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A plasma metabolomic signature discloses human breast cancer
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ABSTRACT

Purpose: Metabolomics is the comprehensive global study of metabolites in 
biological samples. In this retrospective pilot study we explored whether serum 
metabolomic profile can discriminate the presence of human breast cancer irrespective 
of the cancer subtype.

Methods: Plasma samples were analyzed from healthy women (n = 20) and 
patients with breast cancer after diagnosis (n = 91) using a liquid chromatography-
mass spectrometry platform. Multivariate statistics and a Random Forest (RF) classifier 
were used to create a metabolomics panel for the diagnosis of human breast cancer.

Results: Metabolomics correctly distinguished between breast cancer patients 
and healthy control subjects. In the RF supervised class prediction analysis comparing 
breast cancer and healthy control groups, RF accurately classified 100% both samples 
of the breast cancer patients and healthy controls. So, the class error for both group 
in and the out-of-bag error were 0. We also found 1269 metabolites with different 
concentration in plasma from healthy controls and cancer patients; and basing on 
exact mass, retention time and isotopic distribution we identified 35 metabolites. 
These metabolites mostly support cell growth by providing energy and building 
stones for the synthesis of essential biomolecules, and function as signal transduction 
molecules. The collective results of RF, significance testing, and false discovery rate 
analysis identified several metabolites that were strongly associated with breast 
cancer.

Conclusions: In breast cancer a metabolomics signature of cancer exists and can 
be detected in patient plasma irrespectively of the breast cancer type.
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INTRODUCTION

There is a close relationship between metabolism 
and cancer. Cancer cell metabolism undergoes a profound 
rearrangement featured by changes in metabolic networks 
mostly involved in bioenergetic and biosynthetic processes 
[1]. This metabolic switch represents an adaption to 
support cell survival, tumor growth, tissue remodeling, and 
cancer metastasis. But whereas available evidence suggest 
that this metabolic adaption is regulated by a genomic 
program and influenced by the tumor microenvironment, 
in some circumstances altered metabolism can play 
a primary role in oncogenesis [1, 2]. Furthermore, 
metabolism can also determine the course of the cancerous 
process or even lead to an adverse drug response.

Breast cancer is the most common malignancy and 
cause of cancer death in women [3, 4]. Common methods 
for diagnosis and surveillance include mammography, 
histopathology and blood tests (such as antigens 
and protein patterns). Since the success for curative 
intervention and significantly increase long-term survival 
rates in breast cancer is in early stage disease, more 
sensitive biomarkers for early detection and molecular 
targets for better treating breast cancer are needed.

In this setting new profiling tools provide a global 
picture of tumor biology including development and 
progression. The comprehensive analysis of metabolites 
(‘metabolomics’), by high-resolution 1H nuclear magnetic 
resonance (NMR) spectroscopy and mass spectrometry 
(MS), are being currently used to identify and define the 
metabolic phenotype of subcellular organelles, cell types, 
or tissues. These metabolomics approaches are providing 
key information about oncogenesis, uncovering potential 
new therapeutic targets and will be a key tool in cancer 
diagnosis [1, 5, 6].

The human plasma metabolome is composed 
of around 4,229 confirmed compounds that can be 
grouped into more than 50 chemical classes [7]. Plasma 
metabolome profile is the result of a homeostatic system 
that expresses, in a bidirectional interaction, cellular needs 
and specific physiological cell-tissue states. Consequently, 
cell-tissue cancer could modify the chemical composition 
of blood plasma/serum, analogously to the association of 
specific metabolomics signatures with complex biological 
processes such as aging and diseases such as Alzheimer’s 
disease, cardiovascular disease and metabolic disorders 
[8–11]. So, a potential strength of plasma metabolomic 
analysis is that this approach can provides a composite 
metabolomic snapshot of both the tumor and the host.

