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ABSTRACT
By phagocytosing cancer cells and their cellular debris, macrophages play a 

critical role in nonspecific defense (innate immunity) and, as antigen presenters, they 
help initiate specific defense mechanisms (adaptive immunity). Malignant melanoma 
is a lethal disease due to its aggressive capacity for metastasis and resistance to 
therapy. For decades, considerable effort has gone into development of an effective 
immunotherapy for treatment of metastatic melanoma. In this review, we focus 
on the anti-tumor activities of macrophages in melanoma and their potential as 
therapeutic targets in melanoma. Although macrophages can be re-educated through 
intercellular signaling to promote tumor survival owing to their plasticity, we expect 
that targeting the anti-tumor activity of macrophages remains a promising strategy 
for melanoma inhibition. The combination of tumoricidal macrophage activation and 
other treatments such as surgery, chemotherapy, and radiotherapy, may provide an 
effective and comprehensive anti-melanoma strategy.

INTRODUCTION

Melanoma is one of the most dangerous cancers, 
illustrated by the fact that it represents less than 5% of 
all skin cancers but results in the majority of skin cancer-
related deaths [1]. In 2012, 232,000 people were diagnosed 
with melanoma globally and the disease resulted in 55,000 
deaths [2]. It is estimated that in the United States there 
were 73,870 new cases and 9,940 deaths from melanoma 
in 2015 [3]. In mainland China, there are estimated to 
be about 20,000 new cases of melanoma annually [4], 
among which about 50-70% are primary skin melanoma 
skin and 6% are melanoma of the mucous membrane [5]. 
Malignant melanoma is lethal because of its aggressive 
capacity for metastasis and resistance to therapy [1]. 
Tumors can potentially be recognized as “altered self,” 
akin to allogeneic immunity, leading to an anti-tumor 
immune response of potential value in the adjuvant 

setting. Therefore, researchers have begun to develop 
immunotherapy for treatment of metastatic melanoma [6]. 
This has motivated investigation of interactions between 
melanoma and immune cells and translation of this 
knowledge into effective clinical strategies.

Macrophages, first discovered by Elie Metchnikoff 
in 1884 [7], are a type of white blood cell, and also 
prodigious and industrious “janitors” in our body that 
engulf and digest junk or malignant cells, such as cancer 
cells or cellular debris in a process called phagocytosis 
[8]. Besides phagocytosis, they play a critical role in 
nonspecific defense (innate immunity) and, in their 
role as antigen presenters help initiate specific defense 
mechanisms (adaptive immunity) by recruiting other 
immune cells such as lymphocytes. 

Macrophages, an important component of the innate 
immunity against tumors, are attracted by locally secreted 
chemokines [9]. Activated macrophages defend against 
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tumors by direct tumor cytotoxicity and by secreting 
cytokines to recruit secondary immune cells, presenting 
antigen to T cells [10, 11], including melanoma [12, 13]. 
However, owing to their plasticity, macrophages can be 
re-educated to alter their phenotype [14, 15]. Substantial 
evidence indicates that macrophages in the context of the 
tumor microenvironment, rather than being tumoricidal, 
adopt a pro-tumor phenotype in vivo both in the primary 
and metastatic sites by the presence of growth factors in 
the tumor microenvironment as well as by intercellular 
interactions [14, 16]. Consequently, there is a duality in 
the function of macrophages in tumor. 

In this review, we focus on the anti-tumor role of 
macrophages in melanoma and its potential for therapeutic 
targeting.

ADOPTIVE TRANSFER OF ACTIVATED 
IN VITRO MACROPHAGES 

Cytotoxic macrophages may occupy a major role in 
the defense mechanism to neoplasia [17]. While normal 
macrophages do not appear to be effective in attacking 

tumors, they can be induced to be cytotoxic in vitro by 
application of specific activators and then adoptive transfer 
can be performed on these induced macrophages to bring 
forth their anti-tumor effects in vivo.

