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ABSTRACT

LncRNAs have emerged as a major class of regulatory molecules involved in 
normal cellular physiology and disease, our knowledge of lncRNAs is very limited 
and it has become a major research challenge in discovering novel disease-related 
lncRNAs in cancers. Based on the assumption that diverse diseases with similar 
phenotype associations show similar molecular mechanisms, we presented a pan-
cancer network-based prioritization approach to systematically identify disease-
specific risk lncRNAs by integrating disease phenotype associations. We applied this 
strategy to approximately 2800 tumor samples from 14 cancer types for prioritizing 
disease risk lncRNAs. Our approach yielded an average area under the ROC curve 
(AUC) of 80.66%, with the highest AUC (98.14%) for medulloblastoma. When 
evaluated using leave-one-out cross-validation (LOOCV) for prioritization of disease 
candidate genes, the average AUC score of 97.16% was achieved. Moreover, we 
demonstrated the robustness as well as the integrative importance of this approach, 
including disease phenotype associations, known disease genes and the numbers 
of cancer types. Taking glioblastoma multiforme as a case study, we identified a 
candidate lncRNA gene SNHG1 as a novel disease risk factor for disease diagnosis 
and prognosis. In summary, we provided a novel lncRNA prioritization approach by 
integrating pan-cancer phenotype associations that could help researchers better 
understand the important roles of lncRNAs in human cancers.

INTRODUCTION

Long noncoding RNAs (lncRNAs) are a class of 
non-protein coding transcripts that are longer than 200 
nucleotides [1]. They regulates key cellular processes 
due to their roles in DNA and RNA metabolism and are 
involved in many complex human diseases including 
cancer [2, 3]. Systematic studies using high-throughput 
molecular tools have identified more than 12000 lncRNAs 
encoded in the human genome with little or no protein-
coding capacity (GENCODE Release 23). Cumulative 
evidence suggests that lncRNAs play crucial roles in 
tumorigenesis and metastasis. Some lncRNAs, similar to 
protein-coding genes, can be considered as “oncogenes” 
or “tumor suppressors” for cancers and are valuable in 

cancer diagnosis and prognosis [4–7]. However, despite 
enormous progress made by high-throughput biological 
detection techniques, the identification of disease related 
lncRNAs has remained a great challenge for researchers.

Several computational approaches have been 
proposed to infer novel relationships between lncRNAs 
and diseases [8–15]. Zhou et al. proposed a novel 
rank-based method (RWRHLD) to prioritize candidate 
lncRNAs [12]. They constructed a miRNA-associated 
lncRNA crosstalk network by considering significant 
co-occurrence of miRNA response elements (MREs) 
on lncRNA transcripts, a disease–disease similarity 
network by a directed acyclic graph (DAG) structure 
and a lncRNA-disease network by using experimentally 
confirmed lncRNA–disease associations obtained from 
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lncRNADisease. They integrated these three networks 
into a heterogeneous network and implemented a 
random walk with restart on the network for prioritizing 
candidate disease lncRNAs. They used leave-one-out 
cross-validation to test the performance of this method 
based on known experimentally verified lncRNA–disease 
associations and predict several novel lncRNA–disease 
associations predicted in ovarian cancer and prostate 
cancer. In our recent work, we proposed a computational 
method based on naive Bayesian to identify cancer-
related lncRNAs by integrating genome, regulome and 
transcriptome according to known disease lncRNAs [13]. 
We totally identified 707 potential cancer-related lncRNAs 
and demonstrated the performance of the method by 
ten-fold cross-validation. We found that integration of 
multi-omic data was necessary to identify cancer-related 
lncRNAs and our results showed that these candidate 
lncRNAs tend to exhibit significant differential expression 
and differential DNA methylation in multiple cancer types. 
However, the limitation of these studies was the relatively 
small number of known disease lncRNAs. Subsequently, 
to improve the limitation, some studies have used known 
disease miRNAs to help infer disease lncRNAs [12, 14]. 
Chen et al. developed a computational model named 
Hyper Geometric distribution for LncRNA-Disease 
Association inference (HGLDA) to prioritize disease 
candidate lncRNAs [14]. Based on known miRNA-disease 
relations and experimentally confirmed lncRNA-miRNA 
interactions detected by CLIP-Seq technology, they used 
hypergeometric distribution test for each lncRNA-disease 
pair to detect whether they significantly shared common 
miRNAs. Those lncRNA-disease pairs with FDR less 
than 0.05 were selected to be potential lncRNA-disease 
associations. Moreover, they developed the LFSCM 
(LncRNA Functional Similarity Calculation based on 
the information of MiRNA) model to calculate large-
scale lncRNA functional similarity by integrating disease 
semantic similarity, miRNA-disease associations, and 
miRNA-lncRNA interactions.

