
Oncotarget12820www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/                 Oncotarget, 2017, Vol. 8, (No. 8), pp: 12820-12830

Aberrant methylation patterns in colorectal cancer: a meta-analysis
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ABSTRACT
Colorectal cancer is among the leading causes of cancer death worldwide. 

Despite numerous molecular characterizations of the phenomenon, the exact 
dynamics of its onset and progression remain elusive. Colorectal cancer onset has 
been characterized by changes in DNA methylation profiles, that, owing to the 
stability of their patterns, are promising candidates to shed light on the molecular 
events laying at the base of this phenomenon.

To exploit this stability and reinforce it, we conducted a meta-analysis on 
publicly available DNA methylation datasets generated on: normal colorectal, 
adenoma (ADE) and adenocarcinoma (CRC) samples using the Illumina 450k array, 
in the systems medicine frame, searching for tumor gene episignatures, to produce 
a carefully selected list of potential drivers, markers and targets of the disease. 
The analysis proceeds from a differential meta-analysis of the methylation profiles 
using an analytical pipeline recently developed by our group [1], through network 
reconstruction, topological and functional analyses, to finally highlight relevant 
epigenomic features. Our results show that genes already highlighted for their 
genetic or transcriptional alteration in colorectal cancer are also differentially 
methylated, reinforcing -regardless of the level of cellular control- their role in the 
complex of alterations involved in tumorigenesis. 

These findings were finally validated in an independent cohort from The Cancer 
Genome Atlas (TCGA).
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INTRODUCTION

Colorectal cancer is one of the main causes of 
death from cancer worldwide [2]. The development of 
the disease [3] is described as a progression from a pre-
malignant lesion (adenomatous polyp or adenoma, ADE) 
arising in the normal colon epithelium, with the potential 
to further degenerate into a malignant lesion (colorectal 
adenocarcinoma, CRC) which in turn can spread to the 
surrounding tissues and systemically (metastasis, MET).

Evidences accumulated in the past two decades 
indicate that profound genetic and epigenetic changes 
occur in colon epithelial cells during colorectal 
tumorigenesis’ onset and progression [4–6]. Microsatellite 
and chromosomal instability have been related to the 
increase in genomic mutations rates that contribute to the 
tumor evolution [7]. Among the epigenetic modifications 
that are deregulated in colorectal cancer, DNA methylation 
has attracted great attention, thanks, also, to the rise of 
cost-effective genome-wide profiling methods such as 
the Illumina Infinium HumanMethylation27 (HM27) and 
HumanMethylation450 (HM450) microarrays.

In humans, DNA methylation consists of the covalent 
addition of a methyl group at the 5-carbon of the cytosine 
ring and occurs mainly in CpG dinucleotides [8]. The 
distribution of CpG dinucleotides and their methylation 
status varies widely across the genome: in the bulk of 
the genome CpG dinucleotides are underrepresented and 
tend to be pervasively methylated, while regions of high 
CpG density, termed CpG islands, are often found at gene 
promoters’ sites in a non-methylated status.

Colorectal cancer, like other solid tumors, is 
characterized by a profound remodeling of normal DNA 
methylation patterns [9, 10]. Widespread hypomethylation, 
up to one-third of the genes and of the bulk of the genome, 
has already been described three decades ago [11, 12]. 
More recently, Timp et al. found that large (hundreds of kb)  
hypomethylation blocks are a universal characteristic of 
colorectal cancers and other solid tumors [13]. Overall, 
DNA hypomethylation can contribute to tumor initiation 
and progression by promoting genomic instability and 
abnormal genes’ activation [14]. In addition, aberrant 
DNA hypermethylation of specific CpG islands has also 
been observed to occur in colorectal cancer. The CpG 
island methylator phenotype (CIMP) was described in 
a subset of colorectal cancers for the first time in 1999 
[15] and was subsequently refined as hypermethylation 
of the five genes CACNA1G, IGF2, NEUROG1, RUNX3 
and SOCS1 [16]. CIMP-positive tumors can be inspected 
with specific assays (Methylight) and have fundamental 
clinicopathological differences compared to CIMP-
negative cases [15, 17–20], indicating the profound clinical 
impact of these alterations. More recently, methylation 
array platforms (HM27 and HM450) have been largely 

used to identify differentially methylated regions 
(DMRs) in adenoma and colorectal cancer [21–26],  
highlighting subtypes that are different in terms of clinical 
phenotype [27, 28] and response to treatment [10].