Xenogeneic macrophage activation strategies

Macrophages can be induced to be cytotoxic in vitro 
using supernatants obtained from sensitized xenogeneic 
lymphocytes (Figure 1). The application of xenogeneic 
activated macrophages from tumor-bearing animals 
rendering them cytotoxic may provide a possible approach 
to therapy. As early as 1974, investigators studied the 
ability of syngeneic macrophages from C57BL/6 mice 
bearing a progressively growing B16 melanoma to inhibit 
established pulmonary metastases in vivo [12]. Peritoneal 
macrophages were isolated from C57BL/6 mice bearing 
progressively growing subcutaneous B16 melanoma that 
had been treated with thioglycollate. The macrophages 
were cultured in vitro with supernatants obtained from 
xenogeneic lymphocytes after their interaction with 
the tumor in vitro and were injected intravenously 

Figure 1: Xenogeneic activation of macrophages strategies. These macrophages were cultured in vitro with various supernatants 
obtained from xenogeneic lymphocytes after their interaction with the tumor in vitro
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(i.v.) into other C57BL/6 mice that had been given i.v. 
injections of 10,000 viable B16 melanoma cells 48 hr 
previously. In vitro-treated macrophages injected i.v. into 
mice significantly reduced their number of established 
pulmonary metastases. Moreover, it appeared that the in 
vivo inhibition of tumor nodules was continuing at the 
time of sacrifice [12]. 

Stimulating factor strategies

Stimulated lymphocytes release a large number 
of biologically active mediators, some of which are 
chemotactic to macrophages, activating the macrophages 
and rendering them cytotoxic [17]. The potential 
anti-tumor activity of human macrophages, grown in 
macrophage colony stimulating factor (M-CSF), was 
examined in mice homozygous for the severe combined 
immune deficiency (SCID) mutation, bearing xenografts 
of autologous human melanoma [18]. Injection of the 
cultured macrophages, once or repeatedly, resulted in 
partial to complete regression of tumors [18]. 

Microbe-associated factors

Muramyl dipeptide (MDP) is the active 
immunomodulating component of mycobacterial cell walls 

contained in Freund’s complete adjuvant [19]. Regardless 
of whether they are alveolar, peritoneal or hepatic, in 
vitro exposure of macrophages to MDP has been shown 
to render these cells tumoricidal in melanoma. F344 
rat alveolar macrophages can be rendered tumoricidal 
against xenogeneic melanoma cells following incubation 
with both unencapsulated (free) MDP and liposome-
encapsulated MDP [19]. Cultured liver macrophages can 
also be activated in vitro with both unencapsulated (free) 
MDP and liposome-encapsulated MDP to a tumoricidal 
state against melanoma [20]. Moreover, it was observed 
that encapsulation of MDP within liposomes substantially 
augments the MDP-induced cytotoxicity [20].

ACTIVATING MACROPHAGES IN VIVO 
TO FIGHT AGAINST MELANOMA

Cytotoxic macrophages against syngeneic tumor 
cells can also be induced in vivo, for example, by injecting 
immunomodulator-loaded liposomes intravenously [21]. 

GM-CSF

Among stimulating factors, GM-CSF is widely used 
to stimulate macrophages to become tumoricidal, and it 
requires no additional factors [22]. As a potential approach 

Figure 2: Immunoembolization with tumoricidal macrophage aggregation. Embolization agents combined with GM-CSF are 
infused by blood vessel to melanoma sites, which results in disruption of the tumor blood supply and the local immunologic reaction evoked 
by GM-CSF stimulating hepatic macrophages.
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to adjuvant immunotherapy, sequential intralesional 
administration of GM-CSF in dermal and subdermal 
melanoma lesions can induce immense antitumor immune 
response [23]. Evidence has been accumulated that GM-
CSF is useful as an immunoadjuvant agent for cancer 
vaccines [24]. Hogge and colleagues injected healthy dogs 
with lethally irradiated canine melanoma cells transfected 
with human GM-CSF and saw increased numbers of 
macrophages at the vaccination site [25]. In a further trial, 
Finocchiaro and Gilkin combined autologous/allogeneic 
formolized tumor cells as a vaccine injected concomitantly 
with lethally irradiated xenogeneic cells producing 
human GM-CSF to treat canine malignant melanoma 
patients [26]. In another surgery adjuvant approach, 
GM-CSF was combined with the periodic administration 
of lipoplexes carrying the gene of human GM-CSF at 
the time of surgery [27]. It was demonstrated that this 
surgery adjuvant combined treatment was significantly 
delayed or prevented postsurgical recurrence and distant 
metastasis, increasing disease-free and overall survival, 
and maintaining the quality of life [27].

