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ABSTRACT
Worldwide deaths from diabetes mellitus (DM) and colorectal cancer increased by 

90% and 57%, respectively, over the past 20 years. The risk of colorectal cancer was 
estimated to be 27% higher in patients with type 2 DM than in non-diabetic controls. 
However, there are potential confounders, information from lower income countries is 
scarce, across the globe there is no correlation between DM prevalence and colorectal 
cancer incidence and the association has evolved over time, suggesting the impact of 
additional environmental factors. The clinical relevance of these associations depends 
on understanding the mechanism involved. Although evidence is limited, insulin 
use has been associated with increased and metformin with decreased incidence of 
colorectal cancer. In addition, colorectal cancer shares some cellular and molecular 
pathways with diabetes target organ damage, exemplified by diabetic kidney disease. 
These include epithelial cell injury, activation of inflammation and Wnt/β-catenin 
pathways and iron homeostasis defects, among others. Indeed, some drugs have 
undergone clinical trials for both cancer and diabetic kidney disease. Genome-wide 
association studies have identified diabetes-associated genes (e.g. TCF7L2) that may 
also contribute to colorectal cancer. We review the epidemiological evidence, potential 
pathophysiological mechanisms and therapeutic implications of the association 
between DM and colorectal cancer. Further studies should clarify the worldwide 
association between DM and colorectal cancer, strengthen the biological plausibility 
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BACKGROUND

Diabetes mellitus (DM) and cancer are among the 
most frequent causes of death worldwide. According 
to Global Burden of Disease data, from 1990 to 2013 
mortality from DM increased by 90% [1]. Colorectal 
cancer (CRC) is among the top causes of cancer death. 
From 1990 to 2013 global deaths from CRC increased by 
57%, [1]. In the United States, CRC is the second leading 
cause of cancer death in men and women combined (http://
www.ccalliance.org/colorectal_cancer/statistics.html) 
[2]. A link between DM and cancer is now recognized 
in American Diabetes Association (ADA) guidelines, 
following a 2010 consensus report [3, 4]. If the association 
holds, the current worldwide diabetes epidemic, fueled by 
life-style changes, may trigger a wave of CRC diagnoses. 
However, this knowledge has had limited impact on 
clinical care in the form of specific diagnostic tests or 
therapeutic approaches supported by clinical guidelines. 
Furthermore, on a worldwide basis the prevalence 
of DM and the incidence of CRC are not correlated, 
suggesting that country-specific factors may play a role 
in the association between DM and CRC (Figure 1). 
Annual CRC incidence rates vary more than ten-fold 
worldwide, the highest rates being in developed countries 
such as Korea (age-standardized rate 45 per 100, 000), 
Australia and Ireland, and the lowest in Western Africa 
(e.g. Cameroon 3.3 per 100, 000) (http://globocan.iarc.
fr). By contrast, DM prevalence is highest in Egypt and 
United Arab Emirates (20, 000 per 100, 000, and lowest 
in Australia (5, 100), Ireland (4, 400) and Western Africa 
(www.diabetesatlas.org/). A better understanding of the 
factors underlying regional differences may provide clues 
to the relationship between DM and CRC. We now review 
the epidemiological evidence, potential pathophysiological 
mechanisms and therapeutic implications of the 
association between DM and CRC and propose a research 
agenda that may impact clinical practice to prevent or 
treat CRC in DM patients. A Pubmed search with the key 
words “(diabetes OR insulin OR hyperglycemia) AND 
(colon OR colorectal) AND cancer” was performed with 
no time cut-off points and further references added from 
the reference list of the publications found or based on the 
authors own experience knowledge.

DIABETES MELLITUS

DM is characterized by hyperglycemia resulting 
from defects in insulin secretion and/or insulin action. 
Chronic hyperglycemia is associated with injury to the 

kidneys, heart, nerves, eyes and blood vessels [5]. In 
type 1 DM (T1DM, 5-10% of DM cases), cell-mediated 
autoimmune destruction of pancreatic β-cells causes 
absolute insulin deficiency. Type 2 DM (T2DM) is 
characterized by insulin resistance and relative insulin 
deficiency. T2DM patients are frequently obese and older 
at DM onset than T1DM patients [6]. Obesity promotes 
insulin-resistance and is thought to be a major driver of the 
current DM epidemic. Mendelian-inherited genetic defects 
of β-cells or of the insulin signaling machinery also cause 
DM [5].

Mean age at diagnosis of DM is 54 years in the US 
(http://www.cdc.gov/diabetes/statistics/age/). Therapies 
for DM increase insulin availability (insulin or insulin 
analog administration or agents that promote insulin 
secretion), improve sens itivity to insulin, decrease glucose 
synthesis, delay the gut absorption of carbohydrate, 
or increase urinary glucose excretion (Supplementary 
Table 1). The preferred initial and most widely used 
pharmacological agent for T2DM is metformin, 
which decreases glucose production by inhibiting the 
mitochondrial glycerophosphate dehydrogenase (GPDH, 
GPD2) [7]. If adequate glucose control is not achieved 
within 3-6 months, a second oral agent, a Glucagon-like 
peptide-1 (GLP-1) receptor agonist, or insulin should be 
added [8, 9].