Disease associations (namely disease phenotype 
similarities) can be used to improve the limitation by 
complementary disease information, which has been 
successfully applied in prioritization of disease protein-
coding genes and miRNAs [16–18]. These studies 
hypothesized that highly phenotype similar diseases tend 
to show more close relations, and their relevant genes or 
miRNAs often reside in the same neighborhood in the 
interaction networks and form physical or functional 
modules. Although individual disease may contain only 
a few information, combination of multiple phenotype 
similar diseases based on the assumption can provide 
many additional clues as for the specific disease. Even 
for those diseases without any known information, such 
disease association hypothesis can help to reveal some 
potential risk factors. In our own previous work [17], we 
presented a miRNA prioritization approach to identify 

disease-specific miRNAs by using known disease genes 
and context-dependent miRNA-target interactions 
derived from matched miRNA and mRNA expression 
data, independent of known disease miRNAs. Further, we 
applied this approach to systematically prioritize miRNAs 
involved in 11 cancer types and yielded an average AUC 
value of 75.84% based on known disease miRNAs. Due 
to insufficient disease information on lncRNAs, it is 
imperative to identify disease-related lncRNAs by curating 
disease associations or disease knowledge of other risk 
factors. Additionally, a large number of array-based 
expression datasets were produced during the past two 
decades. These array-based expression datasets that have 
less technical variation and better detection sensitivity can 
be re-annotated to interrogate lncRNA expression changes 
when dealing with low-abundance transcripts [19–24]. 
Array-based datasets simultaneously capture and monitor 
gene and lncRNA expression in the same cancer samples 
for diverse cancer types, improves the confirmation 
process and the quality of identifying lncRNA related 
genes in the specific contexts [25–27].

Therefore, the aim of our study was to generate 
an lncRNA computational approach to systematically 
prioritize and identify candidate disease risk lncRNAs 
by integrating disease phenotype associations. We 
interrogated lncRNA expression in thousands of tumor 
samples and constructed a gene and lncRNA co-
expression pan-cancer network (GLCPN) for 14 cancer 
types. Utilization of known disease genes as seeds 
independently of disease lncRNAs, we used random 
walk method to prioritize candidate disease lncRNAs for 
each cancer type. The average AUC score is 80.66% for 
prioritization of candidate disease lncRNAs and 97.16% 
for protein-coding genes. Our results show that through 
the integration of disease phenotype associations, the 
lncRNA prioritization performance can be improved, 
especially for some diseases with few or without known 
disease lncRNAs.

RESULTS

Construction of GLCPN using the pan-cancer 
data

Through comprehensively searching “Affymetrix 
Human Exon 1.0 ST array” in GEO and ArrayExpress 
databases, forty-three array-based expression studies 
consisting of 2828 disease samples from fourteen cancer 
types were identified for our study. The cancer types 
included bladder cancer (BLC), breast cancer (BC), 
hepatocellular carcinoma (HCC), gastric cancer (GC), 
glioblastoma multiforme (GBM), renal cell carcinoma 
(RCC), medulloblastoma (MB), melanoma (MM), 
prostate cancer (PC), lung cancer (LC), lymphoblastic 
leukemia (LL), neuroblastoma (NB), cervical cancer 
(CC) and ovarian cancer (OC) (Supplementary Table 1). 
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Through re-annotation, 18376 unique genes and 10092 
lncRNAs covered by at least four probes were obtained 
(Supplementary Figure 1A). After repurposing the 
expression datasets to probe lncRNA expression for each 
cancer study, lncRNA expression datasets that had the 
same number of disease samples as the gene expression 
datasets were generated. We found that the expression 
levels of lncRNAs in fourteen cancer types were generally 
lower than genes (Supplementary Figure 1B), which is 
consistent with previously reported re-annotation studies 
[21, 25, 28].

