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ABSTRACT
Predicting colorectal cancer (CRC) based on fecal microbiota presents a 

promising method for non-invasive screening of CRC, but the optimization of 
classification models remains an unaddressed question. The purpose of this study was 
to systematically evaluate the effectiveness of different supervised machine-learning 
models in predicting CRC in two independent eastern and western populations. The 
structures of intestinal microflora in feces in Chinese population (N = 141) were 
determined by 454 FLX pyrosequencing, and different supervised classifiers were 
employed to predict CRC based on fecal microbiota operational taxonomic unit (OTUs). 
As a result, Bayes Net and Random Forest displayed higher accuracies than other 
algorithms in both populations, although Bayes Net was found with a lower false 
negative rate than that of Random Forest. Gut microbiota-based prediction was more 
accurate than the standard fecal occult blood test (FOBT), and the combination of both 
approaches further improved the prediction accuracy. Moreover, when unclassified 
OTUs were used as input, the BayesDMNB text algorithm achieved higher accuracy in 
the Chinese population (AUC=0.994). Taken together, our results suggest that Bayes 
Net classification model combined with unclassified OTUs may present an accurate 
method for predicting CRC based on the compositions of gut microbiota.

INTRODUCTION

Colorectal cancer (CRC) ranks the third common 
malignancy and will cause over 600 000 deaths globally 
[1]. Screen detection and removal of precancerous 
lesions can largely prevent this cancer, as demonstrated 
by a declining incidence and mortality in countries 
with programmatic screening [2]. An ideal screening 
tool should have high sensitivity and specificity, with 
characteristics of noninvasiveness, feasibility, and 
affordability. To date, fecal occult blood testing (FOBT) 
and colonoscopy are the predominant screening tools 
[3–5]. Although colonoscopy has high sensitivity and 
could remove adenomas that may evolve to carcinoma, 
screening effectiveness is compromised by its invasiveness 
and cost. FOBT is the noninvasive standard screening 

method and has been shown to reduce cancer mortality 
[6–9]. However, blood in the stool is a nonspecific finding 
and because bleeding from cancers may be intermittent 
or simply not always detectable in a single sample of 
stool [10], it has limited sensitivity and specificity. 
Therefore, cancer incidence is affected only marginally  
[7, 9, 11, 12]. A more accurate noninvasive screening 
method is needed to identify those CRC patients as earlier 
as possible.

Recent progress in the relationship between 
gut microbiota and CRC opens new opportunities for 
developing novel strategies for CRC screening.  High-
throughput sequence technologies make it feasible to 
obtain a comprehensive view of the microbial ecosystem 
in gut microbiome and a quite different gut microbiome 
structure between CRC patients and healthy individuals 
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has been reported by numerous studies [13, 14]. A number 
of bacterial species such as Fusobacterium nucleatum 
[15, 16], Bacteroides fragilis [17] and Escherichia coli 
[18] were involved in CRC carcinogenesis. The significant 
association between CRC and gut microbial composition 
allowed for non-invasive screening of CRC based on 
fecal microbiota as a promising method. Using Bayesian 
methods, Zackular first reported the possibility of the 
human gut microbiome as a screening tool of CRC [19]. 
While Zeller et al. arrived at the same conclusion that 
fecal microbiota would allow for accurate CRC screening, 
but using LASSO models [20]. A third model, Random 
Forest classifier, was also employed to test the diagnostic 
value of fecal microbiome for CRC, with the performance 
reached as high as 0.96 AUC [21]. Despite the increasing 
recognition of the CRC screening potential for fecal 
microbiome, the selection of classification models is 
diverse and remains an unaddressed question. It is also 
unclear if certain classifier model may have universal 
applicability in different populations and races.

Here, we systematically evaluated the performance 
of the supervised classifiers to predict CRC based on fecal 
microbiota. We recruited 141 participants and sequenced 
the V1~V3 hypervariable regions of the 16S rRNA gene 
from the feces of each individual and employed different 
supervised machine learning algorithms to test their 
performance of predicting CRC based on fecal microbiota 
OTUs. We also validated our results in a French 
population.

