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ABSTRACT
To expedite the pace in conducting genome/proteome analysis, we have developed 

a Python package called Pse-Analysis. The powerful package can automatically complete 
the following five procedures: (1) sample feature extraction, (2) optimal parameter 
selection, (3) model training, (4) cross validation, and (5) evaluating prediction quality. 
All the work a user needs to do is to input a benchmark dataset along with the query 
biological sequences concerned. Based on the benchmark dataset, Pse-Analysis will 
automatically construct an ideal predictor, followed by yielding the predicted results for 
the submitted query samples. All the aforementioned tedious jobs can be automatically 
done by the computer. Moreover, the multiprocessing technique was adopted to 
enhance computational speed by about 6 folds. The Pse-Analysis Python package is 
freely accessible to the public at http://bioinformatics.hitsz.edu.cn/Pse-Analysis/, and 
can be directly run on Windows, Linux, and Unix.

INTRODUCTION

With the explosive growth of biological sequences 
in the post-genomic age, we are facing a lot of binary 
classification problems. For DNA/RNA sequences, these 
problems are about how to identify the recombination 
spots [1–4], nucleosome positioning [5–9], promoters 
[10], microRNA precursors [11–13], enhancers [14, 15], 
translation initiation sites [16, 17], various PTRM (postpost-
replication modification) sites in DNA [18] and PTCM (post-
transcriptiom modification) sites in RNA [19, 20], RNA 
pseudouridine sites [21], DNA origin of replication [22, 23], 
adenosine to inosine editing sites in RNA [24], and many 
more other topics as mentioned in a recent review article [25].

For protein/peptide sequences, they are about how 
to identify various PTM (Posttranslational Modification) 
sites [26–42], anticancer peptides [43, 44], interactions 
between drugs and target proteins [45–49], PPI (protein-

protein interaction) [50]. PPBS (proire-protein binding 
sites [51, 52], as well as a long list of references cited in a 
recent comprehensive review [53].

It is quite laborious even if using computational 
approches to deal with these problems since the development 
of each computational predictor needs to undergo the 
following five steps [54]: (1) benchmark dataset preparation, 
(2) optimise sample formulation, (3) optimize operation 
engine, (4) conduct cross-validations, and (5) establish a 
web-server. Each of the five procedures is time-consuming 
and tedious, particularly in how to select the optimal 
parameters [55–60] for the samples concerned and for the 
operation engine adopted.

To speed up such processes, we are to propose a 
Python package called Pse-Analysis, which is based on the 
framework of LIBSVM [61] and which can automatically 
generate the predictor desired by users.  The users only need 
to input their benchmark dataset and the query biological 
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sequences, followed by getting their desired results from the 
output of the Pse-Analysis system.  All the tedious things in 
the aforementioned steps (2)–(5) can be totally skipped and 
leave them to be fulfilled by the computer. 

RESULTS AND DISCUSSION

A powerful Python package, called Pse-Analysis, 
has been developed, and its web-server established at 
http://bioinformatics.hitsz.edu.cn/Pse-Analysis/. It is 
formed by two important parts: one is “train.py”, and the 
other is “predict.py” (Figure 1). 

The “train.py” is designed for training a Support 
Vector Machine (SVM) model. It includes four steps: 
(1) feature extraction, (2) parameter selection, (3) model 
training, and (4) cross validation.

The “predict.py” is to generate the output. Note: 
the meaning of the “output” here is not limited in the 
predicted results for the original query biological sequence 
data submitted along with the benchmark dataset, but also 
include an optimal predictor. Users can directly apply it 

on various relevant problems, substantially saving a lot of 
time to repeat tedious for developing an effective predictor.

For instance, it is a very important task to effectively 
predict nucleosome positioning in genomes. To deal with 
the problem, Guo et al. [7] had praiseworthily developed 
a predictor called iNuc-PseKNC by going thru all the five 
procedures described in the Introduction section. Now, with 
the Pse-Analysis package, what we need to do is just to input 
the benchmark dataset used by Guo et al. [7] into the package, 
and Pse-Analysis will automatically do all the remaining jobs: 
optimising sample formulation; optimising operation engine;  
conducting cross-validations; and forming a web-server that 
is fully equivalent to the iNuc-PseKNC of [7]. 