Despite the progresses made in characterizing the 
epigenomic landscape of colorectal cancer, little is still 
known on the pathways affected by aberrant methylation 
and that could be deregulated in the progression of the 
disease. To contribute to this research, we first selected a 
number of robust DMRs by aggregating 3 original studies 
on colorectal cancer-referred hereafter as the Naumov 
[25], Luo [26] and Timp [13] datasets - in a meta-analysis 
with the specific aim to extract robust results, secured by 
the independent reproducibility across different datasets. 
Finally, we used a fourth independent dataset, from the 
consortium The Cancer Genome Atlas (TCGA, [29]) to 
validate our previous findings. 

To this aim we adopted a recently proposed 
analytical pipeline specifically tailored on the HM450 
architecture [1], based on a multivariate approach that 
favors the selection of regions of adjacent CpG sites with 
concordant changes in DNA methylation levels [1]. The 
selected DMRs were further interpreted in the frame of 
systems medicine [30], using networks analysis, capable 
to capture the complex biological relationships that exists 
among the elements of a list of DMRs. From there, the 
identification of relevant molecules in a systemic context 
permits to highlight informative markers or drivers of the 
progression of the disease.

RESULTS AND DISCUSSION

The starting point of our meta-analysis is the 
collection of three original studies on colorectal cancer, 
referred as the Naumov [25], Luo [26] and Timp [13] 
datasets briefly described below. 

In Naumov et al. [25] the identification of DMRs was 
achieved with the comparison between normal tissue N1 
and CRC (N1xCRC), using three options of the Illumina 
Methylation Analyzer (IMA, [31]) to identify DMRs: 
a site level test (15667 DMRs), a region-level gene-
based test (2954 DMRs) and a region-level island-based 
test (3084 DMRs). Luo et al. [26] used cluster analysis 
to identify distinct epiphenotypes in adenomas (ADE) 
and adenocarcinomas (CRC). Using this approach, they 
identified two methylator phenotypes in ADE (Adenoma-
High and Adenoma-Low) and three methylator phenotypes 
in CRC (Methyl-High, Methyl-Intermediate and Methyl-
Low). Finally, Timp et al. used the Bumphunter algorithm to 
identify large (median length on the order of hundreds of kb)  
DMRs distinctive of solid tumors, including colon 
cancer and normal tissues, thus demonstrating that large 
hypomethylated blocks are a universal feature of solid 
tumors appearing early in tumor progression.
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Identification of DMRs between normal 
colorectal tissue, ADE and CRC 

Table 1 shows the results of the differential analysis. 
The comparison N1xN2 outputted a limited number 
of DMRs (42, mapping on 57 genes) common to the 
Naumov and Luo datasets. Unsupervised hierarchical 
clustering using the selected DMRs showed that samples 
cluster primarily according to the dataset of origin 
(Supplementary Figure 1). We concluded that differences 
between tissues N1 and N2 are subtle and mainly cohort-
dependent, and we did not take this comparison into 
further account.

In the N1xADE comparison we identified 2657 
DMRs mapping on 2180 genes that were common to 
the Luo and Timp datasets. Unsupervised hierarchical 
clustering shows a clear separation of ADE versus N1 
samples (Figure 1) with around half of the DMRs being 
hypermethylated in ADE. Notably, for these probes, ADE 
samples show two distinct patterns of intermediate and high 
hypermethylation, confirming the presence of the distinctive 
epiphenotypes previously described by Luo et al. [26]. 