COLORECTAL CANCER

CRC originates from colon epithelium [10]. Over 
70% CRCs are sporadic, resulting from dietary and 
environmental factors. The incidence increases with age 
and they usually occur over the age of 50 years. True 
inheritable CRC (<10% of cases) may be associated or not 
to colonic polyps (Table 1) [11]. The familial type (25% of 
cases) is associated with a family history of CRC or large 
adenomas, in the absence of classic Mendelian inheritance 
[12]. Right- and left-sided CRCs exhibit different 
epidemiological patterns, sensitivities to chemotherapy 
and outcomes, probably related to different molecular 
characteristics and chromosomal instability with left-sided 
tumors [13].

CRC is initiated by mutations in tumor suppressor 
genes (adenomatous polyposis coli or APC, CTNNB1, 
p53) and oncogenes (KRAS). Accumulation of multiple 
mutations leads to a selective growth advantage for 
transformed epithelial cells that is modulated by 
epigenetic changes [14, 15]. Diet, the microbiota and the 
inflammatory response to the microbiota are potential 
players [16-22]. Indeed, chronic gut inflammation (e.g. 

of a cause-and-effect relationship through characterization of the molecular pathways 
involved, search for specific molecular signatures of colorectal cancer under diabetic 
conditions, and eventually explore DM-specific strategies to prevent or treat colorectal 
cancer.
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ulcerative colitis or Crohn´s disease) is associated with 
increased incidence of colon cancer. A major molecular 
pathway is Wnt signaling activation of the transcription 
factor β-catenin to promote expression of cell proliferation 
genes. Loss-of-function mutations or epigenetic silencing 
of APC leads to aberrant β-catenin accumulation and 
uncontrolled cell proliferation. The normal APC protein 
forms a complex with glycogen synthase kinase 3-beta 
(GSK-3β) that allows GSK-3β to phosphorylate β-catenin, 
targeting it for ubiquitination and proteasomal degradation, 
thus decreasing β-catenin-dependent transcriptional events 
[23].

Early-stage CRC is treated with surgery and locally 
advanced CRC (radically resected stage III and ‘high-
risk’ stage II disease) with adjuvant chemotherapy on 
top of surgery. Rectal cancer with nodal disease standard 
treatment includes neoadjuvant chemo-radiation [24]. 
Adjuvant chemotherapy schemes contain 5-fluorouracil 
and oxaliplatin. Metastatic CRC is treated with irinotecan 
or oxaliplatin combined with a fluoropyrimidine and 
leucovorin (FOLFIRI or FOLFOX regimens) [25]. 

Addition of targeted therapies over the past 10 years has 
improved overall survival. Testing for KRAS, NRAS, 
BRAF, PIK3CA and PTEN mutations is used to assess the 
potential clinical benefit of anti-Epidermal Growth Factor 
Receptor (anti-EGFR) and panitumumab treatment. Meta-
analyses suggest that mutation testing for KRAS exon 2 is 
the strongest biomarker of response. The addition of anti-
Vascular Endothelial Growth Factor (anti-VEGF) agents 
(bevacizumab, regorafenib) to chemotherapy of metastatic 
CRC prolongs progression-free and overall survival in 
first- and second line therapy [26].

EPIDEMIOLOGICAL ASSOCIATION 
BETWEEN DIABETES AND CRC

Epidemiological studies suggest that DM, 
especially T2DM, is associated with increased risk of 
cancer at several sites, including CRC [27] (Table 3). 
The first prospective association was reported in 1998 
in US participants followed from 1960 to 1972 [28]. The 
adjusted incidence density ratio of CRC was 1.30 (95% 

Table 1: Genetics of colorectal cancer and potential impact of DM on colorectal cancer-related genes

Colorectal cancer Mutation Inheritance Impact of DM on gene 
expression * Reference

Familial adenomatous polyposis Inactivating germline mutation in 
adenomatous polyposis coli (APC) 

Autosomal 
dominant Increased APC [283,284] 

MUTYH-associated polyposis Inactivating germline mutation in MUTYH Autosomal 
recessive Unchanged MUTYH [283,284]

Peutz-Jeghers syndrome Inactivating germline mutation in serine 
threonine kinase 11 (STK11)

Autosomal 
dominant Increased STK11 [285]

Hereditary non-polyposis colorectal 
cancer (Lynch syndrome)

Inactivating germline mutation in MLH1, 
MSH2, MSH6, or PMS2

Autosomal 
dominant

Unchanged MLH1, 
PMS2
Increased MSH2, MSH6

[286]

Chromosomal  instability (frequent)

Acquired accumulation of numerical 
(aneuploidy) or structural chromosomal 
abnormalities and mutations in specific 
oncogenes and tumor suppressor genes 
(e.g. APC, PIK3CA, SMAD4, KRAS, TP53, 
BRAF)

Unchanged PIK3CA, 
SMAD4, BRAF
Increased KRAS, TP53

[287–289]

* Kidney gene expression in human diabetic kidney disease transcriptomics (http://www.nephromine.org).

