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ABSTRACT
Background: Human papillomavirus (HPV) initiates cervical cancer, and 

continuous expression of HPV oncogenes E6 and E7 is thought to be necessary to 
maintain malignant growth. Current therapies target proliferating cells, rather than 
specific pathways, and most experimental therapies specifically target E6/E7. We 
investigated the presence and expression of HPV in cervical cancer, to correlate HPV 
oncogene expression with clinical and molecular features of these tumors that may 
be relevant to new targeted therapies.

Results: While virtually all cervical cancers contained HPV DNA, and most 
expressed E6/E7 (HPV-active), a subset (8%) of HPV DNA-positive cervical cancers 
did not express HPV transcripts (HPV-inactive). HPV-inactive tumors occurred in 
older women (median 54 vs. 45 years, p = 0.02) and were associated with poorer 
survival (median 715 vs 3046 days, p = 0.0003). Gene expression profiles of HPV-
active and -inactive tumors were distinct. HPV-active tumors expressed E2F target 
genes and increased AKT/MTOR signaling. HPV-inactive tumors had increased WNT/
β-catenin and Sonic Hedgehog signaling. Substantial genome-wide differences in 
DNA methylation were observed. HPV-inactive tumors had a global decrease in DNA 
methylation; however, many promoter-associated CpGs were hypermethylated. 
Many inflammatory response genes showed promoter methylation and decreased 
expression. The somatic mutation landscapes were significantly different. HPV-
active tumors carried few somatic mutations in driver genes, whereas HPV-inactive 
tumors were enriched for non-synonymous somatic mutations (p-value < 0.0000001) 
specifically targeting TP53, ARID, WNT, and PI3K pathways.

Materials and Methods: The Cancer Genome Atlas (TCGA) cervical cancer data 
were analyzed.

Conclusions: Many of the gene expression changes and somatic mutations found 
in HPV-inactive tumors alter pathways for which targeted therapeutics are available. 
Treatment strategies focused on WNT, PI3K, or TP53 mutations may be effective against 
HPV-inactive tumors and could improve survival for these cervical cancer patients.

INTRODUCTION

Essentially all cervical cancers contain human 
papillomavirus (HPV) DNA [1] suggesting that HPV 
infection is necessary for cervical cancer initiation. 
Routine HPV testing has revealed that most HPV 
infections resolve, indicating that HPV infection is 

necessary, but not sufficient for the development of 
cervical cancer, and that additional events are required [2].

The molecular features of cervical cancers are 
beginning to be described [3–6]. Here we report a detailed 
analysis of TCGA cervical cancer gene expression, DNA 
methylation, and somatic mutation profiles. Similar 
to recent reports in head and neck cancers [7], we 
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identified a subset of tumors, which no longer express 
HPV E6/E7 oncogenes (HPV-inactive). These tumors 
have gene expression, DNA methylation and somatic 
mutation signatures different from HPV-active tumors, 
and more similar to those of other, viral-independent 
cancers. Implications for cervical cancer progression, and 
opportunities for targeted therapy are discussed.

RESULTS

Identification of HPV-inactive tumors

We extracted all reads from 264 BAM files 
previously assembled to GRCh37-lite+HPV-Redux 
reference genome, and then re-assembled to a custom 
reference genome containing the HPV types most often 
associated with cervical cancer (Table 1). All but one of 
the cervical cancers analyzed (Supplementary Table 1) 
contained two or more normalized counts of Illumina 
DNA sequencing reads that assembled with HPV and were 
classified as HPV positive. In order to assign the HPV 
type, we used a more stringent cutoff of 50 normalized 
counts of HPV aligned reads, to classify a sample positive 
for a specific HPV type. We manually inspected all 
alignments and discarded instances of duplicated reads 
aligning to more than one HPV type. Using these criteria, 
there were 255 samples that we used to determine HPV 
type distribution (Table 1). Twenty-nine percent (75/255) 
of typed samples were positive for multiple HPV types. 
In order to characterize the gene expression landscapes of 
cervical cancers, we obtained the RNA-seq FASTQ files 
from the 261 patients with both tumor DNA and RNA 
sequencing data available, and determined expression 
levels of all genes (including HPV genes) (Supplementary 
Table 2A). To characterize the samples by HPV oncogene 
expression, we plotted the sum of the E6 and E7 
expression against the sum of all HPV gene expression 
and performed unsupervised partitioning by K-Means 
clustering using the Euclidian distance function. This class 
discovery method revealed 2 distinct classes of cervical 
cancers (Figure 1), those with high levels of E6 and E7 
oncogene expression (HPV-active, n = 241, 92.3%) and 
those with low, or zero E6/E7 expression (HPV-inactive, 
n = 20, 7.7%), similar to what we previously reported for 
head and neck cancer [7].

