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ABSTRACT
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in 

adults despite contemporary gold-standard first-line treatment strategies. This 
type of tumor recurs in virtually all patients and no commonly accepted standard 
treatment exists for the recurrent disease. Therefore, advances in all scientific and 
clinical aspects of GBM are urgently needed. Epigenetic mechanisms are one of the 
major factors contributing to the pathogenesis of cancers, including glioblastoma. 
Epigenetic modulators that regulate gene expression by altering the epigenome and 
non-histone proteins are being exploited as therapeutic drug targets. Over the last 
decade, numerous preclinical and clinical studies on histone deacetylase (HDAC) 
inhibitors have shown promising results in various cancers. This article provides 
an overview of the anticancer mechanisms of HDAC inhibitors and the role of HDAC 
isoforms in GBM. We also summarize current knowledge on HDAC inhibitors on the 
basis of preclinical studies and emerging clinical data.

INTRODUCTION

Glioblastoma multiforme (GBM) is an aggressive, 
highly invasive, vascularized brain tumor [1]. Despite 
multimodal treatment, prognosis is unfortunately 
very poor; less than 5% of patients surviving at 5 
years following initial diagnosis. Standard regimen 
includes maximum safe surgical resection followed 
by chemoradiation therapy [2]. Genetics, epigenetics, 
bacterial infection, and many other factors influence GBM 
oncogenesis, but the molecular mechanism underlying 
gliomagenesis is poorly understood [3, 4]. Conventional 
chemotherapy has limited efficacy in GBM due to poor 
blood-brain barrier (BBB) penetration, intratumor 
heterogeneity, intrinsic GBM resistance, and nonspecific 
toxicity [1, 5]. Based on successful preclinical studies, 
many clinical trials have tested the efficacy of novel 
therapies, but improved survival for patients with GBM 
has been limitedly achieved over the past few decades [6]. 
Therefore, further work is urgently required to discover 
novel therapeutic targets and develop more effective 
combination strategies for GBM treatment. 

Histone deacetylase (HDAC) inhibitors have evoked 
great interest for the treatment of numerous malignancies 
because they are able to change transcriptomic profiles 
to promote tumor cell death. Hallmark features of GBM, 

including enhanced proliferation, invasion and migration, 
angiogenesis, and resistance to apoptosis, are targeted 
by HDAC inhibitors. The HDAC inhibitors vorinostat, 
panobinostat, valproic acid (VPA), and entinostat are well-
studied epigenetic agents that effectively radiosensitize 
various tumors, including GBM [7]. HDAC inhibitor is 
among the successful examples of epigenetic therapy. 
Several HDAC inhibitors are US FDA approved, including 
the hydroxamic acid-based compounds vorinostat, 
panobinostat, belinostat, and the depsipeptide romidepsin 
for hematological malignancies [8]. Vorinostat [9-12] and 
VPA [13] are currently being tested in clinical trials on 
GBM as either monotherapies or combination therapies. 
The other FDA-approved epigenetic drugs, azacytidine 
and decitabine, DNA methyltransferase inhibitors [14], 
have not been clinically tested to evaluate its anticancer 
effect on GBM. Although drugs targeting histone 
methyltransferases and demethylases have considerable 
potential, their specific effects and the stability of such 
effect must be elucidated in greater detail to develop as 
antitumor agents. [15]. To the best of our knowledge, no 
drugs that target histone methylation or epigenetic readers 
are FDA approved or under clinical trials. To date, of 
the epigenetic agents, only HDAC inhibitors have been 
investigated in clinical trials as antitumor agents against 
GBM. Thus, this review focuses on recent studies that 
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highlight the role of HDAC isoforms and discuss the 
preclinical and clinical data on HDAC inhibitors as 
therapeutic agents for GBM. 

GLIOBLASTOMA MULTIFORME

Glioblastoma is the most common malignant 
primary tumor of the central nervous system in adults. 
GBM represents approximately half of all gliomas and 
15% of primary brain tumors [1]. WHO grade IV GBM, 
which is the highest grade glioma, is divided into two 
major classes: “primary” and “secondary.” A vast majority 
of GBMs arise de novo as primary GBMs in elderly 
patients. Secondary GBMs, those that arise from a pre-
existing glioma of WHO grade II or III, are less frequent 
[16, 17]. Most secondary GBMs develop in younger 
patients ( < 45 years). The disease incidence continues to 
increase with age and the median age at diagnosis is 64 
years. Survival rates are poor; only approximately 34% 
of patients survived for 1 year, 12% for 2 years, and less 
than 5% for 5 years from the time of diagnosis. Older age 
and incomplete surgical resection are associated with poor 
survival [18, 19]. GBM remains one of the deadliest of 
malignancies, with limited treatment options and a high 
rate of recurrence [2, 20, 21]. 