Table 2: Key risk factors for T2DM, colorectal cancer and DM complications (Diabetic kidney disease)
Risk factor T2DM Colorectal cancer Diabetic kidney disease

Race African American, Native 
American African American African American, 

Native American
Obesity Yes Yes Yes
Inflammation Yes Yes Yes
Microbiota Yes Yes Unknown
Low vitamin D Yes Yes Yes
High protein (meat protein) diet Yes Yes Yes
Low fiber diet Yes Yes ND
No Mediterranean diet Yes Yes ND
Low magnesium intake/
hypomagnesemia Yes Yes Yes

Angiotensin II Yes Yes Yes
Age Yes Yes Unclear
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Figure 1: Relationship between incidence of colorectal cancer (CRC) and prevalence of DM in different parts of the 
world. A. Global, B. Europe, North America and Australia/New Zealand, C. Latin America and Caribbean, D. Asia, E. Middle East, F. 
European Mediterranean countries and Israel, G. Africa. IDF 2015 data for DM (www.diabetesatlas.org/) and Globocan 2012 data for 
colorectal cancer (http://globocan.iarc.fr/Pages/age-specific_table_sel.aspx). Discontinuous red lines represent median values for the global 
population. Regional differences can be identified by the location of countries within the four quadrants. Note regional differences as well 
as countries that differ from others in the region. Regions are more clearly separated by CRC incidence than by DM prevalence, Europe/
North America/Australia/NZ is the only high DM/high CRC region. Latin America and Caribbean is a high DM/low CRC region with the 
exception of Argentina and Uruguay where meat intake is high, while in the opposite extreme Mexico a is very high DM/low CRC country. 
In the Middle East a high prevalence of DM is not associated with high CRC incidence, unlike in European Mediterranean countries which 
in general behave as the rest of Europe. Korea is an example of low DM/high CRC country in Asia.
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confidence interval (CI) 1.03-1.65) for diabetic males, but 
not significant for females. The association was found only 
among non-smoker males. A more recent prospective US 
study followed an older cohort from 1995 to 2004 and 
observed an increased adjusted Hazard Ratio (HR) for 
CRC in both males and females [29]. Lifestyle changes 
from the 60s to the 90s may explain the change in female 
risk. A similar association has been reported in Japan [30], 
China [31], Australia [32] or certain European countries 
(e.g. Sweden) [33], among others. A recent umbrella 
review of meta-analyses of observational studies on 
T2DM and cancer updated to the end of 2013 concluded 
that CRC was one of only four cancer sites associated 
to T2DM with robust supporting evidence and without 
hints of bias [34]. Furthermore, in a meta-analysis of 
prospective cohort studies encompassing near a million 
participants, prediabetes (impaired fasting glucose and/
or impaired glucose tolerance) was also associated with 
increased risk of CRC [35]. However, uncertainties 
remain. The presence of detection bias and/or reverse 
causation has been suggested by studies in Australia, 
Israel and the Netherlands that found a higher risk of 
cancer within 3 months of a DM diagnosis [32, 36, 37]. 
In this regard, in the US, respondents with diabetes were 
22% more likely to be up-to-date on CRC screening than 
those without diabetes [38]. A higher risk of developing 
DM within 5 years of CRC diagnosis was also reported 
[39]. In addition, regional differences exist: in Norway 
and the Netherlands only diabetic females had a higher 
incidence of proximal colon cancer or CRC [40, 41], 
while no association was found in Tyrol. Unraveling 
the reasons underlying regional differences may provide 
clues to the association and to public health interventions. 
Potential differences in the use of specific antidiabetic 

drugs may play a role as discussed below. Furthermore, 
epidemiological data from developing countries are 
scarce. This is an important piece of missing information 
since almost 55% of CRC cases occur in more developed 
regions (http://globocan.iarc.fr/Pages/fact_sheets_cancer.
aspx), while 80% of DM patients live in low- and middle-
income countries (www.diabetesatlas.org/). 