Based on the assumption that genes and lncRNAs 
with similar expression have similar functions, we 
constructed disease-specific co-expression sub-networks 
for each cancer type according to the gene-gene and 
lncRNA-gene co-expression associations (Figure 1). 
These fourteen sub-networks were further integrated into 
a GLCPN. Protein interactions derived from STRING 
database were also incorporated into the GLCPN. Finally, 
the pan-cancer network that was constructed included 
29071 nodes and 159132861 edges (Supplementary Table 
2). The co-expression frequency in the fourteen cancer 
types or the protein interaction probability obtained from 
the STRING database was used to weight the edges. This 
weighted functional network was used for the following 
prioritization of risk lncRNAs.

Prioritization of disease risk lncRNAs by 
integrating of disease phenotype associations

To efficiently prioritize candidate disease lncRNAs, 
we proposed a method based on the random walk that 
used known disease genes and phenotype similarities 
to quantify the links between known disease genes and 
candidate disease lncRNAs in the GLPCN. For one cancer 
type, a prediction score for each candidate lncRNA was 
computed (see Methods). Finally, fourteen candidate 
lncRNA lists represented the prioritization results of 
fourteen cancer types were generated.

To further investigate the performance of our 
approach in prioritization of genes, we then performed 
the LOOCV analysis. Since only one known disease 
gene respectively can be found in CC and MM, we 
applied LOOCV to other twelve expression studies. The 
average AUC score of twelve cancers can reach 97.16%, 
strongly supporting that our prioritization approach 
has good prioritization performance (Figure 2A). 
During the leave-one-out cross validation, we found 
that all known disease genes in twelve cancer types 
were ranked in the top 40 out of 18979 genes (0.22%) 
in the corresponding candidate disease gene lists. For 
example, known disease genes BRCA2, CDH1, IDH1, 
CDKN2A, NME1 and FGFR3 frequently occurred at 
the top one in seven cancer types (including BC, GC, 
GBM, MB, MM, NB and OC), even though only two 
or three known-disease genes existed in NB, GBM and 
MB gene lists. To further evaluate the performance of 
our approach in prioritization of lncRNAs, we extracted 
known disease lncRNAs of the fourteen cancer types 
from the LncRNADisease database and computed their 
AUC scores. The average AUC of fourteen cancers was 
80.66% (Figure 2B), suggesting that our methodology 
efficiently prioritized and identified cancer related risk 
lncRNAs.

Furthermore, we also investigated the overall 
distribution of known disease lncRNAs at the top of 
candidate lists (Figure 2C). Some recently identified 
disease lncRNAs like MYCNOS, CDKN2B-AS1, WT1-
AS, IGF2-AS and GAS5 that play important roles in NB, 
GBM, LL, RCC and PC [29–33], were ranked at the top 
of the candidate lists. Intriguingly, we found that more 
than half of the known disease lncRNAs were ranked at 
the top 10% of prioritization lists in ten cancer types, 
namely, BC, HCC, GBM, MB, MM, PC, LC, NB, CC 
and OC. Moreover, we also selected five representative 
disease lncRNAs (HOTAIR, MALAT1, H19, MEG3 
and TUG1) that play key roles as oncogenic molecules 
associated with various cancers [34–37] to investigate 

Figure 1: Heat maps of co-expression relationships in the fourteen cancer-types. Clustering maps showing existence of gene-
gene or lncRNA-gene co-expression relationships among different cancer types that can be used to construct disease-specific sub-networks.
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their occurrences at the top 5%-20% of the candidate 
lists (Supplementary Figure 2A). We found that 
HOTAIR, H19 and TUG1 almost appeared in all cancer 
types.