While histologically identified ischemic necrosis 
and elevated microvascular proliferation, GBM is more 
accurately characterized and distinguished by its genomic 
and epigenomic profiles [19]. The Cancer Genome Atlas 

(TCGA) created a gene expression-based molecular 
classification system in which GBM is categorized 
into mesenchymal, classical, neural, and proneural 
subtypes [22]. These subtypes were compared with the 
corresponding normal neural cell types to determine 
the possible cellular origin for each of these tumors; 
correlations between subtype and clinical response were 
determined. TCGA research network reported that three 
signaling pathways are frequently modified in GBM: 
receptor tyrosine kinase (RTK)/Ras/phosphoinositide 
3-kinase (PI3K), p53, and retinoblastoma (Rb) signaling. 
In adults, components of the RTK/Ras/PI3K pathway are 
mutated in 88% of GBMs, those of the p53 pathway in 
87%, and those of the Rb pathway in 78%. Mutations 
such as amplification of the epidermal growth factor 
receptor (EGFR) can be found in 45% of GBMs, gain of 
PI3K function in 15%, and loss of phosphatase and tensin 
homolog (PTEN) in 36% [23, 24]. These discoveries have 
led to a better understanding of the molecular signature of 
GBM and have revealed numerous consistent changes in 
genes and pathways [4, 16, 22, 25, 26]. However, there is 
still an unmet need to translate these findings into clinical 
practice, identify predictive biomarkers, and improve 
outcomes for patients with GBM.

CURRENT STANDARD TREATMENT 

The current first-line standard regimen for GBM is 
an aggressive combination therapy, including maximum 

Figure 1: Antitumoral activity of HDAC inhibitors
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safe surgical resection and adjuvant radiotherapy with 
concurrent and adjuvant temozolomide chemotherapy 
[2, 16]. Surgical resection is often compromised by the 
diffusely infiltrative nature of gliomas, which recur even 
after gross total resection. In addition, these tumors 
often invade critical neurological structures, precluding 
complete surgical resection [19, 27]. Radiation therapy 
following surgery increases the median survival times 
ranged from 14 to 36 weeks [28]. The benefits of treatment 
with radiation were initially established using whole 
brain radiotherapy, but improved technology (e.g., field 
radiation therapy) has markedly reduced the associated 
side effects [19]. A total radiation dose of 60 Gy delivered 
to the tumor provides the maximum survival benefit [29]. 

The addition of the alkylating agent temozolomide 
to postoperative radiation or concurrent temozolomide 
and radiotherapy is the only chemotherapeutic regimen 
that significantly improves the overall survival (OS) of 
patients with GBM. The methylation status of MGMT (O6-
methylguanine-DNA methyltransferase), a DNA-repair 
gene, is used as a GBM predictor because it is the major 
relevant biomarker for the response to temozolomide 
treatment [24]. Silencing of MGMT expression by 
promoter methylation impairs the ability of tumor cells 
to repair the DNA damage induced by temozolomide, 
further decreasing tumor cell survival [30]. Patients whose 
tumors have the unmethylated MGMT gene promoter also 
experience a modest but less significant benefit from the 
addition of temozolomide. Thus, combined treatment 
with temozolomide and radiation remains the standard 
regimen for all patients with GBM [19, 31]. However, the 
improved 2-year survival with temozolomide treatment is 
only in 27% [24], which is still unsatisfactory. 

Currently, bevacizumab (Avastin) is the only 
approved therapeutic agent for the treatment of patients 
with recurrent GBM. Bevacizumab is a humanized 
therapeutic antibody that specifically binds to vascular 
endothelial growth factor (VEGF)-A, disrupting VEGF-
VEGF receptor interaction and preventing angiogenesis 
[32, 33]. Because GBM tumors are particularly 
vascular and overexpress numerous angiogenic factors, 
antiangiogenic therapy is efficient. A phase II trial of 
combined treatment with bevacizumab and irinotecan 
(a topoisomerase 1 inhibitor) in recurrent GBM showed 
increased OS from 4.1 to 9.2 months [11]. The 6-month 
and 12-month survival rates were 77% and 31%, 
respectively [33-35]. However, patients who had received 
previous bevacizumab therapy had shorted PFS and OS. 
Bevacizumab was subsequently investigated in phase 
III trials for newly diagnosed GBM, but there was no 
effect on overall patient survival. In addition, phase III 
trials are currently being tested to evaluate the efficacy 
of bevacizumab with temozolomide and radiotherapy 
for newly diagnosed GBM (NCT00884741 and 
NCT00943826) [19, 36]. 