RESULTS

The CRC prediction performance based on fecal 
microbiome varied among different classifiers in 
the Chinese population

To systematically assess the performance of different 
supervised machine learning algorithms in the realm 
of CRC detection based on fecal microbiome, we first 
imported the OTUs dataset in the species rank on the study 
population A (Table 1 for patient data) into the WEKA 
software. Features such as FOBT were removed. Only 
diagnosis and fecal microbiome OTUs information were 
included. We used the diagnosis feature as class. Then all 
available classifiers/algorithms such as Bayes Net [22, 23], 
Simple Logistic [24], JRip [25], J48 [26, 27], Random 
Forest [28], SMO [29] were applied to classify the samples 
(Supplementary Tables S1 and S2). As shown in Figure 1A, 
these algorithms showed different performance and some of 
them displayed high AUCs. For example, Simple Logistic 
and LMT algorithm[30] covered the maximum area under 
the curve (AUC=0.975, standard deviation (SD), 0.04), 
followed by Random Forest (AUC=0.94, SD, 0.05) 
and Bayesian methods (AUC=0.93, SD, 0.06), while lazy. 
IB1 model [31]only achieved an AUC of 0.693 (SD, 0.13). 
These results showed the classification ability among 

different models varied greatly, highlighting the necessity 
to choose a suitable one based on systematical approach.

Validation of CRC classifiers in the French cohort

The heterogeneity of gut microbiota caused by 
geographical or ethnical disparities or even technical 
variations in experimental procedures may interfere with the 
performance of model and limit its broad application. We 
hence sought to validate the evaluation performance in an 
independent group of individuals from France (population 
B, see Table 1 for patient information), whose gut 
microbiota OTUs were obtained by shortgun metagenomics 
sequencing and matched to the marker species using a best-
hit approach based on the respective 16S fragments.

In general, population A and B displayed some 
similarities. Both populations had a similar distribution of 
gender, whereas CRC patients in both populations were 
older on average. For the gut microbiome structure, both 
populations showed an increased ratio of two dominant 
bacterial divisions, the Bacteroidetes and the Firmicutes, 
in CRC patients.  And both populations showed increased 
Fusobacteria, Proteobacteria and decreased Actinobacteria 
in CRC patients [20, 32]. However, big differences 
also existed.  For example, the most distinguishable 
species in two populations differed. In population A, 
Methanosphaera_stadtmanae_DSM_30 and Blautia_
uncultured_Firmicutes_bacterium seemed to be the most 
discriminative ones between CRC and controls, while in 
population B, it was unclassified Fusobacterium [1481] 
that displayed the biggest abundance difference.

As shown in Figure 1B, the overall test performance 
of all algorithms was decreased in population B compared 
with those in population A. However, Bayes Net and 
Random Forest algorithm still achieved AUCs of 0.858 
(SD, 0.096) and 0.86 (SD, 0.11), respectively. As the 
Bayes Net and Random Forest model also maintained 
high performance of 0.93 (AUC) and 0.94 (AUC) on 
study population A, we speculated these two models were 
better models using fecal microbiome to predict CRC, 
regardless of geographical or cultural disparity or technical 
variations. We depicted ROC curves for the performance 
of the two models in population A and B (Figure 1C). 
When we further analyzed the confusion matrix of Bayes 
Net (Figure 1E) and Random Forest (Figure 1F) algorithms 
for population A, we found the false negative rate for 
Random Forest algorithms (15/46) was higher than that 
of Bayes Net algorithms (7/46), limited its application as a 
screening tool. Hence, Bayes Net algorithm outperformed 
all other classifiers and should be prioritized.