N1xCRC results in 2185 DMRs mapping on 1902 
genes largely overlapping with the previous findings 
by Naumov et al. (See Supplementay File S1). A direct 
comparison with the results of Timp and coworkers was 
not possible, as the authors’ focus was on the identification 

of large hypomethylated blocks and the lists of 
differentially methylated CpG islands were not reported. 
Among the identified DMRs 85% are hypermethylated in 
tumors. A clear separation between N1 and CRC samples 
was observed after unsupervised clustering analysis 
(Figure 2). Importantly, like in the N1xADE comparison, 
we confirm the epiphenotypes previously described by 
Luo et al., showing that CRC samples cluster in 3 groups. 
The first 2 groups are clearly distinct from N1 and are 
characterized respectively by intermediate and high levels 
of hypermethylation. In the third group, CRC samples 
have a methylation profile more similar to N1 with whom 
they cluster according to the dataset of origin. It is worth 
mentioning that, overall, samples from the same dataset 
tend to cluster together. This behavior can probably be 
ascribed to a batch effect in the generation and/or the 
processing of HM450 data, although we cannot exclude 
the presence of a biological component related for example 
to the method used to obtain the biological samples or to 
the different geographic origin of the patients.

Inference on colorectal cancer driver 
mechanisms–network analysis

To explore further the biological mechanisms 
associated to the differentially methylated data and infer 
potential epigenetic drivers of the tumor lesion, we derived 

Figure 1: Hierarchical clustering of DMRs resulting from the comparison N1xADE and heatmap representation of 
their methylation values. Columns correspond to samples, rows correspond to DMRs (for graphical purposes only the top significantly 
differential CpG of each BOP is reported). Color bars indicate the status of the samples (blue: N1; green: ADE) and the dataset of origin 
(orange: Luo; magenta: Timp).
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for each comparison the corresponding network (Figure 3, 
Supplementary File 3), and further analyzed each of those 
in three steps.

The first step highlights the hubs of the network, to 
identify biological key players [32]. Owing to the common 
cellular type used by the network reconstruction software 
we identified, as expected, a set of common nodes/genes/
proteins (141), and in particular a set of hubs common 
to the N1xADE and N1xCRC networks (Supplementary 

File 5). Among them we highlight tumor suppressor p53 
(TP53), cyclin-dependent kinase inhibitor 1A (CDKN1A) 
catenin beta-1 (CTNNB1) and cyclin D1 (CCND1), 
crucially involved in cell proliferation and differentiation, 
relevant in both tumor onset and progression.

The second analysis aims at the identification of 
distinctive functions characterizing each phase. For this, 
enrichment analysis on the nodes unique to each network 
(134 and 116 for N1xCRC and N1xADE, respectively) 

Figure 2: Hierarchical clustering of DMRs resulting from the comparison N1xCRC and heatmap representation of 
their methylation values. Columns correspond to samples, rows correspond to DMRs (for graphical purposes only the top significantly 
differential CpG of each BOP is reported). Color bars indicate the status of the samples (blue: N1; red: CRC), the dataset of origin (yellow: 
Naumov; orange: Luo; magenta: Timp) and the localization of the tumor (white: unknown; light grey: distal; grey: transverse; dark grey: 
proximal; black: rectal; pink: normal colorectal mucosa).

