 
models. We avoided this issue by constraining the training 
process to produce a pair of consistent 5FU and FOLFOX 
prediction models.

The efficacy of our chemotherapeutic prediction 
model is the best demonstration of the capability of full 
genomic analysis, especially for the complex combination 
drug regimen of FOLFOX. With the success of our 
chemotherapy efficacy prediction model, there is now a 
path toward developing a complete set of prediction models 
for early-stage CRC patients. Our prognostic prediction 
model can be used to select high-risk patients for adjuvant 
treatment, and the two chemotherapy prediction models 
can be used to select the proper adjuvant treatment and 
thus form a truly personalized treatment plan. 

It should be noted that the chemotherapeutic 
efficacy model was developed with stage III CRC patients, 
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since few stage I/II patients receive chemotherapy. If the 
drug prediction models generated from stage III patients 
are verified to be effective for stage I and II patients in 
prospective studies, we will have a set of predictions that 
can be used to form complete personalized treatment 
plans for early-stage CRC patients. For patients with 
more advanced stages of CRC, this approach can be used 
to evaluate additional chemotherapies in the future.

MATERIALS AND METHODS

Patients

This study, conducted at Taipei Veterans General 
Hospital, conformed to the guidelines of the ethics 
committee, and was approved by the Internal Review 
Board (VGHIRB Number: 2013-06-005AC). In total, 
593 patients with pathological stage I – III CRC who had 
undergone R0 curative resection between March 2003 and 
November 2010 at Taipei Veterans General Hospital were 
enrolled. Clinical information was prospectively obtained 
and recorded in a computerized database, including patient 
demographics (age, gender, and comorbidities), tumor 
characteristics (location, TNM stage, differentiation, and 
prognostic features), and follow-up data. After surgery, 
patients were examined at an outpatient department every 
three months for the first two years, every six months 
for the third and fourth years, and annually thereafter. 
Follow-up examinations included serum CEA and CA19-
9 level measurements, chest radiography, and abdominal 
ultrasonography. Abdominal/pelvic with- or without-
chest computed tomography was performed annually 
and whenever recurrence was suspected. Colonoscopy 
was performed one year after surgery and every two to 
three years thereafter. If cecal intubation was not achieved 
preoperatively, a colonoscopy was performed three to six 
months after operation.

In total, 235 patients with pathological early-stage 
(I and II) CRC who had undergone complete resection 
were included in the recurrence study. None of them 
received neoadjuvant treatment. Two hundred and ten 
of them did not receive adjuvant treatment after surgery, 
while 25 received adjuvant treatment but experienced 
recurrence during follow-up. Stage III CRC patients 
who had received adjuvant treatment were used for the 
chemotherapy efficacy studies; 192 patients received 5FU 
and 166 patients received FOLFOX.

Most early-stage CRC patients will not experience 
recurrence; thus, a prediction model developed with the 
data from all available patients will perform well for non-
recurrent patients but poorly for recurrent patients, due 
to the sampling bias introduced by the uneven numbers 
of non-recurrent and recurrent samples. In the current 
study, we selected comparable numbers of recurrent and 
non-recurrent patients to ensure that the prediction model 
developed would perform similarly for both groups.

Written informed consents for tissue collection 
were obtained from all patients. FFPE tissue blocks were 
retrieved from the Biobank of Taipei Veterans General 
Hospital. For each patient, the most representative part of 
the tumor, usually the solid part next to the center of the 
tumor with no necrotic tissue, was prospectively collected, 
processed, and stored in the Biobank of Taipei Veterans 
General Hospital. Samples were examined by an expert 
pathologist (TY Chou), who determined the percentage of 
tumor cells; only samples with > 40% tumor cells were 
included in this study.

Platform 

We analyzed samples with the GeneChip® Human 
ST 2.0 microarray (Affymetrix, Santa Clara, CA, USA) , 
a whole-transcript array that includes probes to measure 
30,654 mRNA and 11,086 long intergenic non-coding 
RNA (lincRNA) transcripts. The complete dataset 
(GSE81653) can be accessed at the NCBI Gene Expression 
Omnibus.