Since breast cancer displays a high heterogeneity 
from histology to prognosis, metastatic evolution and 
treatment responses, and in view of the need for more 
refined diagnosis estimation in breast cancer, we designed 
this study to explore whether metabolomics can add 
diagnosis information in individuals with breast cancer. We 
assessed plasma metabolomic profiles in newly diagnosed 

breast cancer patients using a liquid chromatography-mass 
spectrometry (LC-ESI-QTOF MS/MS) platform-based 
metabolomics approach, with the hypothesis that in breast 
cancer a metabolomics signature of cancer exists and can 
be detected in patient plasma irrespectively of the breast 
cancer type.

RESULTS

Metabolomics profiling in plasma by LC-ESI-
QTOF MS/MS in breast cancer and healthy 
groups

The first aim of this work was to analyze global 
metabolomic differences between breast cancer and healthy 
samples. To do this, we applied a non-targeted metabolomics 
approach focusing on the profiles of low molecular weight 
(m/z < 1500) ionizable molecules which were present 
in at least 50% of the samples of each group (2356). To 
determine whether the metabolite fingerprints in fasting 
plasma differed between breast cancer and healthy control 
subjects in our metabolomics approach, we first evaluated 
separation between experimental groups using unsupervised 
principal component analyses (PCA) (Figure 1A). Strong 
group separation was achieved in plasma between all two 
groups, suggesting the existence of a specific metabolomic 
signature for each condition. Further analysis using partial 
least square discriminant analysis (PLS-DA) models 
demonstrated robust group separation between both groups 
(Figure 1B) obtaining good cross validation results (Max 
components= 5; C-V method= 10-fold CV; Performance 
measure= Q2) (Supplementary Table 1).

Multivariate classification analyses were comple-
mented applying Random Forest (RF) analyses, a 
supervised class prediction model, in order to a) determine 
the capacity for global metabolomes to accurately classify 
patients into their respective groups and b) to identify 
metabolites most important to the class prediction and 
hence which possessed the strongest correlation to the 
respective disease. In the RF supervised class prediction 
analysis comparing breast cancer and healthy control 
groups, RF accurately classified 100% both samples of the 
breast cancer patients and healthy controls (Figure 1C). 
So, the class error for both group in and the out-of-bag 
error were 0. The metabolites which major contribute to 
classification were shown in Figure 1D.

Altered metabolites and canonical pathways in 
plasma of breast cancer patients and healthy 
control subjects

After multivariate statistics analyses we applied 
a Student’s T Test (p<0.05, Benjamini-Hochberg False 
Discovery Rate) to define which metabolites were 
statistically altered in breast cancer patients. We found 
1269 metabolites with different concentration in plasma 
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from healthy controls and cancer patients (Supplementary 
DataSet). Basing on exact mass, retention time and 
isotopic distribution we could identify 35 metabolites 
(Table 1) belonging to aminoacyl-tRNA biosynthesis, 
arginine and proline metabolism and primary bile acid 
biosynthesis pathways (Table 2), among others.

To further analyze whether these molecules could 
define the metabolic status of cancer patients we performed 
a multivariate statistics using only these molecules which 
present a statistically significant difference between 
groups and have a potential identity (based on exact mass, 
retention time and isotopic distribution) (Figure 2). First 
of all, we applied hierarchical analyses were we could see 
relative concentration of each metabolite (Figure 2A). 
This analysis also shows a good clusteritzation of samples 
from cancer patients. In the same line, both PCA and 
PLS-DA analyses showed that, although the separation 
is better using all molecules detected, we could define a 
signature using only 35 metabolites (Figure 2B and 2C). 

Both permutation test (Supplementary Figure 2) and cross-
validation results (Max components= 5; C-V method= 
10-fold CV; Performance measure= Q2) (Supplementary 
Table 2) validate PLS-DA model. Finally, in order to 
control overfitting we used an alternative technique for 
multivariate analyses, the RF analyses obtaining an out-
of-bag error of 0.027 (Supplementary Figure 2). Overall, 
these results supports an specific metabolomic signature 
using only 35 molecules.