Risk factors shared by CRC, DM, and DM target 
organ damage may be confounders in epidemiological 
studies (Table 2). Obesity is a major risk factor for T2DM, 
cancer and diabetic kidney disease (DKD) [42, 43]. 
However, key studies observing an association between 
DM and CRC were adjusted by BMI. In this regard, there 
may be a relationship between obesity, insulin resistance 
and CRC. In a prospective European study, lower CRC 
risk was observed for metabolically healthy/overweight 
individuals compared with metabolically unhealthy/
overweight individuals, defined as individuals with higher 
C-peptide levels indicative of hyperinsulinaemia [44]. Diet 
may be another confounder. A high meat intake increases 
and a Mediterranean diet decreases both the risk of DM 
and of CRC [45].

POTENTIAL MOLECULAR MECHANISMS 
OF THE ASSOCIATION BETWEEN DM 
AND CRC

The association between DM and CRC may result 
from shared risk factors between T2DM and cancer but 
epidemiological data suggest a potential contribution of 
hyperinsulinemia, hyperglycemia or DM therapy [4, 46, 
47] (Figure 2). Additionally, the DM microenvironment, 
such as advanced glycation end-products (AGEs), 

Figure 2: Hypotheses potentially explaining the association between diabetes and colorectal cancer. Two major potential 
relationships have been depicted. A. Common risk factors (e.g. diet, genetic) favor both diabetes and colorectal cancer; B. Diabetes favors 
cancer development. These potential relationships are put in context with the occurrence of other diabetes complications such a chronic 
kidney disease. Obesity is a known risk factor for both colorectal cancer and diabetic kidney disease.
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hyperlipidemia, local inflammation/oxidative stress, 
extracellular matrix alterations, and altered microbiota 
or ischemia due to vasculopathy may recruit secondary 
mediators of injury that may favor the development of 
both cancer and other complications of DM such as DKD.

Insulin

Insulin and insulin-like growth factor (IGF)-1 have 
growth factor and antiapoptotic properties in a variety 
of cultured tumor and non-tumor cell types, including 
normal colon epithelium and colon cancer cells [48, 49]. 
These actions have been interpreted as part of a putative 
tumor-enhancing effect of insulin [50, 51]. However, 
insulin signaling is also required for survival and function 
of healthy cells in vivo, such as podocytes, key cells in 
DKD, and selective podocyte insulin resistance reproduces 
features of DKD in the absence of hyperglycemia [52]. 
The mTOR and p21-activated protein kinase-1 (PAK-
1)/Wnt/β-catenin intracellular pathways are involved in 
insulin-stimulated proto-oncogene expression in intestinal 
cells [53]. These molecular pathways also mediate diabetic 
complications, including DKD [54].

An increased incidence of azoxymethane-induced 
intestinal tract cancer was observed in preclinical models 
of obesity and T2DM, including obese Zucker rats and 
KK Ay, db/db and ob/ob mice [55-57]. The addition, 
the incidence and multiplicity of intestinal adenomas 
was higher in db/db mice with Apc mutations than in 
non-diabetic mice [58]. However, the relative role of 
hyperglycemia, hyperinsulinemia or obesity was not 
characterized.

The role of hyperinsulinemia was studied in a 
normoglycemic model of mammary cancer growth, but 
results do not necessarily extrapolate to CRC [59]. A 
tyrosine kinase inhibitor specific to the insulin and IGF-
1 receptors aggravated hyperinsulinemia but prevented 
insulin signaling and cancer growth. However, tyrosine 
kinase inhibitors are promiscuous and are in clinical use 
as anti-tumor agents. Thus, the fact that members of an 
anti-tumor agent family decrease tumor growth is not 
definitive evidence for a role of insulin. CL-316243, a 
β3-adrenergic receptor agonist that sensitizes to insulin 
action, reduced hyperinsulinemia and phosphorylation 
of insulin and IGF-1 receptors and attenuated mammary 
tumor progression, supporting a role for hyperinsulinemia 
in T2DM associated tumor progression [60].

Hyperglycemia

Hyperglycemia has been implicated both in colon 
cancer growth and in DKD and some of the molecular 
mechanisms are shared by both diseases. High glucose 
levels and AGEs increase proliferation and migration 
of cultured colon cancer cells [61, 62]. High glucose 

levels also enhance resistance to 5-fluoruracil-induced 
apoptosis [63]. AGE-induced CRC cell proliferation 
requires carbohydrate response element-binding protein 
(ChREBP) [64], a key transcription factor also involved in 
DKD [65]. The polyol and hexosamine pathways, which 
increase glucose oxidation, are upregulated in diabetes 
target organ epithelial cells [54] and in colon cancer [66]. 
Hyperglycemia and AGEs induce oxidative stress and 
inflammation, which can damage cellular components 
and contribute to malignant cell transformation [67-69]. 
High glucose-induced oxidative stress plays a pivotal role 
in the development of diabetes complications by activating 
different pathways, such as the transcription factor nuclear 
factor-kappa B (NF-κB) [70, 71]. Indeed, bardoxolone 
methyl, a potent nuclear factor erythroid 2-related 
factor 2 (Nrf2) activator/NF-κB inhibitor, improved 
glomerular filtration in RCT in DKD [72]. Interestingly, 
the observation that bardoxolone increased glomerular 
filtration was first made in clinical trials exploring its 
anticancer potential.