Data generation

Total RNA was extracted from 10-um FFPE tissue 
sections by means of QIAsymphony RNA kits. All tissue 
samples had the minimum 40% tumor cell percentage. 
RNA 6000 Nano kits (Agilent, Santa Clara, CA, USA) 
were used to check the quality of the total RNA. The RNA 
quality was safeguarded with a cutoff value zero of delta 
Ct against 18S with qPCR. The Ovation Pico WTA System 
(Nugen, San Carlos, CA, USA) was used to amplify 
cDNA from total RNA. MinElute Reaction CleanUP 
Kits (Qiagen, Germantown, MD, USA) were used for 
purification, while the Encore Biotin Module (Nugen) was 
used for fragmentation and labeling. The fragmented, end-
labeled cDNA samples were applied to the Affymetrix 2.0 
ST arrays. The arrays were washed and stained with the 
GeneChip Fluidics Station 450.

Data analysis 

Gene expression data were extracted from the 
Affymetrix CEL data file and normalized with the vendor’s 
robust multi-array average (RMA) software. The quality 
of labeling and hybridization was monitored with vendor-
specified spikes. Their values and the values of additional 
quality controls provided by the vendor’s Expression 
Console were within the specifications, ensuring the 
quality of the sample processing and gene expression data.

A supervised clustering method of KNN was used to 
analyze the gene expression data and generate a prediction 
model. Unknown samples were categorized as high-risk 
or low-risk depending on the classification of the KNN. 
The distance used to measure the closeness between 
samples was the correlation of their mRNA levels. A t-test 
was used to select the top 500 genes that best separated 
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high-risk and low-risk samples. The final genes chosen for 
prediction (Supplementary Table 3) and the optimal values 
of K (1-3) of KNN for the prediction were determined by 
20-fold training and testing iterations among samples. 

For each sample, the prediction model yielded a 
prediction score based on a particular cutoff value for a 
binary high-risk vs. low-risk decision. The positive or 
negative sign of the score indicated a high-risk or low-
risk prediction, respectively. A larger absolute value (e.g., 
score > 0.5 or score < –0.5) of the score indicated a greater 
confidence in the prediction, while a smaller absolute value 
(e.g., –0.5 < score < 0.5) of the score indicated a lower-
confidence classification. The default cutoff between a 
positive and a negative decision was zero, but other cutoff 
values could be used to trade sensitivity for specificity. 

Blind validation testing

A two-stage method was used to generate each of 
the three prediction models. In the first stage, one-third 
of the samples were set aside as the blind test set with 
no clinical information available. The remaining samples 
in the training set had unblinded clinical information to 
allow for the generation of the prediction models. After 
the training, the performance of the prediction model 
was determined with the blind test set. After the model 
yielded the prediction results for the previously reserved 
blind samples, only then were the clinical statuses of those 
samples revealed so that the prediction accuracy of the 
model could be calculated.

After the validation of the first-stage training 
process, no programming modifications were made to 
the model during the second stage of model generation. 
This ensured that no new bias was introduced. During 
the second stage, the training set and blind test sets were 
studied together, and a leave-five-out iteration method was 
used to calculate the final performance. 

Biomarkers used in commercial services

Oncotype and ColoPrint provide commercial 
services to predict the recurrence of stage II CRC patients. 
Oncotype uses a 12-gene assay, including seven cancer-
related genes (BGN, MKI67, MYBL2, GADD45B, FAP, 
INHBA, and C-MYC) and five reference genes (ATP5E, 
GPX1, PGK1, UBB, and VDAC2). ColoPrint uses an 18-
gene assay, including MCTP1, LAMA3, CTSC, PYROXD1, 
EDEM1, IL2RB, ZNF697, SLC6A11, IL2RA, CYFIP2, 
PIM3, LIF, PLIN3, HSD3B1, ZBED4, PPARA, THNSL2, 
and CA438802. 

Performance analysis 

The performance of the prediction model was 
characterized with the following measurements: the HR 
of recurrence in the predicted high-risk group vs. the low-
risk group; the sensitivity; the specificity; and the area 

under the curve of the Receiver Operating Characteristic 
curve. The system provided binary prediction results 
for all samples, i.e., there was not an intermediate-risk 
classification for the predictions. The HRs and curves were 
generated by the Kaplan-Meier method, and the comparison 
between the curves was performed with the log-rank test. 
All calculations were conducted in GraphPad’s PRISM 
software. 

Statistical analysis

The group distributions for each clinicopathological 
trait were compared through a two-tailed Fisher’s exact 
procedure and the chi-square test. Numerical values were 
compared through Student’s t-test. Data are expressed 
as the mean ± standard deviation. Multivariate analysis 
was performed with the Cox proportional hazard model. 
Statistical significance was defined as P < 0.05. Statistical 
analyses were performed with the SPSS package (version 
16.0 for Windows, SPSS, Chicago, IL, USA). 
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