It is worth noting that Simple Logistic and LMT 
algorithm, two algorithms reached the highest test 
performance in population A, only displayed limited 
performance of 0.714 (AUC) and 0.762 (AUC) in 
population B, respectively (Figure 1D), indicating the 
performance of different prediction models may vary 



Oncotarget9548www.impactjournals.com/oncotarget

considerably between populations/races. In term of 
general applicability, the Bayes Net model appeared 
to be appropriate models with relatively satisfactory 
sensitivity, AUCs and false negative rate in both 

populations. We also listed the overall summary of 
performance included TPR, FPR, Precision, Recall, F 
measure and MCC for these four algorithms to better 
evaluate them (Table 2).

Figure 1: The CRC prediction performance based on fecal microbiome varied among different classifiers and 
populations. (A) The test performance of different models using fecal microbiome on study population A was displayed using area under 
roc curve (AUC). (B) The test performance of different models using fecal microbiome on study population B was displayed using AUC. 
(C) ROC curves show the prediction ability of the Bayes Net and Random Forest models on study population A and B, respectively. TPR 
means true positive rate (sensitivity). (D) ROC curves of Simple Logistic and LMT algorithms on study population A and B. (E) Confusion 
Matrix of Bayes Net algorithm in population A. (F) Confusion Matrix of Random Forest algorithm in population A. *P < 0.05, **P < 0.01, 
the Bayes Net model was used as the control model.

Table 1: Summary of study population A and B
Population A  (Chinese) Population B (French)

Control  
(N = 52)

CRA 
(N = 47)

CRC 
(N = 42) P Control  

(N = 61)
CRA

(N = 27)
CRC 

(N = 53) P

Age, years 
(mean ± SD)

52.29 ± 1.53 58.89 ± 1.48 62.88 ± 1.50 < 0.0001 60.57 ± 1.46 60.30 ± 1.67 66.81 ± 1.494 0.004

Gender (n,%) 0.544 0.190
Male 21(40%) 24(51%) 18(43%) 28(46%) 18(67%) 29(55%)
Female 31(60%) 23(49%) 24(57%) 33(54%) 9 (33%) 24(45%)
Positive FOBT (n,%) 7  (14%)  5 (11%) 16(38%) 0.002 3(5%) 4(15%) 26(49%) < 0.0001
TNM stages, I, II − − 12 − − 17
TNM stages, III, IV − − 30 − − 36
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Detection of CRA by Bayes Net model

We further investigated the utility of fecal 
microbiome for identifying adenoma, which is more 
difficult to screen compared to CRC but quite necessary 
for early intervention [33, 34]. Indeed, the overall CRA 
(colorectal adenoma) AUCs were lower compared 
with AUCs of CRC in both populations. Consistently, 
algorithms used gut microbiome from population B 
showed poorer test performance relative to that from 
population A. However, in line with the case in CRC, 
Bayes Net still showed satisfactory test performance of 
0.871 AUC (SD, 0.13) in population A (Supplementary 
Figure S1). Therefore, the fecal microbiome offers new 
opportunities for non-invasive detection of carcinoma as 
well as adenoma.

Unclassified OTUs increased the test 
performance compared with classified OTUs 

The pre-processing of 16s sequencing data includes 
a classification step, which merges different sequencing 
reads with > 97% similarity into one same species. For 
example, OTU14, OTU6789 and OTU13450 all link 
to Fusobacterium nucleatum. Interestingly, we found 
if we use the dataset before merge (i.e. unclassified 
OTUs), the test performance of almost all models 
improved (Figure 2A). The most prominent one is the 
Bayes DMNB text algorithm, the performance of which 
increased to an AUC of 0.994 (SD, 0.02), corresponding 
to a relative gain in sensitivity (i.e. TPR) to 0.935 and a 
decline of false positive rate (FPR) to 0.021 (Figure 2B). 
Figure 2C showed the confusion matrix of Bayes DMNB 
text algorithm using unclassified OTUs of population A. 
This result suggested that the data type (classified or not) 
also impacted on the optimization of the prediction model.