The Warburg effect refers to the high glucose 
uptake and metabolism of glucose through glycolysis 
rather than aerobic phosphorylation in tumor cells 
despite the presence of oxygen [73, 74]. Glycolysis is 
less efficient but generates adenosine triphosphate (ATP) 
faster, conferring a growth advantage to tumor cells. 
Upregulation of insulin-independent glucose transporters 
such as glucotransporter-1 (Glut-1) favors glucose 
uptake by cancer cells [75, 76]. Glut overexpression is 
usually translated into higher proliferation rates. The 
diabetic milieu and transforming growth factor (TGF)-β1 
upregulate renal cell Glut-1 and this is thought to 
contribute to the pathogenesis of DKD [77].

Few preclinical studies have addressed the impact 
of hyperglycemia per se (i.e. T1DM) on colon cancer. 
Streptozotocin-induced hyperglycemia, an insulin-
deficiency DM model, increased liver metastasis of 
mouse colon cancer cells, while glycemic control with 
either insulin or gliclazide was protective [78]. These 
studies suggest that hyperglycemia per se may favor 
colorectal tumor growth and that hyperglycemia may be a 
more powerful stimulus for tumorigenesis than insulin in 
experimental animals.

Wnt/β-catenin is activated in CRC as a direct 
consequence of APC mutations and in kidney cells in DKD 
[79], protecting glomerular mesangial cells from high-
glucose-mediated cell apoptosis [80] but causing podocyte 
dysfunction and proteinuria [79]. β-catenin expression 
and altered phosphorylation, and cell proliferation were 
higher in normal colon epithelium surrounding tumor 
tissue in diabetic than in non-diabetic patients [81]. VDR 
activation antagonizes Wnt/β-catenin signaling [82] 
(Figure 3). The nephroprotective action of VDR activators 
has been related to Wnt/β-catenin inhibition [83]. Vitamin 
D deficiency is common in DM [84] and has also been 
associated with increased risk of CRC [85, 86]. High-
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Figure 3: Key molecular pathways potentially linking diabetes and colorectal cancer. The example of β-catenin activation. 
A. In the absence of Wnt signaling, APC-bound glycogen synthase kinase 3-beta (GSK-3β) phosphorylates β-catenin (βCat), targeting it 
for ubiquitination and proteasomal degradation. In the absence of nuclear β-catenin, Groucho binds to transcription factors of the TCF 
family, repressing transcription. The TCF family includes TCF7L2 which has been associated to DM, DM complications and colon cancer 
by GWAS studies. B. Colon cancer is characterized by loss of function mutations of APC and in DM Wnt signaling is activated. Klotho 
and vitamin D prevent Wnt signaling and are protective against tumors and against DM complications. Wnt signaling prevents β-catenin 
phosphorylation and degradation allowing its nuclear migration, where it displaces Groucho and promotes transcription of genes involved 
in cell proliferation as well as other genes such as miR-21. miR21 contributes to tumorigenesis and to diabetes complications such as kidney 
injury. GWAS identified a GREM1 SNP associated with CRC susceptibility that facilitates TCF7L2 binding to DNA, leading to stronger 
GREM1 gene expression. A GREM1 SNP also associate with diabetic kidney disease. The gene product, Gremlin, promotes kidney injury 
in DM as well as colon cancer cell migration. KCNQ1 was associated with T2DM by GWAS. This locus encodes KCNQ1OT1, a β-catenin 
target upregulated in CRC.
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glucose-induced inflammatory and fibrogenic responses 
in kidney cells contribute to DKD and are prevented by 
vitamin D receptor (VDR) activation [87-90]

EGFR signaling contributes to tumorigenesis and 
tumor progression of CRC and EGFR-targeted cetuximab 
is used to treat CRC. Genetic or pharmacological EGFR 
blockade slows experimental renal disease progression 
[91]. High-glucose, AGE, angiotensin II, and pro-
inflammatory cytokines, such as TWEAK and parathyroid 
hormone-related protein (PTHrP) AGE promote EGFR 
transactivation in kidney cells [92-96]In this regard, 
TWEAK targeting antibodies are undergoing clinical 
trials in kidney disease, while targeting the TWEAK 
receptor Fn14 reduced colon cancer metastasis in 
experimental animals [95, 97]. Inhibition of EGFR with 
erlotinib attenuates DKD in experimental T1DM, through 
inhibition of mTOR [98]. Indeed, mTOR is activated in 
diabetic podocytes and mTOR targeting protects from 

DKD [99]. CCN2 is a novel EGFR ligand that promotes 
kidney inflammation and DKD progression [100, 101] 
and in CRC cells, regulates cell migration and prevents 
apoptosis [102]. 