Evaluation of the robustness and the integration 
importance of lncRNA prioritization approach

The principle of our lncRNA prioritization approach 
depended on the disease phenotype associations among 
diverse cancer types, as well as the topological similarities 
between known disease genes and context-specific co-
expression genes of lncRNAs in the GLCPN. Therefore, it 
was important to evaluate the contribution of these factors 
to the performance of our lncRNA prioritization approach.
Evaluation of the influence of disease phenotype 
associations

The fourteen disease phenotype associations 
can be used to characterize the relationship between 
diseases and provide the opportunity for us to elucidate 
the pathogenesis mechanisms of diseases in the crosstalk 
pattern (Figure 3A and Supplementary Table 3). To 
evaluate the importance of disease phenotype associations, 

we prioritized risk lncRNAs in diverse cancer types 
without utilizing any phenotype associations. The 
average AUC based on known disease lncRNAs from 
LncRNADisease was 78.78%, lower than the AUC 
score (80.66%) with the inclusion of disease phenotype 
associations (Figure 3B and 3D). Notably, the AUC score 
for LL dropped from 69.4% to 45.73%, suggesting that the 
disease phenotype associations can be efficiently used to 
supply the incomplete information of some diseases and 
improve the overall performance of lncRNA prioritization.

To further evaluate the influence of disease phenotype 
similarity, we permuted the phenotype similarity matrix and 
recomputed the prioritized scores for all candidate lncRNAs 
(Figure 3C and 3D). The average AUC score was 61.21%. 
Taken together, the decreased performances in prioritization 
by remove or permute phenotype associations supported 
that the disease phenotype association was one of necessary 
and indispensable factors for the lncRNA prioritization in 
our approach. It also showed that the disease phenotype 
associations could efficiently complement the incomplete 
disease information in individual cancer types and thus 
provide more power to identify cancer-related lncRNAs 
through pan-cancer analysis.

Figure 2: Evaluation of the performance of our lncRNA prioritization approach. A. The ROC curves of gene prioritization 
results by LOOCV B. The ROC curves of lncRNA prioritization results. C. Top 100 ranks of known disease genes (left) and lncRNAs 
(right) after prioritization.
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Evaluation of the influence of the number of cancer 
types

Disease phenotype associations can be used to 
bridge relationships among different cancer types and 
efficiently improve the performance of our prioritization 
approach. Therefore, we sought to determine the 
performance of our lncRNA prioritization approach 
by varying the number of cancer types. Towards this, 
we randomly selected 3, 6, 9 and 12 cancers from 
the original fourteen cancer types to re-compute 
prioritization scores for candidate disease lncRNAs. We 
found that upon increasing the number of cancer types 
for analysis, the average AUC scores increased from 
73.49% to 80.01% (Supplementary Figure 2B). This 
suggested that utilization of more diseases with their 
phenotype associations can facilitate the improvement 
of prioritization of candidate disease lncRNAs.
Evaluation of the influence of known disease genes

Our lncRNA prioritization approach only relied 
upon known disease related protein-coding genes without 
the requirement of known disease lncRNAs. Therefore, 
we evaluated the efficiency of known disease genes by 
randomly selecting the same number of non-disease-
associated genes as known disease genes for each cancer 
type. Owing to the lack of the non-disease gene set, we 

obtained a total of 43899 human genes from the NCBI 
Gene database and 15229 known disease genes from the 
OMIM database. A non-disease gene set containing 28670 
genes was then generated. Equal numbers of non-disease 
genes for each cancer were randomly selected 1000 
times and used for prioritization. We obtained an average 
AUC score of 59.21% that was significantly lower than 
the prioritization result based on known disease genes 
(p<0.001).

Evaluation of prediction performance of our 
prioritization approach

To assess the prediction performance of our lncRNA 
prioritization approach, we prioritized candidate disease 
lncRNAs for each cancer type only using information 
of the other cancer types through disease phenotype 
similarities. Surprisingly, the average AUC was 81.63%, 
supporting that our lncRNA prioritization approach 
has superior performance in predicting of potential 
risk lncRNAs (Supplementary Figure 2C). All of the 
validation results showed that our prioritization approach 
has a good ability in identification of known disease 
lncRNAs and genes (Supplementary Figure 2D), even 
for some diseases with little or without known disease 
information.