Demographic characteristics

The distributions of patient ancestry, tumor grade, 
and stage were not different between HPV-active and 
-inactive cancers (Table 2, Supplementary Table 3). 
However, patients with HPV-inactive tumors were 
significantly older at diagnosis (median age 54 vs 45, 
log rank Mantel-Cox p = 0.0360) (Figure 2A), and their 
median survival was dramatically shorter (715 days 
vs 3046 days, Gehan-Breslow-Wilcoxon p = 0.0003) 

(Figure 2B). Adenocarcinomas and adenosquamous 
carcinomas were significantly more common in the 
HPV-inactive than in the HPV-active tumors (Table 2, 
Supplementary Table 3) (p = 0.00022). Additionally, the 
percentage of HPV16 positive tumors was greater in the 
HPV-inactive tumors (81.8% vs 73.8%, Supplementary 
Table 1). Taken together, these differences point to the 
existence of a subtype of cervical cancers that silence 
HPV oncogene expression over time and have a worse 
prognosis.

Gene expression differences

We compared expression levels for 40,014 genomic 
elements and found that 2446 genes were significantly 
differentially expressed (4-fold up or down; FDR-
adjusted p < 0.05) (Figure 3A, Supplementary Table 4). 
The majority of these most differentially expressed genes 
(94.6%) were overexpressed in the HPV-inactive tumors. 
In order to explore differences in biological themes, 
we performed Gene Set Enrichment Analysis (Partek 
Genomics Suite) using normalized gene expression data 
(Supplementary Table 2A) to query the hallmarks (h) and 
the chemical and genetic perturbations (cgp) gene sets [8]. 
Selected enriched gene sets are summarized in Table 3, 
enrichment scores and p-values for all gene sets are listed 
in Supplementary Tables 2B and 2C.

As would be predicted for tumors that have become 
HPV-independent, E2F target gene sets are decreased 
in expression in the HPV-inactive tumors (Ishida_E2F_
Targets-c2.cgp). The expression of HPV associated gene 
sets that characterize gene expression profiles of HPV-
driven tumors of the oropharynx is also decreased in the 
HPV-inactive tumors (Slebos_head_and_neck_cancer_
with_HPV_up-c2.cgp, Pyeon_HPV_positive_tumors_
up–c2.cgp). These results support the conclusion that the 
HPV-inactive cervical tumors are more similar to HPV 
negative head and neck tumors than to HPV-positive 
tumors, and they show that the HPV-inactive tumor 
class is not only characterized by the absence of HPV 
transcripts, but also by the absence of expression of many 
other human genes normally positively correlated with the 
presence and expression of HPV.

HPV-inactive tumors have lost E6 and E7 oncogene 
expression, and have evolved alternative pathways to 
support cancerous growth. Gene sets associated with 
activated WNT/CTNNB1 signaling, a pathway important 
to other types of adenocarcinomas, are elevated in 
expression in the HPV-inactive tumor class (Hallmark_
WNT_beta_catenin_signaling–h.all.v5.1).

Multiple interferon response gene sets are decreased 
in the HPV-inactive tumors, including gene sets that 
deal directly with the inflammatory reaction (Browne 
_interferon_responsive_genes–c2.cgp, Sana_response_to_
INFG_up–c2.cgp, Moserle_INFA_response–c2.cgp, Einav 
_interferon_signature_in_cancer–c2.cgp, Hecker_IFNB1_
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targets–c2.cgp, Der_inf_alpha_response_up–c2.cgp, Der_
inf_beta_response_up–c2.cgp, Der_inf_gamma_response 
_up–c2.cgp, interferon_alpha_response-h.all.v5.1, interferon 
_gamma_response-h.all.v5.1), and gene sets that deal 
indirectly with viral mediated inflammatory response 

(Bosco_interferon_induced_antiviral_module–c2.cgp, Zhang_
interferon_response–c2.cgp). Thus, HPV-active tumors still 
have an active interferon associated inflammation response 
that is lost in HPV-inactive tumors. Robust inflammation 
present in the HPV-active tumors, along with higher 

Table 1: Number of cervical cancer samples positive for each HPV type*

HPV type Genome build n (%)
HPV16 NC_001526.2.gb 188 (73.7)
HPV18 NC_001357.1.gb 63 (24.7)
HPV31 J04353.1.gb 18 (7.1)
HPV33 M12732.1.gb 11 (4.3)
HPV35 M74117.1.gb 6 (2.4)
HPV39 M62849.1.gb 11 (4.3)
HPV45 EF202167.1.gb 33 (12.9)
HPV51 M62877.1.gb 1 (0.4)
HPV52 GQ472848.1.gb 12 (4.7)
HPV53 NC_001593.1.gb 1 (0.4)
HPV56 EF177181.1.gb 7 (2.8)
HPV58 FJ385268.1.gb 19 (7.5)
HPV59 EU918767.1.gb 10 (3.9)
HPV66 U31794.1.gb 1 (0.4)
HPV68 FR751039.1 3 (1.2)
HPV72 X94164.1 0 (0.0)
HPV73 X94165.1.gb 1 (0.4)

*number of typed HPV tumors analyzed: 255.