Table 1: DMRs identified in each comparison
Selected BOPs N1xN2 N1xADE N1xCRC

Naumov 7868 - 10062
Luo 277 13426 5011
Timp - 3210 6282
Shared BOPs 42 2657 2185
Shared genes 57 2180 1902
(% hypermethylated DMRs) 83 55 85

The number of DMRs identified in each dataset is reported along with the number of shared DMRs among all datasets for 
the same comparison and the corresponding number of genes. The percentage of hypermethylated DMRs among the shared 
ones is also reported.
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was performed (Supplementary File 5). No conclusive 
information could be derived from this analysis, both 
phases share, expectedly, a number of cancer related 
pathways, in addition to functions associated to early 
structural modification of the tissue and to the emergence 
of mesenchymal phenotypes (focal adhesion, WNT). This 
triggers the necessity of a third step of analysis, focusing 
on the differentially methylated hubs (DMH), distinctive 
of each phase.

DMHs represent 13.8 and 18.2% respectively of 
the total hubs in the N1xADE and N1xCRC networks, 
respectively (Supplementary File 4). This mildly 
increasing trend is in line with the numerous studies 
reporting a growing number of aberrant methylation 
features in cancers progression [33, 34]. In particular, 
the methylation levels in key regulator genes increases 
from normal to proliferative profiles, culminating 
with the methylation of hubs in N1xCRC involved in 
tumor progression, e.g. NOTCH1 and SOX2. Following 
PANTHER protein class classification, we observed 
that most of the identified DM hub genes codify for 
transcription factors, signaling molecules, and cell 
adhesion proteins (Supplementary File 4).

In the following we describe the functions associated 
to some of the better known of such hubs on the basis of 
available literature (Table 2).

N1xADE 

 AXIN2 is an important gene involved in the WNT 
signaling [35]. The gene Keratin 18, Type I (KRT18) 
encodes for a structural protein expressed in epithelial 

tissues and has been already suggested as a colorectal 
cancer marker [36, 37], hence confirming its importance 
and suggesting a mechanism of epigenetic aberration in 
colorectal tumors.

The hypermethylated gene V-Rel Avian 
Reticuloendotheliosis Viral Oncogene Homolog A 
(RELA) complexes with Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In B-Cells 1 (NFKB1) and 
forms the NFKB transcription factor. Aberrant NFKB 
signaling plays a role in colorectal cancer initiation and 
progression [38] as well as corollary processes including 
inflammation, immunity, differentiation, cell growth and 
apoptosis.

N1xCRC 

All the DM hub genes in the N1xCRC comparison 
are hypermethylated. They include genes that codify for 
transcriptional factors (TP73 and SOX2) and signaling 
molecules (NOTCH1, NFKBIA and EGFR). All these 
genes have been known to act in deregulating important 
pathways driving cells to tumorigenesis, although the 
exact correlation between the methylation and the 
biological effect remains to be elucidated [33]. An 
important hypermethylated hub is represented by the 
gene that expresses the insulin-like growth factor-binding 
protein 3 (IGFBP3), which belongs to the IGFBPs protein 
class, deeply implicated in colorectal tumorigenesis [39]. 
Geoges et al. [40], have shown that both IGFBP3 and 
IGFBP7 areupregulated in 68 human CRC samples, 
an observation further refined by Hinoue et al. [41] 
describing a CIMP-specific epigenetic silencing of IGF-

Figure 3: Network analysis. Networks were derived with the IPA software by using differentially methylated genes in the comparisons 
of cancer-free patient normal tissues (N1) with ADE and CRC. Panels A and B represent networks characterized by {nodes, edges} as 
follows A: {257, 500}; B: {275, 1994}. 
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binding protein 7 (IGFBP7). Furthermore, Wajapeyee 
et al. [55] discussed the connection between IGFBP7 and 
the expression in CIMP-positive tumors of the mutated 
BRAFV600E (with BRAF being a DM hub in our MET 
network) implicated in oncogene-induced senescence in 
melanomas and colorectal cancers [42].