Immunoembolization

GM-CSF, as an immunoadjuvant agent, has 
been used for the embolization of human melanoma. 
In 2008, a phase I trial that used human recombinant 
GM-CSF for immuno- embolization was reported [28]. 
There was no maximum-tolerated, dose-limiting dose or 
late toxicity found at doses as high as 2000 µg of GM-
CSF, and higher doses correlated with longer systemic 
progression-free survival. A subsequent retrospective 
analysis that compared immuno- embolization with 
carmustine chemoembolization showed a significantly 
longer survival with immuno- embolization [29]. To 
further investigate the immunologic mechanism and 
efficacy of this approach, a randomized phase II clinical 

trial was designed. Immunoembolization with GM-CSF 
mixed with ethiodized oil was performed on patients 
with histologically confirmed metastatic uveal melanoma 
to the liver (contains more than 70% of all tissue 
macrophages) [30]. The investigators expected that local 
immunologic reaction evoked by GM-CSF would induce 
systemic immunity against melanoma cells and delay 
the development of remote systemic metastases [30]. 
The working hypothesis of the study was that immuno- 
embolization would stimulate massive numbers of hepatic 
macrophages to induce a more robust inflammatory 
response, triggering a systemic immune recognition 
of uveal melanoma and delaying the progression of 
extrahepatic metastasis (Figure 2). These patients showed 
longer extrahepatic recurrence-free periods, presumably 
as a result of better immunologic control of circulating 
micrometastases [30]. The prognosis of patients with uveal 
melanoma with hepatic metastasis is extremely poor, and 
the overall survival is generally short: less than 1 year in 
most cases. Immunoembolization seems to be safe, easy to 
administer, and potentially effective. The results obtained 
in the study are encouraging; however, further clinical 
and basic research is needed to optimize and improve the 
efficacy of immuno- embolization.

Galectin-9

Galectin-9, a β-galactoside-binding lectin, is closely 
associated with reduced metastasis and low recurrence 
in patients with malignant melanoma [31]. Intravenous 
galectin-9 administration reduced lung metastasis of 
B16F10 in an experimental mouse model [32]. It was 
reported that galectin-9 treatment could expand the 
population of unique macrophages with a plasmacytoid 
cell-like phenotype, and therefore promotes NK cell-
mediated anti-tumor activity and significantly prolongs the 
survival of B16F10 melanoma-bearing mice [33]. 

Figure 3: Tumoricidal macrophages are induced by Th1 cells. Th1 cells characteristically express IFN-γ, CD40 ligand, 
lymphotoxin-alpha (LT-α) by their receptors on macrophages to stimulate macrophages into the potent tumoricidal effector cells, which 
generate tumoricidal reactive oxygen and nitrogen species, and enhance fusion of phagosomes with lysosomes.
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Homeopathy

In Europe homeopathy is very popular as a 
complementary and alternative medical therapy 
[34]. Many cancer patients treated with homeopathic 
approaches show an increase in their ability to fight cancer, 
improvement of their physical and emotional well-being, 
and alleviation of their pain resulting from the disease or 
conventional treatments [34]. Here, we describe the results 
of an experimental laboratory validation of the potential 
of peritoneal macrophages, challenged with a complex 
homeopathic medication, to stimulate the immune 
effectiveness of mesenteric lymph node lymphocytes. 
This new form of immunomodulatory therapy is based 
on Hahnemann’s ancient homeopathic techniques, 
which use diluted substances that are vigorously shaken 
during preparation. Macrophages activated with a 
complex Brazilian homeopathic medication showed an 
improvement in the anti-cancer immune response against 
a very aggressive lineage of melanoma cells when co-
cultured with lymphocytes [35].