HDAC EXPRESSION IN GBM

The human genome contains 18 known HDACs, 
which are grouped into four classes on basis of 
phylogenetic analysis [37, 38]: class I (HDAC1, 2, 3 and 
8), IIa (HDAC4, 5, 7, 9) and IIb (HDAC6, 10), III (SIRT1-
7) and VI (HDAC11). The HDAC family is separated into 
Zn2+-dependent (classes I, II and IV) and Zn2+-independent 
(class III), nicotinamide-adenine dinucleotide-dependent 
enzymes. Class I, II and IV HDACs are also referred to 
as classical HDACs. Most HDAC inhibitors available 
as anticancer agents target class I and II HDACs. Class 
I HDACs are primarily nuclear proteins and have 
histones as principle target substrates. Class I HDACs 
are ubiquitously expressed in all tissues whereas class II 
HDACs are tissue-specifically expressed [39]. Class II 
HDACs shuttle between the nucleus and cytoplasm and 
have histone and non-histone proteins as primary targets. 
HDAC11 (class IV) is phylogenetically most closely 
related to HDAC3 and 8 but also has some features of 
class II HDACs [40]. Class III HDAC is also called 
sirtuins (SIRT) and comprises seven SIRT isoforms 
(SIRT1-7), which differ in their substrate specificities, 
functions and subcellular localization [41]. 

HDACs are overexpressed and mutated in various 
solid and hematologic malignancies and play key roles 
in tumorigenesis [38, 39]. The expression of individual 
HDACs is largely inversely correlated with disease-free 
and overall survival rates. The aberrant expression of 
HDACs correlates with a poor prognosis [42]. However, 
the expression and functions of HDACs in GBM are not 
well characterized. Recent studies have begun to focus on 
the expression patterns of HDACs in GBM. GBM cells 
and primary GBM tissues exhibit slightly and variably 
increased HDAC1, 3 and 6 expression levels compared to 
non-neoplastic brain tissues at both the mRNA and protein 
levels [43]. This result was further confirmed in silico 
using the REMBRANDT glioma dataset available through 
a GlioVis online application. In particular, HDAC1 and 3 
expression levels correlate with WHO tumor grades, with 
the highest expression levels occurring in GBM samples. 
Furthermore, Kaplan-Meier survival curve analyses show 
that HDAC3 expression is associated with a poor survival 
of in GBM patients. Another study demonstrates that 
HDAC9 is overexpressed in prognostically poor GBM 
patients using TCGA and French’s datasets [44]. This 
result was further confirmed in primary GBM tissues and 
cell lines. Class III HDAC SIRT2 positively correlates with 
GBM malignant progression and inversely correlated with 
the survival time of patients with GBM [45]. In contrast, 
SIRT1 and 6 are downregulated in GBM tissues and cell 
lines [46-48]. The role of SIRT in GBM is currently under 
debate due to conflicting findings suggesting that SIRT 
acts as a tumor suppressor or as an oncogene [49, 50]. 
SIRT inhibitors have not been clinically tested to evaluate 
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their anticancer effect on GBM. Thus, this review focuses 
on Zn2+-dependent HDACs and their inhibitors. 

HDAC INHIBITORS AS CANCER 
THERAPY FOR GBM

HDAC inhibitors are classified as epigenetic 
agents that target the aberrant epigenetic characteristics 
of tumor cells. Epigenetic alterations modulate cellular 
phenotype through changes in gene expression without 
modifying the DNA sequence [19]. HDAC inhibitors 
are known as effective therapeutic anticancer agents via 
multiple mechanisms, including the induction of cell-
cycle arrest, differentiation, senescence, intrinsic and 
extrinsic apoptosis, mitotic cell death, autophagic cell 
death, generation of reactive oxygen species, inhibition of 
angiogenesis and metastasis, and improvement in tumor 
immunity [8, 51] (Table 1 and Figure 1). Because these 
diverse effects on cancer cells overlap, HDAC inhibitors 
are very attractive as single agents and in combination 
with other therapies (Table 2). HDAC inhibitors are 

a promising class of therapeutic agents that are under 
investigation for treating different types of tumors, 
including GBM.