Figure 1: Unsupervised classification of cervical cancers by HPV gene expression. HPV-active (circles) and HPV-inactive 
(squares) differ by total gene and oncogene expression levels. 
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expression of immune checkpoint inhibitor targets TIGIT, 
CTLA4 and PDL-1 (Supplementary Table 2A), suggest that 
immune checkpoint inhibitor therapy may be a productive 
approach for these virally driven cancers.

Differences in gefitinib resistance gene sets 
(Coldren_Gefitinib_resistance_up – c2.cgp, Coldren_
Gefitinib_resistance_down – c2.cgp) indicate gefitinib 
would be more effective in HPV-active tumors, whereas 
differences in dasatinib resistance gene sets (Huang_
Dasatinib_resistance_up – c2.cgp, Huang_Dasatinib_
resistance_down – c2.cgp) indicate HPV-inactive 
tumors may be more sensitive to dasatinib therapy. 
Thus, informing treatment decisions based on HPV gene 
expression may improve outcomes for cervical cancer 
patients.

Gene methylation differences

To explore mechanisms that could explain the 
differential gene expression observed, we compared DNA 
methylation and found a dramatic genome-wide loss of 
methylation in the HPV-inactive class, with 24,206 loci 
being significantly differentially methylated (Bonferroni-

adjusted p < 0.05). Among these most differentially 
methylated loci, 77% were hypomethylated in HPV-
inactive tumors. This is concordant with reports that 
viral independent cancers are often hypomethylated 
compared to the normal surrounding tissue [9] (Figure 3B, 
Supplementary Table 5). Loci associated with gene 
promoter regions were evenly split between increased 
and decreased methylation (Figure 4A) and we noted 
that the gene expression was inversely correlated with 
promoter methylation (Figure 4B). There were 164 genes 
that had increased promoter methylation and decreased 
gene expression in HPV-inactive tumors (Supplementary 
Table 6). These genes were significantly enriched for the 
interferon response gene sets (Hallmarks_Interferon_
Gamma_Response, Hallmarks_Interferon_Alpha_Response).

Somatic mutation landscape differences

We compared the numbers and types of somatic 
mutations between the two classes (Table 4). HPV-
active tumors had on average 115 somatic mutations per 
tumor, whereas HPV-inactive tumors had 228 somatic 
mutations per tumor. The overall background rates of 

Table 2: Patient characteristics
Total HPV inactive HPV active p-value

Total n 261 20 241
Ethnicity   n (%)

American Indian 7 (3.1) 1 (5.9) 6 (2.9) 0.89
Asian and Pacific Islander 20 (8.9) 1 (5.9) 19 (9.1)
Black 25 (11.1) 2 (11.8) 23 (11.1)
White 173 (76.9) 13 (76.5) 160 (76.9)
Unknown 36 3 33

Diagnosis n (%)
Adenocarcinoma 44 (16.9) 8 (40.0) 36 (14.9) 0.00022
Adenosquamous 5 (1.9) 2 (10)  3 (1.2)
Squamous Cell Carcinoma 212 (81.2) 10 (50.0) 202 (83.8)

Grade n (%)
G1  16 (7.0) 0 (0.0) 16 (7.6) 0.22
G2  115 (50.2) 7 (36.8)  108 (51.4)
G3 97 (42.3) 12 (63.2)  85 (40.5)
G4 1  (0.4) 0  (0.0) 1 (0.5)
GX (Unknown) 32 1 31