Fecal microbiome combined with FOBT 
moderately improved the prediction ability

Despite its limited sensitivity and specificity, FOBT 
is the currently standard noninvasive screening tool for 
CRC. To assess whether FOBT could help improve the test 
performance of fecal microbiome, we combined FOBT 
and fecal microbiome information. On this dataset, the 

test prediction ability of many models showed a slightly 
improvement, more significantly on study population B 
(Figure 3A and 3B). For Bayes Net and Random Forest, 
two algorithms we considered as proper prediction models 
for CRC, both got a higher AUC after the combination. As 
shown in Figure 3C, the performance of FOBT alone in 
population A was just 0.591 AUC, much lower than that 
of fecal microbiome (0.93 AUC and 0.94 AUC by Bayes 
Net and Random Forest model, respectively). When we 
combined FOBT with fecal microbiome, the prediction 
ability of Bayes Net and Random Forest model increased 
to an AUC of 0.931 (SD, 0.06) and 0.95 (SD, 0.05), 
respectively. And the sensitivity reached to 0.87 and 0.739, 
respectively. These two models showed a similar pattern 
on study population B (Figure 3D). These data suggested 
that, in combination with FOBT, fecal microbiome could 
better predict CRC.

Interpretation of gut microbial species in the 
prediction model

Each algorithm has its own default parameters 
due to the nature of the algorithm itself. However, 
some quite significantly differently expressed bacteria 
between CRC and normal controls can be recognized by 
many different algorithms and used as key parameters 
to predict. For example, in Chinese population, 
Methanosphaera_stadtmanae_DSM_3091 was identified 
and used by Filtered Classifier, SMO, Logistic, and Naïve 
Bayes models as key parameters. Another dominant 
bacterium, Blautia_uncultured_Firmicutes_bacterium, 
was taken by Random Tree, J48 and PART algorithm as 
a key parameter.  In the French population, unclassified 
Fusobacterium [1481] made a second big contribution to 
the LASSO model to predict CRC. In our analysis, Simple 
Cart, Rotation Forest, Simple Logistic and Bayes.DMNB 
text also recognized this bacterium and used it as a default 
parameter. 

To better show the most discriminative bacterial 
species that consist of default parameters in many 
algorithms, we then used J48 algorithm. J48 is used 
to learn decision trees using quantitative values of 
attributes. Unlike Bayes Net and Random Forest, 
which used a multitude of attributes, J48 only analyzed 
several attributes, making it easy for interpretation of 

Table 2: Overall summary of performance of algorithms
Models Population A Population B

TPR FPR Precision Recall F MCC AUC TPR FPR Precision Recall F MCC AUC
BN 0.887 0.133 0.888 0.887 0.887 0.745 0.93 0.801 0.255 0.799 0.801 0.798 0.568 0.858
RF 0.858 0.237 0.858 0.858 0.853 0.668 0.94 0.773 0.354 0.799 0.773 0.751 0.515 0.86
SL 0.922 0.127 0.922 0.922 0.921 0.82 0.975 0.73 0.395 0.737 0.73 0.707 0.402 0.714
LMT 0.922 0.127 0.922 0.922 0.921 0.82 0.975 0.773 0.302 0.771 0.773 0.766 0.503 0.762

BN means Bayes Net, RF means Random Forest, SL denotes Simple Logistic. F means F measure. MCC means Matthews 
correlation coefficient.
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the classification model. As illustrated in Figure 4A, 
the three most discriminative species in population A 
were Blautia uncultured Firmicutes bacterium, Dialister 
pneumosintes and Streptococcus salivarius. In population 
B, different species consisted of the most CRC-associated 
gut microbial speices, i.e. Peptostreptococcus stomatis, 
Clostridium symbiosum, Porphyromonas asaccharolytica, 
Fusobacterium nucleatum, unclassified Fusobacterium 
and Streptococcus salivarius (Figure 4C). Notably, 
while these two distinct population displayed different 
CRC-associated fecal microbial species, Streptococcus 
salivarius was identified to make a difference in both 
populations. Moreover, Streptococcus salivarius was 
more abundant in normal individuals compared with CRC 
patients in both populations (Figure 4B and 4D).