Microbe strategies

Vaccination with intracellular pathogens such as 
Bacille Calmette-Guerin (BCG), vaccinia virus, and 
Chlamydophila pneumoniae significantly decreased the 
incidence of melanoma [36] and increased survival in 
metastatic melanoma [37]. It was observed that microbes 
induce the cytotoxicity of macrophages toward melanoma, 
which is illustrated by the increased complex antitumor 
response such as expression of CCL2, CCL3, IL-6, 
CXCL10, CCL7, CD80, CXCL11, CXCL9 and IL-23 by 
macrophages [37].

Nanoparticles

It was reported that polyhydroxylated fullerenols 
(Gd@C82(OH)22 nanoparticles) could induce murine 
melanoma cell death in vitro, and inhibit tumor formation 
and metastasis in vivo, by directly promoting macrophage 
viability, phagocytosis, and the secretion of cytokines by 
macrophages [38]. 

Th1 cells

Th1 cells have an important role in the tumoricidal 
activity of macrophages. Th1 cells produce cytokines to 
stimulate macrophages into the potent tumoricidal effector 
cells (Figure 3). In a Phase I clinical trial investigating the 
biologic activity of vaccination with irradiated autologous 
melanoma cells engineered to secrete human GM-CSF in 
patients with metastatic melanoma, it was demonstrated 
that immunization sites were intensely infiltrated with T 

lymphocytes and macrophages in all 21 evaluated patients 
and resulted in extensive tumor destruction [39]. In 
early reports, it was shown that Th1 cytokine mRNA for 
CD3δ, lymphotoxin (TNF-β), and IL-2 were significantly 
elevated in the ten regressing melanomas compared to 
the ten non-regressing melanomas [40]. IFN-γ mRNA 
was also elevated in regressing melanomas but failed to 
reach statistical significance [40]. This study shows an 
association between Th1 cytokines and spontaneously 
regressing melanomas. High expression of Th1-biasing 
cytokines IL-12 and IFN-α leads to a Th1-like phenotype 
and suppressed melanoma growth [41]. Another important 
function of Th1 cells is the recruitment of macrophages. 
Th1 cells produce the hematopoietic growth factors IL-3 
and GM-CSF, which stimulate the production of new 
phagocytic cells in the bone marrow. 

Vice versa, activated macrophages secrete IL-12, 
which increases the amount of IFN-γ produced by Th1 
cells and also promotes the differentiation of activated 
naive CD4 T cells into Th1 effector cells. Interleukin-12-
transfected B16 melanoma showed retarded tumor growth 
in syngeneic mice [42]. In a recent study, neoadjuvant 
local low-dose gamma irradiation can program the 
differentiation of iNOS M1 macrophages to exert anti-
tumor effects on a xenotransplant mouse melanoma model 
through iNOS by inducing endothelial activation and the 
expression of Th1 chemokines and by suppressing the 
production of angiogenic, immunosuppressive, and tumor 
growth factors [43]. 

BIPHASIC FACTORS

IFN-γ 

IFN-γ is the effector cytokine of Th1 helper cells 
and after Th1 activation macrophages, as the main 
effector cells of Th1 immunity, are activated to kill 
microorganisms and tumor cells and produce copious 
amounts of proinflammatory cytokines (Figure 3). 
Therefore, administration of IFN-γ suppresses melanoma 
development by activating macrophages (Figure 4 left). 
IFN-γ, which can be produced by macrophages, has a 
direct antitumor effect on melanoma cells [44-47]. IFN-γ 
plays a role in the response to melanoma indirectly 
through its effect on the immune system and directly 
through its anti-proliferative and pro-apoptotic effects 
on melanoma cells [44]. IFN-γ added to A375 melanoma 
cells caused an additive growth inhibitory response [45]. 
The combination of IFN-γ with IFN-α or IFN-β resulted 
in a strong synergistic anti-proliferative activity on four 
human melanoma cell lines (StML-11, StML-12, StML-
14, and SKMel-28) [46]. The changes in gene expression 
associated with the direct anti-melanoma effect of IFN-γ 
were striking, as these involved genes or groups of genes 
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previously implicated in the malignant phenotype of 
melanoma as well as genes not previously thought to be 
involved in melanoma growth and survival [47]. 