Stage n (%)
1 132 (52.0) 11 (55.0) 121 (51.7) 0.41
2  64 (25.2) 5 (25.0) 59 (25.2)
3 38 (15.0) 1 (5.0) 37 (15.8)
4 20 (7.9) 3  (15.0) 17 (7.3)
Unknown 7 0 7
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silent (synonymous) mutations were different. HPV-
inactive tumors had, on average 1.7 times as many silent 
mutations as did HPV-active tumors (58.5 mutations per 
tumor vs 34.8 mutations per tumor). This is consistent 
with the older age of HPV-inactive patients, which 
may have allowed additional passenger mutations to 
accumulate in the progenitor cell that became the last 
common ancestor of the tumor. We also noted a larger 
difference in the numbers of non-synonymous somatic 
mutations. HPV-inactive tumors had on average twice 
as many non-synonymous mutations as did HPV-active 
tumors (169 non-synonymous mutations per tumor vs 80 
non-synonymous mutations per tumor). The ratio of non-
synonymous to synonymous mutations, which is a crude 
measure of driver mutation load, was significantly higher 
in the HPV-inactive tumors (2.9 vs 2.3, Chi square two-
tailed p < 0.0000001, odds ratio = 1.26 CI = 1.17–1.35) 
(Table 4). The non-synonymous/synonymous ratio in 
the HPV-active tumors (2.3) is not significantly different 
from the 2.2 ratio that is expected to occur by chance 
alone [10], indicating that the somatic mutations in HPV-
active tumors are not enriched for drivers. In contrast, 
the non-synonymous/synonymous ratio in the HPV-
inactive tumors (2.9) is significantly greater than what 
is expected by chance alone, which indicates that these 
tumors are enriched for cancer driver mutations enabling 
them to evolve to HPV independence by acquiring non-
synonymous driver mutations to cancer causing genes.

We also investigated potential differences in the 
underlying mutation processes by enumerating and 

comparing each of the six types of nucleotide substitutions 
that can possibly occur (A:T > C:G, A:T > G:C, A:T > 
T:A, C:G > A:T, C:G > G:C, C:G > T:A) [11]. As has been 
seen in other epithelial cancers [12], the most common 
single nucleotide substitution observed was C:G > T:A, 
representing 44% of the mutational burden; however, this 
substitution was not different between the two groups of 
cervical cancer. C:G > T:A mutations have been previously 
reported in cervical cancers [4] and can occur by different 
mechanisms depending on the sequence context. For 
example, in the a CpG dinucleotide, the C > T mutation 
is due to the spontaneous deamination of methylated 
cytosines [13]. This type of mutation was significantly 
enriched in HPV-inactive tumors (HPV-inactive 638/4,326 
vs. HPV-active 2,710/27,495; Chi Square p-value  
< 0.0000001). The PTEN tumor suppressor gene was 
more frequently the target of non-enzymatic deamination 
of methylated cytosine (3/5 mutations, 60%) in the HPV-
inactive tumors, and less frequently the target of this 
process (3/14 mutations, 21%) in HPV-active tumors.

Alternatively, C:G > T:A mutations when the 
C is preceded by a T are caused by APOBEC family 
of cytidine deaminases [11, 14]. The activity of this 
enzyme is upregulated in HPV infected cells leading to a 
characteristic mutation pattern often seen in HPV-mediated 
cancers [15]. We found that HPV-active tumors have a 
significantly greater number of C:G > T:A mutations in a 
TpC context (HPV-active 7,342/27,495 vs HPV-inactive 
808/4,326; Chi Square p-value < 0.0000001). The majority 
of the PIK3CA mutations observed in the HPV-active 

Figure 2: Diagnosis (A) and Survival (B) are compared between HPV-active (dashed line) and HPV-inactive (solid line) 
patients. Patients with HPV-inactive tumors were on average 9 years older at diagnosis and died on average 6.4 years earlier.
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tumors were C:G > T:A substitutions (29/34, 85%) in 
which the C was preceded by a T (TpC), consistent with an 
APOBEC mediated mutational process [16]. In contrast, 
only 33% of the PIK3CA mutations in HPV-inactive 
tumors (2/6) were C:G > T:A substitutions in which the 

C is preceded by a T (TpC). These two different mutation 
patterns (C > T) suggest that HPV-active and HPV-inactive 
tumors have different mutational process histories.

In order to place cervical cancers of both classes into 
context based on somatic mutations, we performed a global 

Table 3: Select gene sets enriched in HPV-inactive cervical cancers
Gene Set Number of 