Figure 3: Evaluation of the influence of disease phenotype associations. A. Fourteen disease phenotype association network. B. 
The ROC curves of lncRNA prioritization results generated by excluding disease phenotype associations. C. The ROC curves generated by 
randomly selecting disease phenotype associations with 1000 repetitions. D. The comparison results of lncRNA prioritization generated by 
either using, excluding or permuting disease phenotype associations.
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A case study of GBM

GBM is a highly aggressive brain cancer with 
extremely poor prognostic outcome despite intensive 
treatment regimes. Taking GBM as a case study, we 
used our approach to prioritize risk genes and lncRNAs 
associated with GBM. Through LOOCV, we found all 
known disease genes rank at the top of the candidate 
disease gene list, in which IDH1, ERBB2, and TP53 are 
ranked at 1th, 2nd and 20th, respectively (Supplementary 
Table 4). We then extracted the top 20 candidate disease 
genes and carried out function enrichment analysis 
using the remaining seventeen unknown disease genes 
by DAVID (Benjamini test, p<0.01) [38]. We found 
that these candidate genes were significantly enriched 
in cancer-related GO functions, including “regulation of 
cell proliferation”, “regulation of apoptosis”, “regulation 
of programmed cell death”, “regulation of cell death” 
and “regulation of nucleocytoplasmic transport” (Figure 
4A and Supplementary Table 5) and KEGG pathways, 
including “pathways in cancer”, “melanoma”, “bladder 
cancer”, “non-small cell lung cancer” and “glioma”. These 
results suggested that the seventeen candidate disease 
genes may play crucial roles in GBM tumorigenesis 
(Figure 4A and Supplementary Table 5).

For the lncRNA prioritization result, we extracted 
the top 5% of lncRNAs and found all known disease 
lncRNAs, CDKN2B-AS1 and H19, in the candidate 
disease lncRNA list. To further validate GBM-related 
lncRNAs with high-confidence, we chose the top 20 
lncRNAs and investigated their potential functions 
according to LncRNA2Function (Benjamini test, p=0.01, 
Supplementary Table 6). We found that the lncRNA-
related genes were significantly enriched in GBM-related 

GO terms and KEGG pathways. The GO terms included 
“transmission of nerve impulse”, “multicellular organismal 
signaling”, “synaptic transmission”, “cell-cell signaling”, 
“neurological system process”, “system process” and 
“nervous system development” etc. (Figure 4A). The 
KEGG enrichment analysis included “neuronal system”, 
“transmission across chemical synapses”, “neuroactive 
ligand-receptor interaction”, “neurotransmitter release 
cycle” and “transmembrane transport of small molecules” 
pathways etc. (Figure 4A).

Next, we investigated whether these candidate 
lncRNAs were independent prognostic factors for survival. 
Towards this, we obtained two public expression datasets 
from the GEO database that contained 80 and 263 GBM 
samples (GSE7696 and GSE16011), respectively, and 
performed the same re-annotation process as described 
in Method. We found 2673 lncRNAs that were then 
subjected to survival analysis based on which we 
identified, three lncRNAs including ENSG00000267519, 
ENSG00000255717 and ENSG00000263731 that 
significantly correlated with survival of GBM (Figure 
4B). Interestingly, high expression of the lncRNA gene 
ENSG00000255717, namely SNHG1, correlated with poor 
prognosis in both of the two datasets. Previously, Cao et al. 
identified abnormal expression of SNHG1 in gastric cancer 
[39]. Our findings suggested that these potential lncRNAs 
may promote the development of GBM and could serve as 
novel prognostic markers for GBM, once verified.

DISCUSSION

Although a large number of lncRNAs have been 
identified in the human genome over the past decade 

Figure 4: The prioritization results in the case study of GBM. A. The GO and KEGG enrichment analysis results for top 17 
non-disease candidate genes and top 20 candidate lncRNAs of GBM. B. Survival analysis results of three candidate lncRNAs in GSE7696 
and GSE16011.
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[20–22, 27]. Only a few lncRNAs have been verified to 
be associated with diseases. How to integrate different 
biological datasets to accurately predict risk lncRNAs 
has become a critical issue for understanding disease 
mechanisms at the lncRNA level.