The computational speed in optimizing many different 
parameters is a bottleneck for the efficiency of the Pse-
Analysis platform. In this regard, the multiprocessing 
technique has been applied to significantly speed up the 
computational processes. It has been shown when dealing 
with the above case that the computing time for the parameter 
optimization process can be reduced by 6 folds when using 
10 cores instead of a single core, as shown in Figure 2.

Figure 1: The flowchart of Pse-Analysis Python package. The “train.py” script is for training the predictive model based on the 
benchmark dataset submitted by the user. It contains four procedures; i.e., feature extraction, parameter selection, model training, and cross 
validation. The “predict.py” is for using the trained model to predict the query samples and evaluate their prediction quality by a set of 
widely used metrics Acc, MCC, Sn, Sp [25], and AUC [68].

Figure 2: The computational cost of Pse-Analysis can be significantly reduced by using multiprocessing technique. 
The blue curve reflects the computational time time for the parameter optimization process when using Pse-Analysis of one CPU core to 
process the five subsets for nucleosome positioning prediction of Caenorhabditis elegans [7], while the red curve reflects the corresponding 
computational time when using Pse-Analysis of ten CPU cores to do the same.
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As pointed out in a comprehensive review paper 
[25], the general form of PseKNC (pseudo K-tuple 
nucleotide composition) can cover all the existing feature 
vectors for DNA/RNA sequences. And the general form of 
PseACC (pseudo amino acid composition) can cover all 
the existing feature vectors for protein/peptide sequences 
[54, 56]. Particularly, the very powerful web-server Pse-
in-One [60] developed recently not only can cover all the 
existing feature vectors for DNA/RNA and protein/peptide 
sequences, but also can cover those defined by the users 
themselves. Accordingly, the pseudo components in the 
Pse-Analysis package have virtually covered all the feature 
vectors for DNA/RNA or protein/peptide sequences.

MATERIALS AND METHODS

Feature extraction

In the Pse-Analysis, various state-of-the-art algorithms 
are employed, including pseudo k-tuple nucleotide 
composition (PseKNC) [25, 57–59, 62] and pseudo amino 
acid composition (PseAAC) [56, 60, 63–67] for extracting 
the features of DNA, RNA, and protein sequences, 
respectively. The details of these algorithms have been 
clearly elaborated in the aforementioned papers, and hence 
there is no need to repeat here.

Parameter selection

The aforementioned algorithms contain some 
uncertain parameters, such as k, λ, and w. All these 
parameters are automatically determined by train.py in 
processing the benchmark dataset submitted by users. 
The concrete process is to optimize the following five 
commonly used success scores: (1) accuracy (Acc), (2) 
Mathew’s Correlation Coefficient (MCC), (3) sensitivity 
(Sn), (4) specificity (Sp), and (5) area under ROC curve 
(AUC). As for their rigorous definitions and intuitive 
formulations, see [21, 23, 24, 35, 38, 60]. Furthermore, the 
corresponding ROC (receiver operating characteristic) [68] 
curve is also provided and saved in a PNG file. Finally, 
by optimizing these scores with respect to all possible 
parameters, the corresponding best model will be generated.

Model training

The model is trained with LIBSVM [61] using the 
RBF kernel. The trained model thus obtained and all its 
optimized parameters are saved in a separate file, which 
will be used as the input for “predict.py”.

Cross validation

Built-in the Pse-Analysis package is also a set of 
validation operators, which can be used to automatically 
validate the model from sub-sampling (or K-fold 

cross-validation) test, and jackknife (or leave-one-out) 
test, the three most used cross-validation approaches [69]. 

Manual of Pse-Analysis

To maximize users’ convenience, the manual of how 
to use Pse-Analysis is provided, which can be directly 
downloaded at http://bioinformatics.hitsz.edu.cn/Pse-
Analysis/static/download/Pse-Analysis_manual.pdf. 

CONCLUSIONS

Now we are living in a century or era to pursue the 
goal to minimize various tedious things and leave them 
to be done by robots or computers, such as in developing 
autonomous cars or self-driving cars. The present study 
represents one step forward to such a goal in genome and 
proteome analyses. It has not escaped our notice that the 
idea and approach can also be used to many other areas so 
as to substantially speed up their development accordingly. 
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