PRECLINICAL STUDIES OF HDACS AND 
HDAC INHIBITORS IN GBM

Pan-Histone deacetylase inhibitors as 
radiosensitizers

Several preclinical studies have revealed that HDAC 
inhibitors act as potent radiosensitizers in various cancers, 
including GBM [52-55], breast cancer [56], colorectal 
cancer [57], head and neck cancer [58], non-small-cell lung 
cancer [59], melanoma [60], and prostate cancer [53]. The 
exact molecular mechanism underlying HDAC inhibitor-
induced radiosensitization remains elusive. However, 
evidence suggests that it partially involves the inhibition of 
the DNA damage repair response [19]. HDAC inhibitors 

Table 1: Antitumor activity of HDAC inhibitors 
Biological effects Key effects of HDAC inhibitors
• Direct effects on tumor cells

Cell death
• Induction of apoptosis through the intrinsic and extrinsic apoptosis pathways
• Enhanced ROS production and decreased production of free radical scavengers
• Immunogenic cell death

DNA damage and repair • Accumulation of DNA damage through transcriptional downregulation or impaired 
function of DNA repair proteins

Cell cycle arrest • Induction of cell cycle arrest
Senescence • Induction of senescence
Autophagy • Induction of autophagy
Differentiation • Induction of differentiation

Tumor immunogenicity • Enhanced immunogenicity
• Enhanced antigenicity of tumor cells

• Indirect effects on tumor cells

Immunomodulation

• Inhibition of dendritic cell differentiation and function
• Cytotoxicity to macrophages, neutrophils, and eosinophils
• Induction of apoptosis in proliferating B cells
• Increased tumor killing by NK cells and cytotoxic T cells
• Increased differentiation and function of CD8+ T cells
• Inhibition immunosuppressive functions of regulatory T cells
• Suppression of inflammatory cytokine production
• Increased expression of PD-L1 

Inhibition of angiogenesis • Suppressed expression of pro-angiogenic genes

Inhibition of metastasis • Suppressed expression of pro-metastatic genes
• Increased expression of anti-metastatic genes

Glucose metabolism • Inhibition of glucose utilization
Abbreviations: NK, natural killer; ROS, reactive oxygen species; PD-L1, programmed death-ligand 1.
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block DNA double-strand break (DSB) repair following 
radiation, as evidenced by the continuous expression of 
phosphorylated H2AX (γH2AX) Several HDAC inhibitors 
delay the dispersal of γH2AX foci in irradiated cells [52, 
53, 55, 57, 59, 60]. Despite the undefined mechanism for 
this defective DNA DSB repair process, HDAC inhibitors 
may affect at least two components of this repair process. 
They induce the downregulation of DNA repair proteins, 
including Ku70, Ku80, Ku86, Rad50, and Rad51 [59, 62]. 
Also, the binding of HDACs to DNA damage response 
proteins may play a key role in HDAC inhibitor-induced 
radiosensitization [19, 63]. 

Furthermore, HDAC inhibitors may influence 
the response of tumor cells to radiation by changing 
the chromatin structure. Pan-HDAC inhibitor LBH589 
(panobinostat) treatment induced chromatin relaxation and 
this chromatin decondensation correlated with increased 
levels of DNA DSBs and radiosensitivity [19, 64]. Thus, 
HDAC inhibitor-induced chromatin decompaction may 
increase DNA DSBs induced by radiation, ultimately 
increasing tumor cell death. Another pan-HDAC inhibitor, 
suberoylanilide hydroxamic acid (SAHA; vorinostat), 
has shown a similar effect in GBM [65]. DNA damage 
response markers and antiapoptotic proteins predict the 
radiosensitization efficacy of vorinostat and panobinostat 
in patient-derived GBM cells [66]. Responses to SAHA 

and LBH589 correlate with pChk2 and Bcl-xL levels. 
In patient-derived GBM stem-like cells, the Bcl-2 
inhibitor obatoclax is reported to abrogate resistance to 
SAHA and LBH589 as radiosensitizers [66]. Other class 
I HDAC inhibitors (MS-275 and VPA) were also tested 
for administration after irradiation, with differing results. 
MS-275 displayed only minimal radiosensitization 
after irradiation [19, 53]. In contrast, VPA effectively 
radiosensitized cells when administered up to 24 h after 
radiation treatment, although the augmented degree was 
not strong compared with that of cells treated both before 
and after irradiation [19, 67]. Therefore, these data indicate 
that sufficiently high HDAC inhibitor levels should be 
maintained in tumor cells both before and after irradiation 
because the cells seek to repair the DNA damage induced 
by radiation [19, 29]. Overall, HDAC inhibitors seem to 
prevent DNA DSB repair, resulting in increased tumor cell 
death. 
Pan-HDAC inhibitors as combination drugs