Altogether, the DM hub genes relate to common 
functions including apoptosis, TP53 cell signaling, 
hepatitis and differentiation as well as alterations of the 
he NFKB signaling. The NFKB family of transcription 
factors is pleiotropic and expressed in numerous cell types, 
it is known to play important roles in the immune response 
and is increasingly recognized as a crucial player in 
numerous steps of cancer initiation and progression where 
it cooperates with multiple other signaling molecules 
and pathways. Overall, pathological deregulations of 
the NFKB signaling are linked to inflammatory and 
autoimmune diseases [43] and in solid tumors NFKB 
acts as survival factor for transformed cells which would 
otherwise become apoptotic or senescent [44].

At the base of such functional alterations, genetic 
polymorphisms in numerous genes of the NFKB signaling 
pathway are a well described cause of increased risk of 

colorectal cancer in diverse populations around the world, 
including the Malaysian [45, 46] and Swedish [47], 
Danes [48], Swedish and Chinese populations [49, 50]. 

The obvious and yet unclear tight relation between 
genomic, epigenomic, transcriptional and functional 
alterations has already been discussed by Weisenberger 
et al. in the specific context of colorectal cancer [51]. 
Here we add a piece of evidence to this complex landscape 
with the observation that NFKBIA presents CpG sites with 
stable and reproducible hypermethylation profiles across 
all the CRC datasets (Figure 4, line plots from other DMH 
in Supplementary File 6).

Independent validation: the TCGA cohort

We validated the relevance of the identified 
molecules (DMR and DMH) in an independent cohort 
from the TCGA repository including colon (COAD) and 
rectum tumor samples (READ). 

In particular, since the TGCA dataset offered 
information on the age of the subjects (not available 
in Luo nor Naumov and only partially in Timp) we 
performed the analysis corrected by age, to guarantee that 

Table 2: The table shows the DMH in the N1xADE and N1xCRC networks ranked by increasing 
degree

N1xADE N1xCRC
SMAD2 IGFBP3
H2AFY SOX2
KRT18 SMAD7
TP73 IGF2
AXIN2 ETS1
RELA NOTCH1
RB1 MMP9
BAX TP73

NFKBIA
EGFR

Hypermethylated genes are displayed in bold and underlined genes are phase-specific.

Figure 4: Comparison of methylation profiles of NFKBIA gene of N1xCRC. The lines show mean methylation values and 
standard deviation for each CpG probe within the shore of chr14:35873047-35873990 island in the NFKBIA gene for the following 
datasets: Naumov (information on CpG cg04545963 was not available), Luo and Timp. 
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the results of the differential analysis were not affected by 
this parameter, known to impact on methylation [52].

From the differential analysis (q-value < 0.001) 
we obtained a list of 14578 DMRs, mapping to 9156 
genes. Of the 2185 DMRs resulting from the N1xCRC 
GEO meta-analysis, 2030 were confirmed in the TCGA 
analysis. Further, 122/125 network DM nodes and 
all 10/10 DMH were validated in the TCGA results 
(Supplementary File 7). 

As the great majority of DMRs emerging from the 
meta-analysis was confirmed in the TCGA cohort, we can 
infer that the CRC-specific DMRs that we identified are 
largely independent from the age of the subjects. 

As an additional test we considered the DNA 
methylation levels of the 10 DM hub genes (corresponding 
to 12 BOPs) with respect to the age of the TCGA subjects 
and no interaction between disease status and age was 
evident (Supplementary File 8). 

To deepen our understanding on the biological 
meaning and potential clinical role of the identified 
features (DMR and DMH), we used data mining 
techniques to explore how samples tend to cluster when 
similarity is guided by all DMR features or only by DMH. 

The DAPC analysis (Figure 5) shows that DMRs 
can not only separate, as expected, tumoral from normal 
tissue, but also permit to identify largely overalpping but 
still distinct clusters referring to the tumor stage.

Interestingly, this distinction is not only preserved, 
but mildly improved when guided only by the 10 DMH. 
This indicates that the additional systemic analysis run on 
top of the differential analysis allows to isolate a handful 

of features whose biological meaning is indeed able to 
capture the essence of the full list of DMR, and further to 
remove some of the noise, allowing a clearer distinction 
of the four stages .