Genes
Enrichment 

Score
p-value (unad-

justed)
FDR Enrichment Direction

Ishida E2F Targets* 52 −0.5995 0.0303 0.1172 HPV-inactive down

Slebos head and neck cancer with HPV up* 83 −0.6997 0 0 HPV-inactive down

Pyeon HPV positive tumors up* 97 −0.6314 0 0.0356 HPV-inactive down

Hallmark WNT beta catenin signaling# 42 0.5692 0 0.1931 HPV-inactive up

Browne interferon responsive genes* 66 −0.7552 0 0.0208 HPV-inactive down

Sana response to INFG up* 75 −0.6749 0 0.0340 HPV-inactive down

Moserle INFA response* 31 −0.7897 0 0.0303 HPV-inactive down

Einav interferon signature in cancer* 26 −0.7544 0 0.0430 HPV-inactive down

Hecker IFNB1 targets* 95 −0.6298 0 0.0373 HPV-inactive down

Der inf alpha response up* 74 −0.5767 0 0.0417 HPV-inactive down

Der inf beta response up* 102 −0.5020 0 0.0548 HPV-inactive down

Der inf gamma response up* 71 −0.5439 0 0.0416 HPV-inactive down

Interferon alpha response# 94 −0.7239 0 0 HPV-inactive down

Interferon gamma response# 196 −0.6566 0 0 HPV-inactive down

Bosco interferon induced antiviral module* 76 −0.6342 0 0.0339 HPV-inactive down

Zhang interferon response* 23 −0.7519 0 0.0397 HPV-inactive down

Coldren Gefitinib resistance up * 80 0.6306 0.0127 0.1624 HPV-inactive up

Coldren Gefitinib resistance down * 223 −0.4051 0.05 0.2093 HPV-inactive down

Huang Dasatinib resistance up * 80 −0.5863 0 0.0344 HPV-inactive down

Huang Dasatinib resistance down * 66 0.4547 0.0133 0.4639 HPV-inactive up

Select gene sets that are enriched in HPV-inactive compared to HPV-active cervical cancers. Gene set enrichment analysis was performed in Partek 
Genomics Suite using the Hallmark (#) and the Chemical and Genetic Perturbations (*) gene sets.

Figure 3: Gene expression (A) and DNA methylation (B) in HPV-active (horizontal axis) and HPV-inactive (vertical 
axis) cervical tumors. The majority of significantly different genes had increased expression in HPV-inactive tumors. The majority of 
significantly different CpG loci were decreased in DNA methylation in HPV-inactive tumors.
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comparison of select TCGA cancer cohorts according to 
the significance of somatic mutations [17]. MutSig outputs 
containing the p-values for every gene in select cancer 
cohorts were obtained from Firebrowse.org. There were 
18,278 genes with one or more non-synonymous somatic 
mutations in any of the 33 select TCGA cohorts. MutSig 
analysis revealed that 7,882 genes are significant, with 

a nominal p-value less than 0.05 in at least one cohort 
(MutSigCV v0.9). We used the minus-log p-values of these 
genes to drive unsupervised hierarchical cluster analysis of 
the cohorts (Figure 5). In general, tumor cohorts clustered 
according to organ system such as GI tumors (stomach, 
colon and rectum), brain (glioma, lower grade glioma, 
glioma multiforme), and kidney (papillary, clear cell). The 

Table 4: Somatic mutation counts in cervical cancers
 HPV-active tumors HPV-inactive tumors*

n 239 19

Total Mutations 27495 4326

Mutations/person 115.0 227.7

Nonsynonymous 19173 3215

Synonymous 8322 1111

NS/S ratio 2.30 2.89 p-value < 0.0000001
*Sample TCGA-2W-A8YY had 9,467 somatic mutations and was classified as a hyper-mutator and removed from the analysis.

Figure 4: Interaction between DNA methylation and gene expression landscapes. (A) Distribution of the DNA methylation 
test statistics (HPV-inactive vs. HPV-active) of the significant differently methylated CpGs. The majority of gene-associated and unclassified 
CpGs were hypomethylated in HPV-inactive tumors (negative test statistic), whereas promoter-associated CpGs were equally divided 
between hypermethylated (positive test statistic) and hypomethylated (negative test statistic). (B) Distribution of the gene expression test 
statistics (HPV-inactive vs. HPV-active) of the genes associated with significant differently methylated CpGs. Test statistics (and expression 
levels) of genes near gene-associated or unclassified CpGs were not correlated with CpG methylation levels, whereas test statistics (and 
expression levels) of genes near promoter-associated CpGs were inversely correlated with CpG methylation levels.
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cervical cancers including both subsets of cervical cancers 
(HPV-active and HPV-inactive) are closely associated with 
uterine cancers (carcinosarcoma, endometrial carcinoma) 
with HPV-inactive cervical cancers mutationally more 
similar to uterine endometrial cancers.

In general, the frequencies with which MutSig 
significant cervical cancer genes are mutated are similar 
between the two classes of cervical cancer. For example, 
cervical cancer associated genes EP300 has on average 
0.17 and 0.15 mutations per tumor (HPV-inactive, HPV-
active respectively). Another commonly mutated gene, 
FBXW7, has 0.15 and 0.10 mutations per tumor (HPV-
inactive, HPV-active respectively). However, there was 
a significantly different distribution in the mutation 
frequencies of other key cancer driver genes (Figure 6). We 
compared the mutational frequencies of the HPV-inactive 
and HPV-active tumors using our somatic mutation calls 
on 258 tumor/normal cervical cancer pairs. 361/468 genes 
had at least one somatic mutation identified by our variant 
calling pipeline. Twenty-six genes had different somatic 
mutation rates and all were more frequently mutated in 
the HPV-inactive tumors (Figure 6). TP53, a gene not 
commonly mutated in cervical cancers, was 17 times 
more likely (95% CI 5.8, 49.7) to be mutated in HPV-
inactive tumors (47%) than in HPV-active tumors (4%). 
This is consistent with the absence of E6 HPV oncogene 
expression in inactive tumors. The enrichment of TP53 
mutations in the HPV-inactive tumors provides convincing 
evidence that these tumors have escaped HPV dependence. 
Chromatin remodeling genes ARID1A and ARID5B, WNT 