In addition to radiosensitizers, HDAC inhibitors 
have been used as chemosensitizers in GBM [68, 69]. 
SAHA affects gene expression patterns and proliferation of 
glioma cells. After SAHA treatment in GBM cell lines, the 
expression level of many proapoptotic, antiproliferative 
genes (DR5, TNFα, p21, and p27) increased and that of 

Table 2: Preclinical studies on HDAC inhibitors as therapeutic agents for GBM
HDAC 
inhibitor

Chemotherapeutic or 
biological agents

Radiation 
therapy (RT) Function Ref

Valproic acid - RT
Protection of normal hippocampal neurons
Radiosensitizer up to 12 h after post-
irradiation 

[67]

Vorinostat
(SAHA)

 - RT
Induction of chromatin decondensation
Increased DNA DSBs
Induction of apoptosis 

[65,66]

Bcl2 inhibitor (obatoclax) RT
Synergistic apoptotic GBM cell death
Overcome resistance to SAHA as a 
radiosensitizer

[66]

KDM1A inhibitor
(tranylcypromine) - Synergistic apoptotic GBM cell death [68]

PARP inhibitor
(olaparib) -

Decline of DDR marker expressions 
Impaired cell cycle progression
Synergistic apoptotic GBM cell death

[6]

Panobinostat
(LBH589)

- RT
Induction of chromatin decondensation
Increased DNA DSBs
Induction of apoptosis

[64, 66]

Bcl2 inhibitor (obatoclax) RT
Synergistic apoptotic GBM cell death
Overcome resistance to LBH589 as a 
radiosensitizer

[66]

Entinostat 
(MS-275) - RT Minimal radiosensitizer after post-irradiation [53]

HDAC6 
inhibitors
Ricolinostat
(ACY-1215),
Tutastatin A,
CAY10603

Temozolomide -

Inactivation of the EGFR pathway
Inhibition of cell proliferation
Induction of apoptosis
Impaired spheroid formation
Overcome resistance to TMZ

[80]

http://www.ncbi.nlm.nih.gov/pubmed/25305451
http://www.ncbi.nlm.nih.gov/pubmed/25305451
http://www.ncbi.nlm.nih.gov/pubmed/25568669
http://www.ncbi.nlm.nih.gov/pubmed/25568669
http://www.ncbi.nlm.nih.gov/pubmed/25568669
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many antiapoptotic, progrowth genes (CDK2, CDK4, 
and the genes encoding cyclins D1 and D2) decreased 
[70]. HDAC1/2 and histone H3K4 demethylase (LSD1/
KDM1) are components of common nuclear corepressor 
complexes and the acetylation status of adjacent histone 
residues affects the activity of LSD1 [71]. These results 
provide the rationale for using dual inhibitors of LSD1 
and HDAC for cancer treatment. The inhibition of LSD1 
renders GBM cells sensitive to SAHA [68]. Combined 
treatment with tranylcypromine and SAHA synergistically 
induces apoptotic cell death in GBM cells. These data 
suggest that LSD1 and HDACs cooperatively modulate 
the key pathways of GBM cell death and verify the 
combined administration of LSD1 and HDAC inhibitors 
as a therapeutic strategy for GBM.

Several studies report constitutively active DNA 
damage response in malignant gliomas caused by 
continuous oxidative and replicative stress [6, 72-74]. 
In addition to constitutive activation of DNA damage 
response, genomic instability causes therapeutic resistance 
and high recurrence rates. Inhibition of poly (ADP-
ribose) polymerase (PARP) efficiently eradicates GBM 
cells, either alone or in combination with chemoradiation 
[74, 75]. PARP inhibition increases the radiosensitivity 
of radioresistant GBM cells. Currently, a phase I trial 
of olaparib (AZD2281; a potent inhibitor of PARP1/2) 
in conjunction with temozolomide is being investigated 
in patients with relapsed GBM (ClinicalTrials.gov ID: 
NCT01390571) [6]. The expression of all DNA damage 
response markers (BRCA1, Rad51, and PARP1) was 
observed to further decrease when combined with SAHA 
and olaparib. This combination treatment synergistically 

reduced GBM cell survival, induced apoptosis, and 
inhibited cell-cycle progression [6]. These data also 
provide a preclinical rationale for combined treatment with 
SAHA and olaparib, which are already under investigation 
individually in clinical trials. 