Based on the assumption that different diseases with 
similar phenotype associations involve similar molecular 
mechanisms, several studies have demonstrated that 
disease phenotype associations can help link different 
diseases with common genes and/or miRNAs [17, 18, 
21, 40]. Disease phenotype associations have been 
widely used to benefit the systematic identification of 
disease-related protein-coding genes or miRNAs and 
facilitate in-depth understanding of their pathogenesis 
in human cancers. In this study, we developed a 
prioritization approach that was based on disease 
phenotype associations and systematically identified 
disease risk lncRNAs through integration of large-scale 
array-based expression datasets. Through collecting and 
re-annotating Affymetrix Human Exon 1.0 ST array 
datasets, we obtained 2818 samples with matched gene 
and lncRNA expressions in fourteen cancer types. We then 
constructed a GLCPN by using the pan-cancer datasets 

and found that our prioritization strategy was efficient in 
identifying candidate disease lncRNAs apart from being 
cost-effective. Our prioritization results showed that the 
top ranked lncRNAs or genes have high probabilities of 
being bona fide disease-related lncRNAs or genes.

The majority of disease candidate lncRNA 
prioritization approaches utilized known disease 
lncRNA information to predict disease and lncRNA 
associations [8–11, 13, 15]. However, only a few disease-
related lncRNAs have been identified, and this limited 
information results in incomplete training sets during 
prioritization and hence can influence the performance 
in previous lncRNA prioritization approaches. Some 
other lncRNA prioritization approaches were designed by 
integration of other information, such as predictive and 
experimentally validated lncRNA-miRNA interactions 
[12, 14]. Such information provided the additional ability 
to measure the relationships between lncRNAs and 
diseases. Notably, the numbers of these known biological 
associations are relatively limited. LncRNA–miRNA 
interactions experimentally confirmed by molecular 
biological technologies in starBase v2.0 database refer 
to 1114 lncRNAs and 132 miRNAs. Such incomplete 

Figure 5: The workflow of prioritization of risk lncRNAs through integration of disease phenotype associations. A. 
Array-based expression data collection and re-annotation. B. Construction of the gene and lncRNA co-expression pan-cancer network 
(GLCPN). C. Application of the random walk method to predict scores for all candidates according to known disease genes. D. Integration 
of prediction scores by disease phenotype associations and generation of disease candidate lncRNA lists for prioritization.
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information will limit the power in prioritizing or 
predicting lncRNAs that are potential associated with 
diseases. Relative to known disease lncRNAs and 
miRNAs, more disease protein-coding genes have been 
identified and confirmed. In contrast to previous methods 
[8–14], our method required only the knowledge of 
known disease genes for prioritization and did not depend 
on known disease-related lncRNAs. This enabled us to 
prioritize more comprehensive risk lncRNAs associated 
with a specific disease even in diseases without any known 
disease-related lncRNAs. Moreover, our approach was 
based on disease phenotype associations that can reduce 
the influence of the limited numbers of known disease 
genes and are effective in the prioritization of disease 
risk lncRNAs. The strategy utilized in our approach can 
help to advance the understanding of lncRNA function in 
cancer etiology. In summary, we presented an integrated 
prioritization approach for systematically prioritizing risk 
lncRNAs associated with human disease. This approach 
can be used to facilitate the identification of disease-
related lncRNAs and to increase the understanding of 
lncRNA-mediated pathogenesis. Using our approach, we 
performed overall prioritization of the risk lncRNAs for 
fourteen cancer types, which provided testable hypotheses 
to guide further experiments.

MATERIALS AND METHODS

Array-based expression data collection and  
re-annotation

To satisfy the requirement that re-annotated 
lncRNAs have the broad coverage across the whole 
genome and microarray platforms designed by 
distinct expression studies are consistent, we selected 
“Affymetrix Human Exon 1.0 ST Array” as the research 
platform and collected this kind of expression datasets 
from GEO and ArrayExpress databases [41]. In order 
to ensure the sufficient sample size, we selected 
cancer studies with five or more disease samples to 
be considered and used for the further analysis. After 
widespread screening, forty-three studies with 2828 
disease samples were identified. They were associated 
with fourteen cancer types namely, bladder cancer 
(BLC), breast cancer (BC), hepatocellular carcinoma 
(HCC), gastric cancer (GC), glioblastoma multiforme 
(GBM), renal cell carcinoma (RCC), medulloblastoma 
(MB), melanoma (MM), prostate cancer (PC), 
lung cancer (LC), lymphoblastic leukemia (LL), 
neuroblastoma (NB), cervical cancer (CC) and ovarian 
cancer (OC) (Supplementary Table 1).