Klotho is an anti-aging hormone of kidney origin 
with anti-inflammatory and anti-fibrotic properties [103, 
104]. Experimental and human diabetes, inflammation 
and hyperlipidemia are associated with decreased Klotho 
expression [105-108]. Loss of Klotho contributes to 
kidney injury by de-repression of Wnt/β-catenin signaling 
[109] and similar mechanisms may be active in colon 
cancer cells. In this regard, Klotho suppresses growth 
and invasion of colon cancer cells through inhibition 
of the IGF1R-mediated PI3K/Akt pathway [110] and is 
frequently inactivated through promoter hypermethylation 
in CRC [111].

Table 3: Epidemiological association between DM and risk of CRC. 

Country N 
(x1000)

Mean age 
(years)

Period 
(years) Location Males Females Overall Ref

US* 850 54 59-72 CRC 1.30 (1.03-1.65) 1.16 (0.87-1.53) Not available [28]

US** 484 62 95-06 CRC
Colon 1.24 (1.12-

1.38)
Rectum 1.34 
(1.14-1.57)

Colon 1.37 (1.16-
1.60)

Rectum 1.43 
(1.08-1.88)

Colon 1.27 
(1.17-1.39)

Rectum 1.36 
(1.18-1.56)

[29]

Japan*** 335 N.A. N.A. CRC N.A. N.A. 1.40 (1.19-
1.64) [30]

China**** 327 60 07-13 CRC
Colon 1.47 (1.29-

1.67)
Rectum 1.25 
(1.09-1.43)

Colon 1.33 (1.15-
1.54)

Rectum 1.29 
(1.10-1.51)

Colon 1.40 
(1.27-1.55)
Rectum1.26 
(1.14-1.40)

[31]

Australia**** 953 27 (T1DN)
60 (T2DN) 97-08 CRC 1.18 (1.15-1.21) 1.16 (1.13-1.20) N.A. [32]

Sweden**** 2.9
1.4 N.A. 64-10 CRC N.A. N.A.

Colon 1.33 
(1.28-1.38)

Rectum 1.19 
(1.13-1.25)

[33]

Norway***
751 
pers/
year

71 84-96 CRC CRC 0.66 (0.35-
1.34)

CRC 1.55 (1.04-
2.31)

Colon 1.60 (1.02-
2.51)

Rectum 2.70 
(1.29-5.61)

N.A. [40]

Tyrol**** 5.7 58 88-10 CRC 1.11 (0.81-1.49) 0.94 (0.62-1.36) N.A. [290]
Israel** 2186 64 02-12 CRC 1.45 (1.37-1.55) 1.48 (1.39-1.57) N.A. [36]

Netherlands** 120 62 86-06 CRC

CRC  0.95 
(0.75–1.20)

Proximal 1.13 
(0.76-1.68)
Distal 0.77 
(0.49–1.21)
Rectum 0.50 
(0.21–1.22)

CRC 1.08 
(0.85–1.37)

Proximal 1.44 
(1.05–1.99) 
Distal 0.75 
(0.44–1.27)
Rectum 1.16 
(0.54–2.48)

N.A. [41]

Meta-
analysis*** 8244 N.A. N.A. CRC N.A. N.A. 1.27 (1.21-

1.34) [34]

95% confidence interval shown. * Adjusted incidence density ratio: ** Adjusted HR; ***RR. **** Standardized incidence 
ratios
N.A.: not available
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Inflammation and microbiota

Inflammation is a critical component of diabetes-
induced target organ injury and of CRC initiation and 
progression [112, 113]. In preclinical models of T2DM, 
inflammation contributed to carcinogenesis and tumor 
growth, which were prevented by TNF-neutralizing 
monoclonal antibodies [57].

Multiple signaling pathways are involved in the 
inflammatory response, including MAPK, NF-κB, janus 
kinase/signal transducer and activator of transcription 
(JAK/STAT) and hypoxia-inducible factor-1α [68, 114-
117]. Persistent NF-κB/IL-6/STAT3 activation promotes 
colitis associated CRC [118]. The non-canonical NF-
κB pathway has also been implicated in diabetes 
complications and cancer [119-121]. The upstream 
kinase of this pathway, NIK, contributes to β cell failure 
in diet-induced obesity [122], promotes kidney injury 
[123] and underlies the sensitivity of Nlrp12-/- mice to gut 
inflammation and tumorigenesis [124]. These intracellular 
pathways amplify inflammatory responses and promote 
angiogenesis, cancer growth and invasiveness of malignant 

cells [125, 126], as well as progression of diabetes target 
organ injury such as DKD [117].