Isoform-selective HDAC inhibitors

Most of the GBM studies to date have focused on 
testing the antitumor effects of pan-HDAC inhibitors 
such as vorinostat and VPA rather than evaluating the 
role of HDAC in GBM. Despite some encouraging results 
from preclinical studies, early clinical trials showed only 
modest therapeutic benefits. Therefore, the value of pan-
HDAC inhibitors in clinical practice is needed for further 
verification in larger prospective trials to address the 
function of each HDAC isoform in GBM. Few recent 
studies investigated the role of HDAC isoforms in GBM. 
New molecules that target individual HDACs are under 
preclinical development (such as PCI-34051, which 
targets HDAC8) or clinical trials (such as ACY-1215, 
which targets HDAC6). 

HDAC6

HDAC6 belongs to class IIb HDAC family. This 
enzyme deacetylates various substrates, including 
cortactin, Hsp90, and α-tubulin in the cytoplasm and 
nucleus [37]. HDAC6 controls both epigenetic and 
non-epigenetic mechanisms by shuttling between these 
two cellular compartments. An increasing number of 

Table 3: Current clinical trials on HDAC inhibitors in GBM

HDAC 
inhibitor

Chemotherapeutic or biological 
agents

Radiation
therapy 
(RT)

Type of malignancy Phase Trial identifier

Valproic 
acid Temozolomide RT

GBM that has not been 
previously treated with 
chemotherapy or radiation

2 NCT00302159

Vorinostat

 - - Progressive or recurrent 
glioblastoma 2 NCT00238303

Temozolomide - Malignant glioma: glioblastoma 1 NCT00268385
Temozolomide RT Newly diagnosed glioblastoma 1,2 NCT00731731
Temozolomide
+ isotretinoin - Recurrent glioblastoma 1,2 NCT00555399

Bortezomib - Progressive, recurrent 
glioblastoma 2 NCT00641706

Bevacizumab - Recurrent glioblastoma 2 NCT01738646
Temozolomide
+ bevacizumab - Recurrent glioblastoma 1,2 NCT00939991

Bevacizumab
+ irinotecan - Recurrent glioblastoma 1 NCT00762255

Belinostat Temozolomide RT Newly diagnosed glioblastoma 2 NCT02137759

Romidepsin - - Recurrent high grade gliomas: 
glioblastoma 1,2 NCT00085540
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studies suggest that HDAC6 is also a pivotal regulator of 
cancer-related signaling pathways, including the EGFR, 
mitogen-activated protein kinase (MAPK), protein kinase 
B, and p53 signaling pathways. These findings indicate 
HDAC6 as a potential therapeutic target for cancer 
therapy [76]. Aberrant expression patterns of HDAC6 are 
found in various cancers, including breast cancer [77], 
oral squamous cell carcinoma [78], ovarian cancer [79], 
GBM [80], and mouse tumor models. Recently, Wang 
et al. reported that HDAC6 increases proliferation and 
imparts temozolomide resistance in GBM [80]. HDAC6 
is overexpressed in GBM tissues and cell lines. HDAC6 
overexpression facilitates the proliferation and spheroid 
formation of GBM cells and renders GBM cells resistant 
to temozolomide. Conversely, knockdown or inactivation 
of HDAC6 prevents cell proliferation, induces apoptosis, 
hinders spheroid formation, and renders GBM cells more 
sensitive to temozolomide. Moreover, temozolomide 
resistance is associated with activation of EGFR and 
increased expression of HDAC6. The HDAC6 inhibitors 
(ACY-1215, tubastatin A, and CAY10603) abrogate 
temozolomide resistance by decreasing and inactivating 
EGFR protein. These data imply that the inhibition 
of HDAC6 is a novel approach for treating GBM and 
overcoming resistance to temozolomide. ACY-1215 
(ricolinostat), a leading HDAC6-selecitve inhibitor, 
is currently being tested in advanced clinical trials for 
hematological malignancies (myeloma and lymphoid 
malignancies) [81, 82]. Thus, these studies and the fact 
that ACY-1215 is already under clinical trials imply that 
HDAC6 inhibitors are worthy of consideration for further 
clinical tiral in GBM patients. 
HDAC9