Construction of lncRNA expression through  
re-annotation

We applied a custom pipeline to re-annotate 
Affymetrix Human Exon 1.0 ST Array taking advantage 

of its huge amount of probes annotated to thousands of 
lncRNAs. The probe sequences were downloaded from the 
manufacturer's website (http://www.affymetrix.com) and 
were then uniquely mapped to the human genome (hg19) 
by Bowtie without mismatch. Through using BEDTools 
(http://code.google.com/p/bedtools), probes completely 
falling into exons of lncRNAs but without overlapping 
with protein-coding genes were remained. Expression 
values of one lncRNA gene detected by at least four 
probes were averaged. All the expression data was log2-
transformed and uniformly normalized by the quantile 
normalization approach. Finally, lncRNA expression 
datasets were constructed for all cancer types.

Construction of a GLCPN across pan-cancer 
datasets

Guilt by association implies that genes or 
lncRNAs with similar expression patterns under 
multiple experimental conditions have a high probability 
of sharing similar functions or being involved in 
common biological pathways [42, 43]. Therefore, we 
constructed a GLCPN from all the cancer datasets 
we had collected. We used the Pearson correlation 
coefficient to quantify the relations between or within 
the genes and the lncRNAs from the expression datasets 
in all the 14 cancer types. For each cancer type, gene-
gene and gene-lncRNA pairs with co-expression scores 
greater than 0.8 and 0.7, respectively, were combined 
to formed a disease-specific network in each dataset as 
performed in previous studies [44–46]. Furthermore, 
we integrated all associated disease-specific networks 
into one GLCPN. The edge weights of GLCPN were 
assigned by the frequencies in the different cancer types. 
We further integrated protein-protein interaction (PPI) 
relationships (17649 nodes and 2079530 edges) obtained 
from a publicly available database STRING database 
[47] into the GLCPN. The normalized interaction 
probability scores obtained from the STRING database 
were considered as the weights.

Prioritization of risk lncRNAs and genes through 
integration of disease phenotype associations

To efficiently prioritize risk lncRNAs and genes in 
different cancer types based on the GLCPN, we applied 
the random walk method to calculate prediction score 
for all candidate lncRNAs and genes in each cancer 
type. By considering the known disease genes as seed 
nodes for any queried cancer type ‘i’ (Figure 5), we 
utilized the random walk method to compute prediction 
scores for each node (gene or lncRNA) in the GLCPN. 
By assuming that diverse diseases with phenotype 
associations show similar molecular mechanisms, we 
further combined disease phenotype similarity scores 
with the prediction scores of lncRNAs or genes into a 
unique prioritization score Sij by:
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Where Pij represents the disease phenotype 
similarity score between cancer type i and j, and Sjk 
represents the corresponding prediction score for 
candidate lncRNA (or gene) k in cancer type j (Figure 5). 
Disease phenotype similarity scores were derived from 
the MimMiner tool, which calculates the correlation 
scores of 5080 known disease phenotypes through text 
mining analysis [48]. The candidate disease genes and 
lncRNAs were then ranked according to the prediction 
scores.

Evaluation of the robustness and the integration 
importance of our prioritization approach

We evaluated the performance of our prioritization 
approach by known disease lncRNAs and genes by using 
the ROC curve analysis, and the leave-one-out cross-
validation (LOOCV) was carried out to assess the gene 
prioritization performance. Known causal genes and 
lncRNAs were extracted from the Online Mendelian 
Inheritance in Man (OMIM) [49] and the LncRNADisease 
database [50].

To evaluate the robustness and the integration 
importance of our prioritization approach, we accepted the 
evaluation strategies by leaving out or permuting relevant 
influence factors, included disease phenotype associations, 
the number of cancer types and known disease genes, 
and interrogated the changes in the prioritization results. 
Finally, we assessed the prediction performance of our 
prioritization approach in identifying disease-related 
lncRNAs and genes for each cancer type by only using 
information from other diseases.

Gene or lncRNA functional enrichment analysis

Functional enrichment analysis of candidate genes 
was performed by using the DAVID bioinformatics 
tool (http://david.abcc.ncifcrf.gov/conversion.jsp). 
For lncRNAs, we used LncRNA2Function (http://
mlg.hit.edu.cn/lncrna2function) to perform function 
characterization [51]. All statistical analyses were 
performed using the R software package (http://www.r-
project.org).
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