The interaction between colon epithelial cells and 
the microbiota may confer susceptibility to both colon 
cancer and obesity. The inflammasome regulates the 
microbiota and the inflammatory response of epithelial 
cells to the microbiota. Deficiency in inflammasome 
components (e.g. Nlrp6) is associated with an abnormal 
microbiota, exacerbated gut inflammatory responses 
[127] and colon tumorigenesis [128] dependent on 
microbiota-induced activation of epithelial IL-6 signaling 
[17]. Microbiota-dependent inflammatory responses 
may contribute to non-Mendelian familial aggregation 
of colon cancer since in preclinical models the risk of 
cancer was transmissible between co-housed individuals 
with the microbiota. The gut microbiota also impacts host 
metabolism, facilitating obesity, insulin resistance and 
T2DM [129]. Thus, inflammasome deficiency-related 
changes in gut microbiota are associated with insulin 
resistance and obesity [130]. In this regard, T2DM is 
one of three models of microbiome-associated human 
conditions to be studied by the Integrative Human 
Microbiome Project (iHMP, http://hmp2.org) [131]. 

Table 4: Examples of agents in the pipeline targeting both cancer and diabetic target organ complications exemplified 
by diabetic kidney disease

Activity Agent
Successful 
in animal 
models of 
cancer

Successful in 
experimental 
DKD

RCT in human 
cancer

RCT in 
human DKD Refs

HMGCoA reductase 
inhibitors statins Yes Yes Yes Yes [253-256]

RAAS targeting 
drugs

ACE inhibitors, 
ARBs Yes Yes No Yes [252, 257-

259]

VDR activator Paricalcitol Yes Yes Yes Yes [265,266,291]

Endothelin receptor 
antagonists

Atrasentan and 
others Yes Yes Yes Yes [262–

264,292–301] 

Anti-fibrotic agents
Anti-CTGF mAb 
FG3019 Yes Yes Yes Yes [101,302,303]

Anti- TGF-β1 
mAb. Yes Yes Yes Yes [304]

Anti-inflammatory 
agents

Chemokine 
targeting agents Yes Yes Yes (anti-

CXCR4) 
Yes (anti-
CCL2 and 
others )

[270]

JAK/STAT 
inhibitors Yes Yes Yes Yes [276-279]

Inhibitors of 
epidermal growth 
factor Receptor/
ligands

Several agents Yes Yes
Anti-EGFR 
antibodies 
(cetuximab) 

Anti-TGF-α/
epiregulin 
antibody 
(LY3016859)

[305,306] 

mTOR inhibitors Several agents Yes Yes Yes
No (Yes in 
non-DKD 
CKD)

[98-99, 269]

DKD: diabetic kidney disease, CKD: chronic kidney disease, HMGCoA: 3-hydroxy-3-methylglutaryl coenzyme A, RAAS:  
renin angiotensin aldosterone system, ACE: angiotensin converting enzyme, ARB: angiotensin receptor blocker; CTGF: 
Connective tissue growth factor, TGF-beta: Transforming growth factor beta, EGFR: Epidermal growth factor receptor, 
CXCR4: Chemokine Receptor type 4, CCL2: Chemokine Ligand 2
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Human T2DM and CRC share some microbiota features, 
such a decrease in the abundance of butyrate-producing 
bacteria [18, 132]. Butyrate is a breakdown product of 
dietary fiber that has anti-tumorigenic properties and is 
associated with decreased incidence of CRC [18]. In mice, 
the microbiota potential for butyrate production negatively 
correlated with tumor count [133]. Butyrate also has 
nephroprotective properties in DKD [134].

Iron metabolism. Altered iron metabolism 
facilitates rapid proliferation in cancer cells [135]. 
Indeed, constitutive Wnt/β-catenin signaling in colon 
cancer cells is iron-dependent [136] and iron chelation 
limits cell proliferation and has anti-inflammatory effects 
through NF-κB blockade [137]. Iron overload causes 
DM and is present in target organs of diabetes, such as 
the kidneys, while iron depletion upregulates glucose 
uptake and insulin signaling in liver and decreases kidney 
inflammation in experimental diabetes [138-140]. Indeed, 
the Trial to Assess Chelation Therapy (TACT) disclosed 
a benefit of ethylenediaminetetraacetic acid (EDTA), a 
chelator that also binds iron, on cardiovascular outcomes, 
especially in DM patients [141]. Thus, excess cellular iron 
may facilitate CRC growth, DM and DM complications. 
Heme iron may be the common denominator in the 
association of red meat intake with both DM and CRC 
[142, 143].