Several reports have suggested that IFN-γ may also 
have pro-tumorigenic effects in solid tumors under certain 
circumstances [46, 48]. Although IFN-γ reduces cellular 
growth in vitro, when introduced in vivo along with 
intravenously inoculated B16 melanoma cells, it induces 
lung colonization and enhanced expression of class I 
major histocompatibility complex antigens (Figure 4 right) 
[46, 48], which are more frequently expressed in advanced 
melanoma and related to an increased risk of metastasis 
in primary melanoma [46]. Elevated levels of IFN-γ may 
be an independent predictor of disease recurrence and 
may be used to identify a group of early-stage melanoma 
patients who are more likely to have recurrence of disease 
and who may benefit from adjuvant therapies, including 
immunotherapies [49]. In fact, a Southwest Oncology 
Group-randomized clinical trial showed that IFN-γ had an 
adverse effect on melanoma relapse and mortality rates 
[50]. In an ultraviolet B-irradiated mouse skin cancer 
model, macrophage-produced IFN-γ promotes melanoma 
growth by inhibiting apoptosis [51]. Pro-tumorigenic 
effects of IFN-γ may be, in part, due to pro-expression of 
CD74 in melanoma [52] (Figure 4 right).

Monocyte chemoattractant protein-1 (MCP-1)

MCP-1 is a potent macrophage-recruiting molecule 
[53]. It was reported that MCP-1 was expressed during 
the early stages of human malignant melanoma, and it 
recruits macrophages and promotes tumor angiogenesis 
and growth [54]. However, MCP-1 action is biphasic in 
that high levels promote massive monocyte/ macrophage 
accumulation and tumor destruction, whereas low or 
intermediate levels support tumor growth [55].

IL-1β

IL-1β is a pleiotropic pro-inflammatory cytokine 
involved in cell growth, differentiation, and regulation 
of immune responses [56]. It has been reported that 
the expression levels of the IL-1β gene or protein 
are associated with the invasiveness and metastasis 
of melanoma [57]. Metastatic melanoma cell lines 
do not secrete IL-1β but promote IL-1β production 
from macrophages [58]. A better understanding of the 
mechanisms and consequences of IL-1β production 
by infiltrating macrophages may be of interest for the 
development of IL-1β targeted therapy, such as anti-IL-1β 

Figure 4: Biphasic effects of IFN-γ on melanoma. Application of IFN-γ to melanoma treatment (Left). Adverse effects of IFN-γ on 
melanoma by pro-expression of MHC-I or CD74 (Right).
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antibody (canakinumab), against metastatic melanoma. On 
the other hand, IL-1β production from tumor cells may 
be considered a threat by the host’s immune system. In 
this aspect, it has been reported that IL-1β-producing 
melanoma cells induce reduced tumor growth by recruiting 
immune cells [59]. 

BLOCKAGE OF MELANOMA 
INHIBITION TO MACROPHAGE 
MIGRATION

Melanoma inhibits macrophage activation by 
suppressing TLR-4 signaling [60]. Tumors may also 
express co-inhibitory or immune checkpoint proteins 
that shield them from attack by immune effector cells, 
such as macrophages [61]. For example, melanoma cells 
release programmed cell death-1 ligand [62], activation 
of its cognate receptor in macrophages [63], leads to 
apoptosis of the latter (Figure 5). It was observed that 
melanoma cell lines and metastatic melanomas expressed 
larger amounts of macrophage inhibitory cytokine-1 
(MIC-1) than melanocytes, nevi, and primary lesions of 
melanoma [64-69]. Melanoma cells produce MIC-1 to 
protect against NK cell-mediated killing by inhibition of 
macrophage migration [69] (Figure 5). Knockdown of 
MIC-1 expression in melanomas resulted in a significant 
decrease in tumorigenicity [64, 70] by retarding 
vascular development [71]. CD74, also known as major 
histocompatibility complex class II-associated invariant 
chain, has been identified as the high-affinity receptor for 
the cytokine MIC-1 [72, 73]. It was reported that CD74 
is expressed in melanoma but not in benign melanocytes 
using a melanoma progression tissue microarray [66]. In 
a xenograft melanoma model established by cell surface 
CD74-negative MeWo cells subcutaneously injected into 
the flank of SCID Beige mice, MIC-CD74 inhibition 
by MIC inhibitor ISO-1 suppresses tumor growth 
significantly [52]. 