signaling regulator CTNNB1, and the negative regulator 
of PI3K signaling PTEN, were among the notable genes 
significantly more mutated in HPV-inactive cervical 
cancers. Previously, TP53 and ARID1A have been reported 
as mutually exclusive in endometrial cancers [18]. We 
found that one tumor contained mutations in both of these 
genes and twenty-six contain mutations in one of these 
genes reinforcing the mutual exclusivity between these 
genes. In addition to PTEN mutational differences, the 
PIK3CA gene was more frequently mutated in the HPV-
inactive tumors (26% vs 13%). Overall, AKT pathway 
mutations are more common in the HPV-inactive tumors, 
indicating that an AKT inhibitor may be more effective in 
treating these tumors [19]. Finally, the enrichment of the 
CTNNB1 mutations in HPV-inactive tumors is noteworthy 
because of the widespread up-regulation of WNT target 
gene expression that we detected in the HPV-inactive 
tumors by GSEA.

DISCUSSION

Essentially all cervical cancers are HPV positive 
by DNA, and it is widely accepted that HPV oncogene 
expression is necessary for cervical cancer development. 
Here we show strong evidence that a fraction of cervical 
cancers can slowly evolve to HPV independence by 
accumulating somatic mutations to cancer driver genes. 
HPV-inactive cancers differ from HPV-active by more 
than just the expression of HPV E6/E7, diminishing the 
possibility of a trivial explanation such as a technical 

Figure 5: Cancers clustered by somatic mutation profiles. Samples were clustered using the –log transformation of the p-value 
obtained from MutSigCV. Unsupervised clustering was performed using Pearson dissimilarity with complete linkage. A total of 7882 genes 
were significantly mutated (MutSigCV v0.9 p-value < 0.05) in at least one cohort.



Oncotarget13383www.impactjournals.com/oncotarget

failure to detect HPV transcripts. The patients harboring 
HPV-active tumors are on average 9 years younger than 
the HPV-inactive patients, and they have dramatically 
longer overall survival (4.3 fold). Global gene expression 
changes are also apparent, with E2F target genes up-
regulated in HPV-active tumors. Additionally, other gene 
expression differences mirror what has been reported for 
HPV-positive and HPV-negative head and neck cancers 
[7, 20]. There were also profound differences in global 
DNA methylation levels, with more methylation observed 
in HPV-active tumors than in HPV-inactive tumors. The 
somatic mutation profiles are also substantially different. 
The ratio of non-synonymous to synonymous mutations, 
which is a crude measure of driver gene mutation load, is 
low for TCGA cervical cancers, but HPV-inactive tumors 
are significantly enriched for non-synonymous changes, 
which often target important cancer driver genes. Somatic 
mutations consisting of C:G > T:A changes are common in 
both types of cervical cancers, but are unevenly distributed 
when subdivided according to the surrounding sequence 
context and mutational mechanism. For example, the 
PTEN tumor suppressor gene was more frequently 
mutated in HPV-inactive tumors, and it was more often 
the target of spontaneous, non-enzymatic deamination of 
methylated cytosines in a CpG context. In contrast, the 
PIK3CA oncogene was frequently mutated in both tumor 
types, but was more often the target of APOBEC-mediated 
deamination in the HPV-active tumors. Finally, the cancer 
driver genes TP53, CTNNB1, PTEN, and ARIDs were far 

more likely to be mutated in HPV-inactive tumors. In total, 
these clinical and molecular phenotypes strongly indicate 
that a subset of cervical cancer exists that is independent 
of HPV oncogene activity.