DISCUSSION

With the increasing evidence linking gut microbiota 
and CRC, fecal microbiota has emerged as a promising 
candidate to non-invasively screen for CRC. However, it 
is still unclear which classification models should be more 
applicable in fecal microbiota-based CRC prediction. In 
this study, we confirmed that fecal microbiota could be 
used as a noninvasive CRC screening tool, being more 
accurate than FOBT. By evaluating supervised machine-
learning algorithms in a comprehensive manner, we 

found different algorithms had quite different prediction 
performance using fecal microbiota. Population disparities, 
variation in experimental procedures and different 
data types also played a role in the optimization of the 
prediction model, while Bayes Net turned out to be a good 
model generally.

An exciting and potentially far-reaching development 
in computer science is the invention and application of 
methods of machine learning (ML). It enables a computer 
program to automatically analyze a large body of data and 
decide what information is most relevant.  It was widely 
used in studies as diverse as methylated DNA patterns 
linked to genetic disorders [35]and Alzheimer’s disease 
(AD) diagnosis using imaging data [28]. In this work, we 
tested all algorithms available in machine learning and 
found Bayes Net algorithm provided better performance as 
assessed from ROC curve analysis and false negative rate 
in both populations.  Notably, Bayes Net algorithm was 
able to classify colorectal adenomas from normal controls. 
This has considerable importance because screening for 
early-stage colorectal cancer depends on the ability to 
detect early pathologic changes [19].

As mentioned above, another three independent 
studies suggested the potential of fecal microbiome as a 
non-invasive CRC screening tool—using three different 
models. The data information of our population B just 
extracted from the study of Georg Zeller [20], who 

Figure 2: Unclassified OTUs increased the test performance compared with classified OTUs. (A) The test performance 
of different models using OTUs dataset classified or not on study population A was displayed using AUC. (B) ROC curves show the test 
performance of the Bayes DMNB text algorithm using OTUs dataset classified or not. TPR (sensitivity) and FPR (false positive rate=1-
sensitivity) were also shown. (C) Confusion Matrix of Bayes.DMNB text algorithm using OTUs unclassified in population A. *P < 0.05, 
**P < 0.01.
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employed LASSO classifier and reached a 0.84 AUC. 
Obviously, Bayes Net showed a moderate superiority to 
LASSO classifier, with the performance of 0.858 AUC 
based on the same dataset. P. Zackular [19] also used 
Bayesian methods to classify CRC patient and normal 
controls.  But he only got a test performance of 0.798 
AUC, much lower than our 0.93 AUC performance. 
Besides population differences, the data type differences 
should be accountable for the limited accuracy.  As he 
only used 6 OTUs at the family rank, we used all OTUs 
at the species rank. Therefore, data type also affects the 
performance of algorithms and fecal microbiota dataset 
with the lower ranks was recommended to predict CRC. 
Consistent with our result, the third study [21], also 
reported a good prediction of Random Forest algorithm to 

predict CRC (AUC=0.96). But he did not report the false 
negative rate. While in our study, we found that despite 
Random Forest had a satisfactory AUC value, it also had 
a high false negative rate, which greatly weakened its 
application in screening CRC.

Another important finding is that a predominant oral 
cavity commensal, Streptococcus salivarius, was selected 
as a significant microbe to classify CRC patients and 
tumor-free controls by J48 algorithm in two independent 
groups as well as by LASSO model in Zeller’ study. This 
consistency highlighted the potential beneficial effect 
of Streptococcus salivarius. Notably, some strains of  
S. salivarius are found to produce BLIS (Bacteriocin-like 
Inhibitory Substances), which is an antimicrobial peptide 
and are being trialed for their use as a probiotic in the 