CHALLENGE OF PRO-TUMOR M2-TYPE 
MACROPHAGES

It should be noted that, owing to their plasticity, 
macrophages can be re-educated to adopt anti-

inflammatory or pro-tumor M2-type, which often happens 
during late stage of inflammatory reaction. Studies using 
the B16 melanoma model have documented a gradual shift 
of initial Th0-, mixed Th1-/Th2-type CD4T cell response 
to Th2/Treg-type dominated responses by 14-20 days of 
progressive tumor growth [42, 74-76]. CD4Th2 cells and 
various regulatory cells produce cytokines such as TGF-β1 
and IL-10 that can educate the macrophages to become 
protumor M2-type. Injection of neutralizing anti-IL-4, 
-IL-10, or -TGF-β1 antibodies can prevent this tumor-
induced functional transition, resulting in enhanced CD8+ 
CTL generation and protection against tumor growth [74]. 
Depletion of CD4 T cells with locally secreted IL-12 in 
late-stage progressive B16 models, where Th2/Tr-type 
response dominate, eliminates Th2 cells and results in a 
Th1-dominant cytokine profile in tumor draining lymph 
nodes and leads to a retarded tumor growth in syngeneic 
mice [42]. 

Another solution to avoid a worst case scenario in 
the therapeutic strategy of macrophage activation is to 
use a high dose of macrophage recruitment factors, which 
can cause a massive accumulation of macrophages in a 
very short time. This artificial reaction is similar to the 
earlier stage of inflammatory reaction and the recruited 
macrophages are prone to fight the tumor, which is 
illustrated by application of MCP-1 [55] and GM-CSF 
[28]. 

DISCUSSION

Macrophages serve as a first-line of defense against 
pathogens and environmental insults through release 
of anti-microbe mediators such as pro-inflammatory 
cytokines [77]. Cancer cells and their cellular debris do 
not present the types of proteins specific to the surface 
of healthy somatic cells, which stimulates macrophages 
to devour the cancer cells. Therefore, macrophages 
are important components of the innate immunity 
against tumors [9]. However, the complexity of tissue 
environments may render macrophages, which already 
possess functional diversification and plasticity, able to 
acquire pro- and anti-inflammatory properties, which then 
can be classified into two types, as pro-inflammatory or 
anti-tumor M1-type and anti-inflammatory or pro-tumor 
M2-type macrophages [78]. Moreover, a large body 

Figure 5: Melanoma inhibits macrophages. Melanoma cell release programmed cell death-1 ligand 1 (PD-L1) and macrophage 
inhibitory cytokine-1 (MIC) that suppress the macrophage activation.
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of evidence points to the tumorigenic populations of 
macrophages, and the macrophage-mediated anti-tumor 
therapy is faced with being abandoned. 

Recently, we found that macrophages from 
D7Ertd443e knockout mice exhibit tumoricidal activities 
and adoptive transfer of both bone marrow-derived and 
peritoneal macrophages, after stimulation with M-CSF 
in vitro, results in inhibition of melanoma growth in 
vivo (data not published). Genetically modified cell-
based vaccines encoding cytokines and co-stimulatory 
molecules allow sustained local release of cytokines to 
enhance a potent local inflammatory response without 
generating systemic side effects. GM-CSF appears to be 
the strongest promoter of local macrophages that can cause 
a macrophage-mediated anti-tumor inflammatory response 
at the vaccination site. It is expected that targeting the anti-
tumor activity of macrophages is a promising approach for 
melanoma inhibition. We also suggest that the combination 
of tumoricidal macrophage activation and other treatments 
such as surgery, chemotherapy and radiotherapy, could be 
an effective and comprehensive anti-melanoma strategy.
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