Finally, owing to the larger number of 
clinicopathological information available in the TGCA 
dataset (compared to GEO) we also evaluated the 
DNA methylation of the 10 DM hub genes according 
to the mutational status of BRAF and KRAS genes 
(Supplementary File 9). No statistically significant 
differences were found when DNA methylation of these 
CpG sites was analyzed according to the mutational status 
of BRAF and KRAS genes, despite a trend towards higher 
methylation levels for some of the hubs (for example, 
SOX2 and IGF2) in patients carrying mutations in BRAF. 

Overall, in this study, we observe and confirm the 
high reproducibility of methylation data, and hence the 
importance of this approach in identifying stable markers, 
drivers, targets of the disease. Finally, we highlight an 
exemplar case of methylated key molecule, emerging from 
the systemic approach we used, embodied by NFKBIA, a 
well-known genetic risk factor for colorectal cancer, here 
also emerging as in important epigenotype.

MATERIAL AND METHODS

Datasets

Infinium 450k datasets were downloaded from the 
Gene Expression Omnibus–GEO repository [53] using 
GPL13534 (identifier of the Infinium 450k platform) and 

Figure 5: Scatterplots resulted from DAPC analysis of TCGA data. These scatterplots show the first two principal components 
of the DAPC of data simulated according to hierarchical islands model. Clusters are shown by different colours and ellipses, while dots 
represent individual samples–N2 represent normal samples from affected individuals, and the groups I to IV are the corresponding I–IV 
stage CRC samples. The chart A is referring to DM CpG that emerged from previous analysis of N1xCRC datasets and the chart B were 
performed with CpGs related to the CRC networks DMH.
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colorectal cancer as search terms. As to January 1st 2016 
we identified, based on these terms, 3 studies from colonic 
fresh-frozen tissues (Table 3): Naumov et al. [25] analysed 
22 CRC samples, their matched healthy mucosa samples 
(N1) and 19 cancer-unrelated normal colon tissues (N2); 
Luo et al. [26] studied 41 normal colon tissues (N1), 42 
colon adenomas (ADE) and 64 colorectal adenocarcinoma 
(CRC); Timp et al. [13] performed an epigenetic analysis 
of different cancer types, including colorectal cancer, and 
in particular measured DNA methylation in 18 normal 
colon tissues (N1), 10 adenoma (ADE), 9 colorectal 
adenocarcinoma (CRC) and 16 metastases (MET). As 
our focus is on meta-analysis, to guarantee robustness 
of the results we only included ADE and CRC samples 
for which more than one data-set is available. This leaves 
out of the picture the MET phase, for which one dataset 
only is available in Timp, while the heterogeneity of 
this phase (intense proliferation and different metastases 
localizations including liver and lung) strongly demands 
the natural filtering of the meta-analysis. 

In order to validate our findings we used an 
independent Infinium 450k dataset from The Cancer 
Genome Atlas (TCGA) project [29], including data 
from colorectal adenocarcinoma (COAD) and rectum 
adenocarcinoma (READ). Methylation data, demographic 
and clinical information of 418 samples were downloaded 
from the TCGA data portal (http://firebrowse.org, [54]): they 
included 323 colon (285 tumor samples, 38 of which had 
also a normal counterpart) and 95 rectum samples (88 tumor 
samples, 7 of which had also a normal counterpart) [55].

Differential analysis

DMRs were defined and selected according to the 
multivariate approach proposed by Bacalini et al. [1] to 
compare the methylation of blocks of 3 or more adjacent 
CpG probes (Block Of Probes, BOPs) between groups. In 
the present meta-analysis, the focus is on BOPs localized 
in CpG islands and CpG islands-surrounding sequences 
(shores and shelves) that map on genic regions. The 
rationale underlying this approach is that, compared to 
punctual changes in DNA methylation of a single CpGs, 
concomitant alterations in adjacent CpGs are more 
likely to modify the chromatin structure and hence gene 
expression and, more in general, to affect biological 
functions [1]. Correction for multiple hypotheses 
comparison was done by Benjamini-Hochberg (False 
discovery rate–FDR, q-value < 0.001, [56]). 