Receiver operator characteristic (ROC) curve 
analysis

The collective results of RF, significance testing, 
and false discovery rate analysis identified several 
metabolites that were strongly associated with breast 
cancer. To further characterize the predictive value 
of these metabolites to discriminate breast cancer, 
we performed ROC analysis using MS peak areas 

Figure 1: Multivariate analyses reveals specific metabolomic signature of cancer patients plasma samples. A. Principal 
Component Analyses revealed a good clusteritzation of samples from cancer group. B. Partial Least Discriminating analysis define a 
perfect metabolic signature for both groups. C. Random Forest classification shows and overall classification error of 0 (0 for healthy and 
cancer patient groups). D. Metabolites which much contribute to Random Forest classification. Unknown identities are represented as exact 
mass@retention time.
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Table 1: Metabolites statistically significant (p<0.05, Benjamini-Hoghberg False Discovery Rate) with a potential 
identity

Compound p (Corr) Regulation (cancer patients vs healthy 
control) FC Mass Retention 

Time

2-Hydroxy-3-methylbutyric 
acid 3.3E-04 up 36.6 100.0522 1.5816069

2-Hydroxy-3-
methylpentanoic acid 2.3E-02 up 3.3 114.0682 3.2419913

2-Methylhippuric acid 1.8E-03 down -92.0 175.0639 3.6565607
2-Octenoic acid 5.3E-03 down -39.3 372.268 9.767441
3-Hydroxyanthranilic acid 8.8E-06 down -341.8 135.0336 1.5612222
3-Methylglutaric acid 5.5E-03 up 37.6 128.0489 1.5807501
4-acetamidobutanoate 2.0E-03 down -53.3 127.064 0.70647365
5-b-Cholestane-3a, 7a, 
12a-triol 3.6E-02 down -13.2 402.3519 12.439621

5α-androstane-3,17-dione 1.2E-10 down -148.8 305.2386 10.385417
7-ketocholesterol 4.3E-04 up 117.0 400.3335 12.138314
7α-hydroxy-cholesterol 8.9E-03 down -31.4 384.329 12.368574
Caproic acid 8.4E-17 down -1.7 348.2573 5.769
Chenodeoxycholic Acid 6.1E-04 up 161.8 392.2908 11.337122
Cortisol 3.1E-05 down -1.7 362.2124 7.031
Cortisone 3.0E-02 down -5.8 360.1945 6.9761095
Creatine 3.9E-04 down -339.6 113.0561 0.42863637
Cytidine 3.5E-02 up 21.9 225.0778 0.7119473
DL-pipecolic acid 1.5E-06 up 270.4 129.0792 0.33790255
Dopamine 7.8E-04 up 1.5 135.0675 0.575
Glutamine 2.0E-06 down -1060.4 146.0684 0.5461304
Hippuric acid 3.8E-02 down -8.8 179.0599 2.1277783
Homocystine 2.9E-04 up 62.3 306.0068 0.33542165
Inosine diphosphate (IDP) 1.8E-03 up 52.7 410.0028 0.34574685
L-Arginine 1.5E-05 down -397.2 174.1067 0.4356315
Linoleic acid 4.1E-17 up 42496.8 280.2411 11.370296
L-Lysine 1.7E-04 down -61.4 146.1059 0.34584
L-Valine 1.7E-02 down -64.5 117.0775 0.44549397
Myristic acid 2.7E-04 up 78.9 250.1932 12.096725
N-Oleoyl-D-erythro-
Sphingosine (C18:1 
Ceramide)

7.2E-07 down -645.7 571.51 13.315624

Oleamide 3.8E-05 up 2.0 281.2726 11.383955
Retinoic acid 1.3E-08 down -128.9 863.6179 11.356807
Stearic acid 2.0E-06 up 673.6 284.2717 12.056651
Taurine 6.4E-09 up 198.1 125.0153 0.32860422
Threonate 3.9E-02 up 3.9 136.0378 0.88052344
Uric acid 2.8E-02 up 2.3 168.0292 0.6809543