Figure 3: Fecal microbiome combined with FOBT moderately improved the test prediction ability. (A) The test 
performance of different classifiers using fecal microbiome combined with FOBT on study population A was displayed with AUC.  
(B) The test performance of different models using fecal microbiome combined with FOBT on study population B was displayed using AUC.  
(C and D) ROC curves show the test performance of the Bayes Net and Random Forest models using fecal microbiome in combination 
with FOBT on study population A and B, respectively. The test performance of FOBT alone was also shown. TPR means true positive rate 
(sensitivity). *P < 0.05.
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prevention of oral infections [36–39]. Our identification of 
the oral commensal Streptococcus salivarius to be much 
more depleted in CRC patient feces implicated it could be 
a promising probiotic agent used for treatment of CRC.

Taken together, our results suggest that Bayes 
Net algorithm displayed quite good performance in 
both populations and could be used in future studies. 
Unclassified OTUs were better inputs than classified 
OTUs.

MATERIALS AND METHODS

Sample collection for study population A

Participants of population A were selected from 
consecutive patients who had undergone colonoscopy 
or colorectal carcinoma surgery in the Renji Hospital 
between 1 January 2012 and 30 July 2012. The inclusion 
criteria for participants to enter the study were the same 
as our previous study [32]. In brief, patients were over 
50 years of age, had a normal bowel frequency and patients 
underwent colonoscopies with adequate withdrawal 
time by well-trained gastroenterologists using standard 
colonoscopy equipment. Patients with cirrhotic or portal 
hypertension gastropathy; uncontrollable diabetes mellitus 
or hypertension; severe cardiac, liver, pulmonary, renal, 
hematologic, or rheumatologic disorders; or CRC-related 
conditions, such as familial adenomatous polyposis, 
hereditary nonpolyposis colorectal cancer, ulcerative colitis, 

or Crohn disease, were excluded from the study. None of the 
patients had received systemic or oral topical corticosteroids; 
antibiotics, aspirin, other nonsteroidal anti-inflammatory 
drugs, or health products that regulate intestinal microbiota 
within 6 month before enrollment, and none were 
currently undergoing systemic cancer chemotherapy or 
receiving radiation. Patients with CRC or CRA (colorectal 
adenoma) confirmed by both colonoscopy and pathological 
examination were included in the CRC group or CRA group, 
respectively. Patients without obvious abnormalities were 
enrolled in the NC (Negative control) group. Finally, 52 
cases in the NC group, 47 patients in the CRA group and 
42 patients in the CRC group were enrolled. All subjects 
were asked to provide fresh stool samples, which were 
immediately stored at −80°C for further analysis. The 
samples were collected and preserved according to our 
previous study [40]. All procedures were undertaken in 
accordance with the Declaration of Helsinki. The Ethics 
Committees in the Renji Hospital at each participating center 
approved the study protocol. Informed consent was obtained 
from all of the subjects. An independent data and safety 
committee monitored the trial and reviewed the results.

Acquisition of published fecal microbiome data

In parallel, another fecal microbiome dataset [20] 
was used as study population B to validate our results 
(Table 1). Mainly, 141 subjects that consisted of 61 
normal individuals, 27 patients with small adenomas and 

Figure 4: Interpretation of gut microbial species in the prediction model. (A) The resulting decision tree of J48 model on study 
population A. Only the leaf nodes at the higher levels are displayed while the rest are indicated by dashes. The leaf nodes that are assigned 
by one or two numbers where the former and latter indicate the number of correctly and incorrectly classified samples, respectively.  
(B) Relative abundances of 6 gut microbial species, collectively associated with CRC analyzed by J48 model, are displayed as heat map. 
(C) The resulting decision tree of J48 model on study population B. (D) Relative abundances of 7 gut microbial species, collectively 
associated with CRC analyzed by J48 model, are displayed as heat map.
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53 patients with colorectal cancers were included. When 
we compared the prediction ability for different algorithms 
between CRC group and tumor-free controls, 27 patients 
with small adenomas together with 61 normal individuals 
were used as the control group. The primary dataset B 
consisted of 156 participants, with 15 patients with large 
adenomas. The author excluded these 15 patients in their 
analysis. We followed the selection criteria and used the 
remained 141 participants as our validation cohort.