To guarantee robustness while avoiding loss of 
information we requested that the retained candidates 
show unanimous statistical significance across all 
datasets, without further limitations on the absolute 
value of the differential methylation (delta), owing to 
the recent findings on the relevance of minor changes 
in DNA methylation levels in terms of phenotypical 
consequences [57]. Delta distributions are nevertheless 

provided in Supplementary Figures 2 and 3 showing that 
less than 2% of the samples have delta below 0.05.

Three pairwise comparisons (N1xN2, N1xADE and 
N1xCRC) were run. In the TCGA validation cohort, the 
45 N2 samples were compared with 373 CRC samples. In 
this last comparison, associations were corrected for the 
age of the subjects, an information that was not available 
for the 3 GEO datasets. In the following, if not explicitly 
stated, DMRs always refer to significantly differentially 
methylated BOPs.

Network analysis

For each comparison, we identified robust results 
by selecting across all 3 datasets only common and 
concordant (coherently hyper- or hypo-methylated) DMRs 
(Supplementary File 1). 

Network analysis was adopted to gain understanding 
on the biological interconnections occurring among the 
DMRs identified in each meta-list: DMRs genes were 
set as nodes of the network, and connecting biochemical 
relations were reconstructed importing the gene lists into 
Ingenuity Pathway Analysis (IPA, Qiagen v.1-04 [58], 
(Supplementary File 2). To improve the reconstruction, 
IPA adds external (non-differentially methylated) items 
including genes and genes products, mRNA, miRNA, 
proteins, from here on interchangeably named nodes. 
These additional nodes are extracted from IPA internal 
data-base and filtered by the Tissues & Cell Lines 
parameter here set to large intestine and colon cancer 
cells. To guarantee proper reconstruction, Qiagen 
recommends to output from each meaningful list of 
molecules a maximum of 10 networks with a maximum 
of 70 nodes each. Successively, all networks sharing nodes 
(interconnected) were merged in one large interconnected 
map, leading to one network per comparison.

From there, we first explored the networks’ nodes 
based on their topological characteristics, known to 
match biological relevance [59]. In particular, topological 
analyses were performed on nodes degree, i.e. the number 
of connections stemming from a node/gene [60]. Degree 
is an intuitive measure to determine the importance of a 
node, indicating that the more the node is connected, the 
more genes/proteins/molecules it interacts with and the 
more pathways it is involved in. Nodes with degree above 
a certain threshold (here 80th percentile [61]) are defined 
as hubs. For such topological analyses, the network 
generated by IPA was input into Cytoscape v 3.3.0 [62], a 
network analyzer software (Supplementary File 3). 

We further explored network genes’ meaning with 
functional enrichment analysis for KEGG pathways 
with WebGestalt online tool [63] on a selection of nodes 
belonging exclusively to each tumor stage i.e. by excluding 
the nodes shared by all networks (Supplementary File 2). 
This selected list of genes was manually curated first with 
PANTHER [64] to identify the protein class and the general 
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functional importance of the hubs (See Supplementary 
File 4) and then from literature to highlight key regulators 
of the disease and discuss potential mechanisms driver of 
tumor onset and progression.

Finally, a list of the topologically relevant DMRs 
(DMH, i.e. differentially methylated hubs) in each 
network was filtered to select the genes exclusive to each 
tumor stage, leading to the final discussion on genes of 
topological and functional relevance, characterized by an 
aberrant methylation state in the disease.

Statistical analyses

Statistical analyses were performed using the 
computing environment R. Discriminant Analysis of 
Principal Componentes (DAPC) was performed using the 
R package adegenet [65]. 
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