Oncotarget19526www.impactjournals.com/oncotarget

(Table 3). We found 3 metabolites (metabolite 1: 
542.2335@6.062038 (p=3.2109E-18), metabolite 2: 
497.3955@6.065792 (p=2.6216E-14), metabolite 3: 
204.0813@9.653965 (p=5.7445E-38)) with an area 
under the curve (AUC) = 1, a specificity= 1 and a 
sensibility = 1. Among the metabolites with a putative 
identity we found with highest significant the caproic 
acid (AUC = 0.995, specificity= 1 and a sensibility = 
1), the taurine (AUC = 0.952, specificity= 0.9 and a 
sensibility = 1), staramide (AUC = 0.959, specificity= 
0.9 and a sensibility = 0.9) and the linoleic acid (AUC = 
0.935, specificity= 0.9 and a sensibility = 1) (Figure 3).

DISCUSSION

Breast cancer has been associated with marked 
metabolic shifts [2] [12–19] [20–34]. Since now, 
metabolomics has been mainly used to refine molecular 
subtyping of breast cancer, cancer progression, cancer 
metastasis, and prediction of treatment sensitivity. Only 
a few metabolomics breast cancer studies have been 
conducted in plasma/serum mostly focused to discriminate 
breast cancer subtypes [35], metastatic breast cancer 
[36–41], recurrence [42, 43] and response to neoadjuvant 
chemotherapy [44].

Table 2: Pathways modulated by breast cancer condition

Pathway name Total Expected Hits p

Aminoacyl-tRNA biosynthesis 75 0.87246 4 0.010095

Arginine and proline metabolism 77 0.89572 4 0.011061

Primary bile acid biosynthesis 47 0.54674 3 0.01624

Nitrogen metabolism 39 0.45368 2 0.074242

Purine metabolism 92 1.0702 3 0.088937

D-Arginine and D-ornithine metabolism 8 0.093062 1 0.089485

Lysine degradation 47 0.54674 2 0.10237

Fatty acid biosynthesis 49 0.57 2 0.10982

Biotin metabolism 11 0.12796 1 0.12101

D-Glutamine and D-glutamate metabolism 11 0.12796 1 0.12101

Pyrimidine metabolism 60 0.69796 2 0.15306

Linoleic acid metabolism 15 0.17449 1 0.16141

Taurine and hypotaurine metabolism 20 0.23265 1 0.20939

Retinol metabolism 22 0.25592 1 0.22783

Alanine, aspartate and glutamate metabolism 24 0.27919 1 0.24586

Pantothenate and CoA biosynthesis 27 0.31408 1 0.27215

Valine, leucine and isoleucine biosynthesis 27 0.31408 1 0.27215

Lysine biosynthesis 32 0.37225 1 0.314

Steroid hormone biosynthesis 99 1.1516 2 0.32119

Propanoate metabolism 35 0.40715 1 0.33799

Valine, leucine and isoleucine degradation 40 0.46531 1 0.37618

Ascorbate and aldarate metabolism 45 0.52347 1 0.41224

Phenylalanine metabolism 45 0.52347 1 0.41224

Fructose and mannose metabolism 48 0.55837 1 0.43291

Glycine, serine and threonine metabolism 48 0.55837 1 0.43291

Cysteine and methionine metabolism 56 0.65143 1 0.48465

Tyrosine metabolism 76 0.88409 1 0.59485

Tryptophan metabolism 79 0.91899 1 0.60928
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The present study demonstrate for the first time 
that a metabolic signature of breast cancer exists and 
can be detected in patient plasma. Thus, we found 1269 
metabolites with different concentration in plasma from 
healthy controls and cancer patients. Among them, 354 
could be identified (based on exact mass, retention time 
and isotopic distribution) and different functions could be 
attributed. Specifically, some of the metabolites could be 
involved in cell growth by providing building stones for the 
synthesis of essential cellular components, and substrates 
for bioenergetics. So, the lower plasma concentrations of 
the amino acids valine, arginine, tryptophan and lysine 
in breast cancer patients could express the higher uptake 
of these amino acids by the tumor, but also a preferential 
utilization of them. In addition, the elevated content in 
taurine and homocysteine is also suggestive of increased 
utilization of the amino acid methionine, essential for the 
synthesis of methyl group donor compounds, the amino 
acid cysteine, and the antioxidant glutathione [45]. In this 
line, the higher content of linoleic acid and stearic acid, 