Personalized oncology promises to deliver therapies 
tailored to the genetic features of an individual’s tumor, to 
improve outcome. Cervical cancers are usually treated with 
a combined regimen of platinum-based chemotherapy and 
radiation; however, few biomarkers of response to targeted 
therapies are available in this disease type. The differences 
between HPV-inactive and HPV-active tumors suggest 
the use of different targeted therapeutic approaches. For 
example, gefitinib, an EGF-receptor inhibitor, may be more 
effective in treating HPV-active cervical cancers, while 
dasatinib may be more effective in treating HPV-inactive 
tumors. Overall, somatic mutations in the genes upstream of 
AKT are more common in HPV-inactive tumors, suggesting 
that dual PI3K/MTOR inhibitors may be more effective for 
these patients. Finally, inflammation-associated gene sets 
are increased in HPV-active tumors, as are the targets for 
checkpoint inhibitor based immunotherapy such as, TIGIT, 
CTLA4, PDL-1 [21–23], indicating that immunotherapy, 
in combination with standard radiotherapy and DNA-
damaging chemotherapy protocols may also be more 
effective in treating HPV-active tumors.

Most HPV infections do not develop into cervical 
cancer, but rather resolve within one or two years  
[24, 25]. Studies of immunosuppressed women have 
revealed higher incidences of cervical dysplasia, 

Figure 6: Somatic mutation differences between HPV-active and HPV-inactive cervical cancers. Pink bars highlight 
significant genes with odds ratios larger than the 95% confidence interval.
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neoplasia, and cancers than in immunocompetent 
individuals, highlighting the role that the immune 
system plays in clearing HPV-infected cells [26, 27]. 
The small fraction of HPV infections that ultimately 
give rise to cervical cancer may do so only in individuals 
with genetic variants that attenuate some components 
of the immune response to HPV needed for clearance 
[28]. Our results suggest that, among the population of 
women who are immune surveillance competent, a small 
percentage of HPV-infected cells may acquire somatic 
mutations in cancer driver genes, rendering the cells 
ultimately independent of the expression of HPV, and 
allowing sub-clones to arise that become HPV-inactive 
tumors. Thus, women with HPV-inactive tumors may 
have a genetic background that is more similar to the 
majority of women who readily clear HPV infections. 
Careful analysis of the genomes of women without and 
with persistent HPV infection may reveal important 
cervical cancer risk alleles, and ultimately provide 
additional clues as to the origin and development of 
HPV-inactive cancers.

MATERIALS AND METHODS

Samples analyzed

All sequencing data were downloaded from TCGA 
repository CGHUB. We obtained TCGA CESC whole 
exome sequence data from tumors and matched normal 
samples that were assembled to the GrCH37-lite-+-HPV_
Redux reference sequence.  Tumor and matched normal 
BAM files, and RNA-seq FASTQ files that were available 
on February 10, 2015 at Cancer Genomics Hub (CGHub) 
were used. Access to this level data was approved by the 
National Cancer Institute.  Normalized, mean centered 
DNA methylation data for the same samples were obtained 
from TCGA data portal. 

Statistical analysis of clinical data

Clinical information on the CESC samples analyzed 
were downloaded from the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/). Statistical analyses presented in 
Table 2 were calculated using the Chi Square Test (R by 
C Table, OpenEpi, http://www.openepi.com/), unknown 
samples were not included in the test for significance. The 
log rank Mantel-Cox survival model was used to compare 
the age of disease-onset between the two classes (PRISM 
v6.0g). The Gehan-Breslow-Wilcoxon survival model was 
used to compare overall survival (PRISM v6.0g). 

Bioinformatics of DNA sequence analysis

We created a custom reference by concatenating hg19 
human reference genome, and 18 human papillomavirus 
whole genome sequences as listed on Table 1. We extracted 

forward and reverse paired-end FASTQ reads from all 
tumor and normal BAM files using bam2fastq (https://gsl.
hudsonalpha.org/information/software/bam2fastq). Reads 
were imported into CLC Genomics Workbench 8 and 
assembled to our custom reference sequence (hg19+HPV) 
with the following parameters: References = Genome 
(Genome), Masking mode = No masking, Mismatch cost = 
2, Cost of insertions and deletions = Linear gap cost, Insertion 
cost = 3, Deletion cost = 3, Insertion open cost = 6, Insertion 
extend cost = 1, Deletion open cost = 6, Deletion extend cost 
= 1, Length fraction = 0.5, Similarity fraction = 0.8, Global 
alignment = No, Auto-detect paired distances = Yes, Non-
specific match handling = Ignore, Output mode = Create reads 
track, Create report = Yes, Collect un-mapped reads = No. 