HDAC9 is a member of the class IIa HDAC family 
and controls regulatory T cell function, cardiac growth, 
and muscle differentiation [83-85]. It has been reported 
that HDAC9 expression is significantly upregulated 
in cervical cancer [86], medulloblastoma [87], acute 
lymphoblastic leukemia [88], and GBM [44]. HDAC9 
is overexpressed in GBM patients who have a poor 
prognosis. HDAC9 promotes GBM proliferation and 
tumor formation via activation of the transcription 
coactivator with PDZ-binding motif (TAZ)-mediated 
EGFR pathway [44]. HDAC9 directly interacts with 
TAZ, an oncogene and an essential downstream effector 
of the Hippo pathway. Depletion of HDAC9 reduces the 
expression of TAZ. A significant effort is underway to 
find new molecules targeting class IIa HDACs, including 
HDAC9. However, to date, no HDAC9-specific inhibitors 
are available. Nevertheless, these results provide new 
evidence of a promising target for GBM treatment.
HDAC2

HDAC2 is a member of the class I HDAC family. 
High expression of HDAC2 has been reported in GBM 
cells [89]. Depletion of HDAC2 by siRNA suppresses 

proliferation, migration, and invasion of GBM cells and 
renders the cells sensitive to temozolomide. HDAC2 
depletion significantly downregulates the mRNA and 
protein expression of MRP1 with no effect on ABCB1 
and ABCG2. Schisandrin B, a specific inhibitor of MRP1, 
further enhances the temozolomide sensitivity in HDAC2 
knockdown GBM cells. This finding suggests that HDAC2 
is a viable target for GBM therapy and improves the 
efficiency of temozolomide therapy. However, to date, no 
HDAC2-specific inhibitors are available. 

CLINICAL TRIALS OF HDAC 
INHIBITORS IN GBM

Vorinostat, depsipeptide, panobinostat, and 
belinostat are the FDA-approved HDAC inhibitors for 
cancer therapy; these drugs are used specifically for 
the treatment of refractory cutaneous T-cell lymphoma 
(CTCL), peripheral T-cell lymphoma (PTCL), and multiple 
myeloma [8]. Numerous clinical trials are evaluating 
the safety and efficacy of other HDAC inhibitors, used 
singly or in combination, for the treatment of various 
malignancies [19] (https://clinicaltrials.gov). In general, 
the side effects of HDAC inhibitors include dehydration, 
diarrhea, fatigue, nausea, thrombocytopenia, lymphopenia, 
neutropenia, and prolonged QT [19, 90]. Despite favorable 
toxicity profiles and reversible adverse effects, HDAC 
inhibitors seem to be not sufficient as monotherapies 
in solid tumors compared with current standard cancer 
therapies, partly because of their poor pharmacokinetic 
properties [11, 91]. However, the potential of HDAC 
inhibitors as cancer therapeutic agents is apparent 
from clinical trials combining HDAC inhibitors with 
chemotherapies or targeted therapies. Table 3 summarizes 
the ongoing clinical trials of HDAC inhibitors in GBM. 

Vorinostat

Vorinostat is a small-molecule inhibitor of human 
class I and II HDACs that was the first FDA-approved 
HDAC inhibitor for the treatment of refractory CTCL. 
It has been reported that vorinostat can penetrate BBB 
and possesses antitumor effects in glioma models [70, 
92]. Vorinostat is the most advanced HDAC inhibitor 
to enter clinical trials in GBM and is well tolerated as a 
monotherapy as well as combination therapy in recurrent 
GBM. A phase II trial tested the efficacy of vorinostat in 
patients with recurrent GBM [11, 33]. A total complete 
response (CR) or partial response (PR) occurred in 
only 3% of patients. Median progression-free survival 
(PFS) was 1.9 months and 6-month PFS was 17%. This 
trial showed modest monotherapy activity of vorinostat 
with a median OS of 5.7 months in recurrent GBM. 
There are multiple ongoing phase II trials of vorinostat 
in conjunction with targeted agents, temozolomide, and 