as well as cytidine (also used for phosphatidylcholine and 
phosphatidylethanolamine biosynthesis) [46], suggest a 
higher rate of structural lipids biosynthesis. Furthermore, 
the higher plasma concentration of cytidine (pyrimidine 
nucleoside), inosine diphosphate (purine nucleoside) and 
uric acid suggest increased need of substrates for nucleic 
acid biosynthesis by the tumor. In parallel, the elevated 
content in short- and medium-chain fatty acids (caproic 
acid, and myristic acid), the lower content in glutamine 
and creatine, and higher content of taurine, suggest 
increased bioenergetics of tumor cells.

In this context it is also particularly interesting 
the detection of increased levels in breast cancer 
patients of three metabolites belonging to the branched 
chain amino acid (BCAA) metabolism (2-hydroxy-3-
methylbutiric acid, 2-hydroxy-3-methylpentanoic acid, 
and 3-methylglutaric acid) suggesting that BCAA are 
preferentially used by breast cancer cells likely to provide 
carbon for gluconeogenesis. Because i) BCAAs have a 
central role in the maintenance of lean body mass and 

Figure 2: A. Hierarchical clustering analyses using the statistical significant metabolites which has a potential identity (based on exact mass, 
retention time and isotopic distribution. B. Principal Component Analyses performed with the statistical significant metabolites which has 
a potential identity (based on exact mass, retention time and isotopic distribution. C. Partial Least Square Discriminant Analysis performed 
with the statistical significant metabolites which has a potential identity (based on exact mass, retention time and isotopic distribution.



Oncotarget19528www.impactjournals.com/oncotarget

Figure 3: Receiver operating characteristic curve of caproic acid, stearamide, taurine and linoleic acid.

Table 3: Receiver operator characteristic (ROC) analysis of metabolites significantly associated with the presence of 
breast cancer 

Metabolite Accurate mass@ 
retention time

Sensitivity Specificity AUC p Fold difference in breast 
cancer vs. healthy controls

C26H43ClN4S3 542.2335@6.062 100 100 1.00 3.21e-18 0.98

C26H51N5O4 497.3955@6.065 100 100 1.00 2.62e-14 1.32

C9H16O3S 204.0813@9.653 100 100 1.00 5.74e-38 1.08

C23H30N2S 366.2115@7.516 100 100 0.999 4.76e-17 2.08

278.1552@9.641 278.1552@9.641 100 100 0.999 6.15e-36 1.06

Caproic acid 348.2573@5.769 100 100 0.995 4.12e-23 0.99

Taurine 125.0153@0.328 100 90 0.952 3.048e-14 0.66

Stearamide 283.2877@11.795 90 90 0.959 2.3782e-
12 0.85

Linoleic Acid 280.2411@11.37 100 90 0.935 8.7246e-8 6.29

Metabolites investigated through ROC analysis were selected on the basis of their value to Random Forest, p-value and false 
discovery rate, and fold difference in breast cancer vs. healthy controls. Mass spectrometry peak areas corresponding to 
expression level in each patient were used in the ROC analysis.
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regulation of skeletal muscle protein metabolism [47] and 
ii) cancer cachexia is characterized by increased oxidation 
of BCAAs, and net catabolism of skeletal muscle 
through a reduction in protein synthesis and activation 
of proteolysis, it is postulated that breast cancer activates 
metabolic pathways which induce cachexia.