DNA extraction and 16S rRNA gene sequencing

Microbial genomic DNA was extracted from 
frozen fecal samples using the E.Z.N.A. Stool DNA Kit 
(Omega Bio-Tek, Inc., Norcross, GA, USA). The DNA 
concentration was determined and tested by 1% agarose 
gel electrophoresis. All DNA samples were stored at 
–20°C for subsequent PCR analysis. DNA purification 
was performed by using the AxyPrep DNA Gel Extraction 
Kit (catalog no. AP-GX-50; Axygen), and the TBS-
380 Fluorometer was used for quantitative analysis. 
The V1~V3 hypervariable regions of the 16S rRNA 
gene(27F 5′-AGAGTTTGATCCTGGCTCAG-3′, 533R 
5′-TTACCGC GGCTGCTGGCAC-3′) incorporating the 
FLX Titanium adaptors and a sample barcode sequence 
from each sample were amplified using a 2-step PCR 
strategy(Takara Bio Inc).After the PCR reaction, 
electrophoresis was immediately performed to isolate 
the enriched V1-V3 region DNA fragments from the 
reaction mixture. All of the products were harvested by 
using a gel extraction kit (OMEGA Bio-tek) according 
to the manufacturer’s instructions. Then the samples 
were pyrosequenced by using a Roche 454 GS FLX, in 
accordance with the manufacturer’s instructions. The gross 
sequencing data were arranged by the primer tags [41].
The sequences were binned into each sample according 
their barcodes and forward primers. A total of 2905689 
sequences were obtained and analyzed using MOTHUR 
software package. Briefly, 1) the reverse primer and 
adaptor at the end of the sequences, polybasic N, poly 
A/T tail and low quality bases were removed;  2) After 
that, barcodes and forward primers of the sequences in 1) 
were removed; 3) sequences that were < 200 base pairs, 
or contained ambiguous bases or average sequence quality 
was less than 25 were abandoned. After optimization, we 
obtained a total of 2296326 sequences for 141 samples 
with an average length of 437bp per sample. Sequences 
were clustered into operational taxonomic units (OTU) 
at a 97% similarity cutoff and the relative abundance 
was calculated for OTUs in each sample. Taxonomy 
information was obtained for each OTU sample by cross-
referencing the SILVA database.

Machine learning classifiers

All classification and analyses were performed on 
the Weka (3.6.13 version) program package. Weka is 

open source software, which provides a general-purpose 
environment for automatic classification, regression, 
clustering, association and feature selection-common 
data mining problems in bioinformatics research. It 
contains an extensive collection of different machine 
learning algorithms (e.g. decision trees, rule sets, 
linear discriminants). We tested all available classifiers 
(algorithms) in Weka. Here we briefly introduce the 
characteristics of algorithms with higher performance in 
our work. These models have also been reported to evolve 
to largely dominate other many data mining approaches 
that have been explored. They are 1) Bayes Net algorithm 
is a formal graphical language for representing the joint 
probability distribution over a set of random variables 
[42]. Bayesian networks are convenient in that they 
provide an intuitive and compact representation of the 
joint distribution of this set of variables, and they expose 
ways to utilize their dependencies to perform statistical 
inference. 2) Random Forest algorithm is a form of 
multiple decision trees that are built partly randomly. 
After a multitude of trees are generated, each tree in the 
forest gives a classification or votes for a class and the 
most popular class gives the final classification. The main 
advantage of this method is that it is fast while capable of 
handling of large input variables without over-fitting at the 
same time [43]. 3) J48 algorithm is the Weka version of 
the C4.5 algorithm. It creates a tree data structure that can 
be used to classify new instances. First, the pair (attribute, 
value) that optimizes a criterion is used to split the data 
into two branches. Then for each branch, if it is pure or 
if it contains less than a predefine number of data, the 
branch stopped growing, else another split is decided on 
the basis of the same algorithm [44].  These algorithms 
classify input data into separable classes based on defined 
attributes, which in ML are generally known as “features”. 
In our study, the diagnosis feature was used as “class”. And 
different OTUs or FOBT were used as attributes. Default 
parameters were used for model generation on these 
datasets. The main steps of the algorithms are 1) preparing 
data for input into classifier training, 2) training and testing 
the classifier, and 3) evaluating its performance.