https://clinicaltrials.gov
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radiotherapy. A phase I trial of vorinostat in conjunction 
with temozolomide was well tolerated in patients with 
high-grade glioma, although thrombocytopenia and a 
related grade V hemorrhage were dose-limiting toxicities 
(ClinicalTrials.gov ID: NCT00268385). A phase I/II 
trial of vorinostat with radiotherapy and concomitant 
temozolomide demonstrated reasonable tolerability in 
newly diagnosed GBM, although the phase II efficacy 
information is not yet published (NCT00731731). A phase 
I/II trial of vorinostat, temozolomide, and isotretinoin in 
recurrent GBM is underway (NCT00555399). Another 
phase II trial investigated the effects of combination 
treatment of vorinostat with bortezomib (a proteasome 
inhibitor) in recurrent GBM [10, 33]. However, the trial 
was stopped because patients did not obtain 6-month PFS 
on interim analysis. The reduction of antitumor activity of 
bortezomib in GBM is likely due to lack of penetration of 
the BBB [93]. A phase I trial of vorinostat in combination 
with bevacizumab and irinotecan (a topoisomerase I 
inhibitor) in recurrent GBM found the same maximum 
tolerated dose for vorinostat with less thrombocytopenia. 
In addition, this study showed improved PFS and OS 
compared to that of vorinostat alone (NCT00762255) 
[9]. A phase II trial of vorinostat and bevacizumab for 
recurrent GBM is ongoing (NCT01738646). 

Panobinostat

Panobinostat (LBH589) is a potent, small-molecule 
inhibitor of class I, II, and IV HDACs that was FDA-
approved for the treatment of multiple myeloma [94]. 
Panobinostat shows antitumor and antiangiogenic 
effects in glioma. A phase II trial of panobinostat in 
combination with bevacizumab in recurrent GBM was 
well tolerated. However, the trial was terminated because 
combination regimen did not significantly improve PFS at 
6 month compared to historical controls of bevacizumab 
monotherapy (NCT00859222) [95].

Valproic acid

VPA is a class I HDAC inhibitor as well as an 
antiepileptic drug [19], has a low toxicity profile [96] and 
effectively crosses BBB [97]. VPA showed impressive 
preclinical efficacy as a radiosensitizer in glioma cells 
at a dose comparable to that achievable clinically [98-
101]. In contrast, it had a radioprotective effect on normal 
brain tissue and hippocampal neurons [102, 103]. Several 
retrospective studies analyzed the effects of VPA on the 
survival of GBM patients [104-106]. Although these 
results have suggested favorable effects of VPA, whether 
VPA improves the OS of GBM patients is debatable 
[107]. However, a phase II trial of VPA, temozolomide, 
and concurrent radiotherapy for GBM patients was 
investigated and promising results were recently reported 

[13]. The median OS is reported to be 29.6 months in 
patients with newly diagnosed GBM. The most common 
grade III/IV toxicities of the combination regimen are 
metabolic and laboratory toxicities (8%), neurological 
toxicity (11%), and blood and bone marrow toxicity (32%) 
(NCT00302159) [107], which seem to be well tolerated. 
Based on the considerable preclinical and retrospective 
data, VPA is considered to be one of the most promising 
agents for GBM treatment, but prospective data are still 
limited [107]. Further investigations are needed to assess 
its efficacy and clarify the optimal treatment.

Romidepsin

Romidepsin (FK228) is a class I HDAC inhibitor 
[108] and was the second FDA-approved HDAC inhibitor 
for the treatment of refractory CTCL and PTCL [109]. It 
induces apoptosis and inhibits proliferation and metastasis 
of GBM cells [110]. Romidepsin was studied in a phase I/
II trial on patients with recurrent high-grade gliomas, but 
at the standard dose and schedule, it was ineffective for 
patients with recurrent GBM (NCT00085540) [111]. 

CONCLUSIONS

Despite advances in therapeutics and diagnostics, 
the prognosis of GBM is still poor, and clinically relevant 
biomarkers have not been established. Due to the 
heterogeneity of GBM tumors, new strategies have shown 
clinical limits in terms of efficacy and side effects. We need 
to understand the complexity of GBM to offer insight into 
the prognosis and management of this incurable disease. 
GBM tumorigenesis and chemoresistance are mediated by 
multiple factors, suggesting that multitargeted strategies 
are more efficient. Therefore, classification of GMB 
patients based on genetic, epigenetic, and transcriptional 
profiling data might be beneficial for selecting drugs 
for their treatment and predicting patient outcomes. 
Indeed, progress in the molecular classification of GBM 
contributes to develop more effective targeted therapeutic 
agents and combination strategies and to predict patient 
outcome. However, this progress is still unsatisfactory. 
We should pursue new discoveries that come from basic 
science and translate these scientific findings into effective 
clinical practice. 
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