Other metabolites which show antioxidant activity 
(taurine and uric acid) were increased in plasma from 
cancer subjects could be involved in protecting cancer cells 
from excessive damage by oxidative stress. Reinforcing 
this fact, a lower concentration of the oxidative stress-
derived compounds 7alpha-hydroxy-cholesterol and 
3-hydroxyanthranilic acid (oxidation product of tryptophan) 
were detected in the breast cancer group.

Finally, among differential metabolites endogenous 
signaling lipids were found. Thus, we detected a decreased 
content of retinoic acid, C18:1 ceramide and two N-acyl 
amino acids (2-methylhippuric acid and hippuric acid), 
while the endocannabinoid oleamide is increased in 
breast cancer group. Globally, all these changes seem to 
be designed to enhance cell proliferation and tumor cell 
survival.

In summary, the changes described in the 
metabolomic profile in breast cancer patients may affect 
disease biology in different ways. Specifically, these 
metabolites may promote tumorigenesis by changing 
the differentiation status of tumors, induce metastatic 
phenotype, or make tumors more viable in oxidative 
stress conditions. But in any case, metabolomics studies in 
human plasma from breast cancer patients could be useful 
to describe diagnostic and/or prognosis biomarkers, as 
well as for monitoring treatment.

MATERIALS AND METHODS

Participants and ethics

A total of 91 breast cancer patients and 20 healthy 
control subjects were recruited at the Breast Cancer 
Medicine Service at Hospital of Jaén (Jaén, Spain). The 
study was approved by the institutional review board of 
the Clinical Research Ethics Committee of the Hospital of 
Jaén, and every patient provided written informed consent 
for participation. The criteria for selection included: 
at last 18 years old with histological confirmation of 
breast cancer; no detectable macrometastatic disease, 
and no prior anticancer treatment. Demographic 
characteristics and clinical diagnosis of studied subjects 
are summarized in Table 4. In order to avoid the effect 
of potential cofounders (such as age, BMI, menopause, 
diabetes, cholesterol and drug treatment) in metabolomics 
analyses the homogeneity of both groups was checked. 
We applied Student T-test for continuous variables (age, 
BM and cholesterol) and Fisher’s exact Test for two way 
categorical data (menopause, diabetes and drug treatment). 
Among cofounders analyzed only BMI presents 
statistically significance (p=0.0057) between groups. To 
further analyze the effect of BMI in plasma metabolomics 
profile we performed multivariate statistics which showed 
that BMI, contrary to pathology, did not have any effect in 
determining plasma metabolomic profile (Supplementary 
Figure 1). Further, one-way ANOVA on BMI (Normal 
Weight (BMI: 18.5-24.9); Overweight (BMI: 25-29.9); 
Obese (BMI>30)) showed no statistically significant 
metabolites between groups.

Table 4: Demographic and clinical pathological characteristics of study population

Breast cancer patients Healthy control subjects

Biospecimen Plasma Plasma

Number of participants 91 20

Age (median, range) 62 (34-91) 48 (22-64)

TNM stage-I 2 (2.1%) n.a.

TNM stage-IIa 40 (43.4%) n.a.

TNM stage-IIb 30 (32.6%)

TNM stage-IIIa 13 (14.1%) n.a.

TNM stage-IIIb 7 (7.6%)

TNM stage-IV 0 n.a.

Luminal A 25 (27.1%) n.a.

Luminal B 38 (41.3%) n.a.

HER-2 25 (27.1) n.a.

Triple Negative 12 (13.0%) n.a.

Abbreviations: n.a., not applicable.
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Samples were collected in EDTA tubes at 08:00 
hours in the morning after at least 8h of fasting using 
standard venipuncture procedures. Blood was processed 
by centrifugation within 2 h of collection using a gradient 
of histopaque in order to separate plasma, erythrocytes 
and PBMC. Plasma samples were isolated, aliquoted and 
stored at -80°C until further use.