Data preprocessing

Analyses of patient-level characteristics across the 3 
clinical groups utilized Pearson χ2 test for categorical data 
and one-way ANOVA for continuous variables. P < 0.05 
was considered statistically significant.

For gut microbiome analysis, only OTUs in the 
species level were used.  In population A, a total of 
1171 classified OTUs were selected as “attributes” and 
in population B, 783 OTUs were included. When we use 
unclassified OTUs to compute in population A, the OTUs 
number is 7730. When we analyzed the performance 
between NC group and CRC group, the CRA patients 
were considered and included into the NC group. The 
same data preprocess were done in the French population 
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(population B) (Table 1). All files were saved as ARFF or 
CSV file formats. 

Training and testing the classifiers

In the second step, classifiers were trained using 
data predefined into groups of interest (normal, CRA and 
CRC patients in our study) to get a “decision function”, 
which best distinguishes between different classes in the 
test datasets. The training dataset and test dataset in this 
study was produced by 10-fold cross-validation. Cross-
validation randomly splits the original sample into 10 
subsamples, 9 of which are used as training data and the 
remaining one is retained as the validation data for testing 
the classifiers. This process is repeated 10 times, with 
each of the 10 subsamples used exactly once as the testing 
data. Then the 10 results were averaged to produce a 
single estimation. This is a standard procedure in machine 
learning to reduce the variation of data selection.

Evaluation of classifiers

The performance of the algorithms was mainly 
displayed using receiver operating characteristic (ROC) 
curve analysis. As ROC curve analysis is regarded as 
one of the reliable and best approach for performance 
characterization, the ROC curve and area under ROC 
curve (AUC) values are widely employed for assessing 
the discriminatory power of virtual screens. Standard 
deviation was used to assess the variability of the classifier 
performance. 

One key issue that needs to be taken into account while 
using machine learning is whether the dataset is imbalanced 
or not. Standard algorithms presume equal weighing for 
all groups, which is always not true in reality. One way to 
abrogate this issue and minimize the misclassification errors 
was to use the cost-sensitive classifiers.  In the present study, 
Weka uses a confusion matrix consisting of four sections: 
True positives (TP) for correctly classified as CRC; False 
Positive (FP) for normal controls classified as CRC; True 
Negatives (TN) normal controls classified as normal controls 
and false negatives (FN) for CRC incorrectly classified as 
normal controls.  Weka also presents Precision, Recall and F 
measure for all classifiers. Precision is referred to as positive 
predictive value. It can be calculated as (TP/TP+FP). Recall 
(TP/TP+FN) also calls sensitivity. It relates to the test’s 
ability to identify positive results. F measure (F1 score) is the 
harmonic mean of precision and recall. In addition, we also 
calculated Matthews correlation coefficient (MCC) to judge 
performance of some algorithms that performed well in our 
study. MCC is generally regarded as a balanced measure that 
can be used even if the classes are of very different sizes. Its 
value ranges from −1 to +1. A coefficient of +1 represents 
a perfect prediction, 0 no better than random prediction and 
−1 indicates total disagreement between prediction and 
observation. As our study groups are tolerably balanced 
(52 NC, 47 CRA and 42 CRC in population A and 61 NC, 

27 CRA and 53 CRC in population B), and the negative 
controls even outnumber the positive CRC patients, we just 
evaluated the performance of algorithms judging from the 
confusion matrix besides AUC. We list the Precision, Recall, 
F measure, MCC and even confusion matrix for some of 
algorithms that work wonderful in our work.
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