HPV typing was determined by inspecting the 
number of normalized reads mapping to each HPV 
reference. HPV-reads were normalized by dividing the raw 
number of HPV mapping reads by the raw number of all 
mapped reads (viral and human) to control for the depth 
of sequencing for the different tumor samples. Resulting 
normalized reads were scaled down to the sample with the 
lowest depth of coverage (TCGA-MA-AA41, 38,688,500). 
The threshold for calling a specific HPV type was set at a 
normalized read count greater than 50 for that HPV type. 
Tumor variants were called using the following setting in 
CLC Genomics Workbench 8: Required significance (%) 
= 1.0, Ignore positions with coverage above = 100,000, 
Restrict calling to target regions = Not set, Ignore broken 
pairs = No, Ignore non-specific matches = No, Minimum 
coverage = 10, Minimum count = 2, Minimum frequency 
(%) = 1.0, Base quality filter = Yes, Neighborhood 
radius = 5, Minimum central quality = 20, Minimum 
neighborhood quality = 15, Read direction filter = No, 
Relative read direction filter = Yes, Significance (%) = 
1.0, Read position filter = No, Remove pyro-error variants 
= No, Create track = Yes, Create annotated table = Yes, 
Create report = Yes.

To identify somatic variants we filtered each 
tumor’s variants calls against the patient matched normal 
BAM file. Any variant appearing in 2 or more reads in 
the normal BAM file and covered by more than 20 reads 
was considered a germline variant and removed. The 
remaining variants were filtered for overlap with the 
coding sequence. Amino acid changes were identified 
using the standard codon table. We filtered marginal 
variant calls based on the following parameters: Minimum 
frequency (%) = 30.0, Minimum forward/reverse balance 
= 0.05, Minimum average base quality = 20.0, Variant 
frequency = Yes, Forward/reverse balance = Yes, Average 
base quality = Yes. Next, we annotated all variants with 
identical matches in the dbSNP, 1000 genomes phase 3, 
exome variant server (ESP6500), or COSMIC databases. 
We annotated all variants with overlapping gene name 
information. The initial germline variants filter failed 
to identify all germline variants due to regions of low 
coverage in the matched normal. The remaining germline 
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variants were removed by filtering against exact matches 
in the dbSNP, 1000 genomes phase 3 and ESP6500 
databases.

Bioinformatics of RNA sequence analysis

The unassembled FASTQ files from CGHub were 
imported into CLC Genomics Workbench 8 and assembled 
to our custom reference sequence (HG19+HPV) using the 
RNA-Seq Analysis tool with the following parameters: 
Reference type = Genome annotated with genes and 
transcripts, Reference sequence = Genome (Genome), 
Gene track = Genome (Gene), mRNA track = Genome 
(mRNA), Mapping type = Also map to inter-genic regions, 
Mismatch cost = 2, Insertion cost = 3, Deletion cost = 3, 
Length fraction = 0.8, Similarity fraction = 0.8, Global 
alignment = No, Auto-detect paired distances = Yes, Strand 
specific = Both, Maximum number of hits for a read = 30, 
Count paired reads as two = No, Expression value = Total 
counts, Calculate RPKM for genes without transcripts = 
Yes, Minimum read count fusion gene table = 25, Create 
report = Yes, Create fusion gene table = Yes, Create list 
of unmapped reads = No. Gene expression levels were 
defined as the total number of reads assembling to the 
exons of the gene, normalized to the total number of reads 
that assembled to all exons of all genes.

Gene expression data analysis

HPV classifier was determined using the normalized 
expression of all HPV reads against the sum of the HPV 
E6 and E7 oncogene reads. We utilized the unsupervised 
Partitioning Clustering tool in Partek Genomics Suite 6.5 
to cluster the samples into two groups using the Euclidean 
distance function.

Differentially expressed human genes were 
identified using a one-way ANOVA and defined as greater 
than 4 fold different in either direction and FDR corrected 
p < 0.05. All genes were rank ordered by the t-test statistic 
and used to perform gene set enrichment analysis [8, 29].

DNA methylation data analysis

We downloaded CESC Illumina 450k array mean-
centered beta values from TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/). Differentially methylated human 
loci were identified using a one-way ANOVA and defined 
as Bonferroni-corrected p-value < 0.05. 

DNA mutation data analysis

Non-synonymous to synonymous ratios were 
compared using the Chi Squared test (OpenEpi, http://
www.openepi.com/). Somatic mutation landscapes 
were compared between multiple tumor cohorts using 
variant calls and MutSig scores from firebrowse.org. We 
manually divided the samples in the CESC cohort by 

HPV expression class and ran MutSig CV0.9 (https://
www.broadinstitute.org/cancer/cga/mutsig). The p-values 
were minus log p transformed and used to drive the 
unsupervised hierarchical clustering (Pearson dissimilarity, 
complete linkage) in Partek Genomics Suite 6.5.

The per gene somatic mutation frequencies (Figure 6) 
were compared between classes using a two-tailed Fisher’s 
Exact p-value. The corresponding conditional maximum 
likelihood estimate of odds ratio and 95% CI (OpenEpi, 
http://www.openepi.com/ ) are plotted on Figure 6. 
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