Sample processing

Metabolites from plasma were extracted as 
previously described [9]. Samples were thawed on ice 
at 4ºC, and 300 µl of cold methanol (containing 1 µM 
of hutylhydroxytoluene as antioxidant and 1 µg/ml of 
13C-phenylalanine as internal standard) were added to 100 
µl of plasma for deproteinization, followed by incubation 
at -20ºC for 1h and then, centrifuged at 12000g for 3 min. 
The supernatants were recovered, evaporated using a 
Speed Vac (Thermo Fisher Scientific, Barcelona, Spain) 
and re-suspended in water 0.4% acetic acid/methanol 
(50/50).

Metabolomic analyses

For the metabolomic study, an Agilent 1290 
LC system coupled to an ESI-Q-TOF MS/MS 6520 
instrument (Agilent Technologies) was used. In all cases, 2 
µL of extracted sample was applied onto a reversed-phase 
column (Zorbax SB-Aq 1.8 µm 2.1 x 50 mm; Agilent 
Technologies) equipped with a precolumn (Zorba-SB-C8 
Rapid Resolution Cartridge 2.1 x 30 mm 3.5 µm; Agilent 
Technologies) with a column temperature of 60°C. The 
flow rate was 0.6 mL/min. Solvent A was composed of 
water containing 0.2% acetic acid and solvent B was 
composed of methanol 0.2% acetic acid. The gradient 
started at 2% B and increased to 98% B in 13 min and held 
at 98% B for 6 min. Post-time was established in 5 min.

Data were collected in positive electrospray mode 
time of flight operated in full-scan mode at 100–3000 
m/z in an extended dynamic range (2 GHz), using N2 
as the nebulizer gas (5 L/min, 350°C). The capillary 
voltage was 3500 V with a scan rate of 1 scan/s. The 
ESI source used a separate nebulizer for the continuous, 
low-level (10 L/min) introduction of reference mass 
compounds: 121.050873, 922.009798 (positive ion 
mode) and 119.036320, 966.000725 (negative ion 
mode), which were used for continuous, online mass 
calibration. MassHunter Data Analysis Software (Agilent 
Technologies, Barcelona, Spain) was used to collect the 
results, and MassHunter Qualitative Analysis Software 
(Agilent Technologies, Barcelona, Spain) to obtain 
the molecular features of the samples, representing 
different, co-migrating ionic species of a given molecular 
entity using the Molecular Feature Extractor algorithm 
(Agilent Technologies, Barcelona, Spain), as described 
[9, 48]. Finally, MassHunter Mass Profiler Professional 

Software (Agilent Technologies, Barcelona, Spain) and 
Metaboanalyst platform [49] were used to perform a non-
targeted metabolomic analysis of the extracted features. 
We selected samples with a minimum of 2 ions. Multiple 
charge states were not considered. Compounds from 
different samples were aligned using a retention time 
window of 0.1% ± 0.25 minutes and a mass window of 
10.0 ppm ±2.0 mDa. Only common features (found in at 
least 50% of the samples of any group) were analyzed, 
correcting for individual bias. PCA, PLS-DA, RF 
analyses, Hierarchical analyses and ROC curves were 
done using Metboanalyst platform [49]. Then, we applied 
univariate statistics (Student’s T test, p<0.05, Benjamini-
Hochberg false discovery rate) evaluate significant 
differences induced by carcinogenic process. The 
resulting differential metabolites were searched against 
PCDL database from Agilent (Agilent Technologies, 
Barcelona, Spain), which uses retention times in a 
standardized chromatographic system as an orthogonal 
searchable parameter to complement accurate mass data 
(accurate mass retention time approach) according to 
previously published works [48]. Pathway analysis was 
performed using Metaboanalyst platform [49].

Abbreviations

AUC, area under the curve; BCAA, branched 
chain amino acids; MS, mass spectrometry; RF, random 
forest; ROC, receiver operating curves; PCA, principal 
component analyses; PLS-DA, partial least square 
discriminant analysis
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