Epigenetic changes

CRC and DM also share some epigenetic changes. 
Thus, both CRC and DM were associated with a positive 
septin 9 (SEPT9) DNA-methylation assay (Epi-proColon) 
result [144]. In this regard, SEPT9 is differentially 

methylated in human T2DM islet cells and was shown to 
perturb insulin and glucagon secretion [145].

miRNAs are small non-coding RNA molecules 
that regulate gene expression. Pathogenic miRNAs 
may be shared by CRC and DKD [146-148]. In murine 
DKD, renal miR-21 expression was increased and miR-
21 knockdown ameliorated renal damage [149]. The 
pathogenic potential of miR-21 is supported by some, 
but not all additional reports [150, 151]. miR-21 is also 
part of a six-miRNA-based classifier that reliably predicts 
CRC recurrence [148, 152]. Functional studies support a 
role for miR-21 in colon cancer proliferation and invasion 
[153, 154] and targeting miR-21 enhanced the sensitivity 
of human colon cancer cells to chemoradiotherapy and 
reduced angiogenesis [154, 155]. Metformin synergy 
with 5-fluorouracil and oxaliplatin to induce death of 
chemoresistant colon cancer cells was also associated with 
a reduction in miR-21 [156].

ADDITIONAL INFORMATION FROM 
SYSTEMS BIOLOGY APPROACHES

Genome-wide association studies (GWAS) have 
identified susceptibility genes for DM or CRC that provide 
insights into potentially shared pathogenic pathways, such 
as TCF7L2, KCNQ1, HMGA2, RHPN2 and GREM1.

TCF7L2 harbors common genetic variants with 
the strongest effect on T2DM risk [157-159] and on DM 
complications such as DKD [160] and is also susceptibility 
locus for CRC loci in East Asians [161]. TCF7L2 is a 
transcription factor and β-catenin transcriptional partner 
in the Wnt-signaling pathway. DNA-bound TCFs repress 
gene transcription in the absence of β-catenin, but are 

Table 5: Key points
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required for β-catenin transcriptional activity [162]. 
TCF7L2 also promotes miR-21 expression [163]. Another 
CRC-associated Single Nucleotide Polymorphism (SNP), 
rs6983267, is located at a TCF7L2 binding site and the risk 
allele results in stronger TCF7L2 binding, facilitating Wnt 
signaling [164]. A common GREM1 SNP, rs16969681, 
associated with CRC susceptibility facilitates TCF7L2 
binding to DNA leading to stronger gene expression 
[165]. A germline duplication upstream of GREM1 causes 
hereditary mixed polyposis syndrome and Mendelian-
dominant predisposition to CRC through ectopic GREM1 
overexpression in the intestinal epithelium [166, 167]. 
GREM1 was initially identified as one of the most 
upregulated genes in cultured mesangial cells exposed 
to high glucose [168] and GREM1 gene variants also 
associate with DKD [169]. Gremlin, the protein codified 
by GREM1, has been proposed as a key mediator of 
DKD [170-173]Gremlin promotes the motility of CRC 
cells [174] and the epithelial to mesenchymal transition 
in kidney tubular cells, also associated with increased 
motility [175, 176]. The precise role of TCF7L2 in CRC 
should be further defined. Thus, TCF7L2 mutations 
identified in cancer samples abolish its ability to function 
as a transcriptional regulator and result in increased CRC 

cell growth [177]. Given the multitude of target genes, this 
is not surprising.

KCNQ1 was associated with T2DM [178]. This 
locus encodes both KCNQ1 and the long noncoding 
RNAs (lncRNAs) KCNQ1OT1, which is a β-catenin target 
dysregulated in CRC [179]. In human CRC, low KCNQ1 
expression was associated with poor survival and mutation 
of the murine homologue Kcnq1 increased the risk for 
intestinal tumors [180].

HMGA2 is a further gene associated to risk of T2DM 
and DKD in GWAS [158, 181]. HMGA2 expression is 
increased in and promotes the malignant behavior of CRC 
[182, 183]. Conversely, CRC GWAS identified RHPN2 as 
a susceptibility loci and RHPN2 expression is upregulated 
in experimental DKD [184, 185].

Pathway-based enrichment analysis of 23 
independent gene expression profiling studies on prognosis 
of CRC observed overrepresentation of the oxidative 
phosphorylation chain, the extracellular matrix receptor 
interaction category, and a general category related to 
cell proliferation and apoptosis [186]. These categories 
are functionally related with cancer progression. Eight of 
the genes were also present in a previous meta-analysis 
of ten expression profiling studies of differentially 

Table 6: Standing questions on the relationship between DM and colorectal cancer
Standing question Relevance What is required to address it

Is there an association between T2DM and 
colorectal cancer across all countries and 
cultures?

Provides insights into etiologic and 
pathophysiologic factors, may prevent 
a colorectal cancer epidemic in the 
developing world

Head-to-head comparison between 
developed and developing country cohorts

Is there an association between development of 
cancer and development of other complications 
of DM?

Provides the epidemiological basis to 
search for common mediators of disease

Epidemiological studies, ideally 
prospective

What molecular mediators explain the 
association between DM and cancer? Are they 
shared by other complications of DM?

Identification of potential diagnostic 
signatures and therapeutic targets

Interventional preclinical models that 
address function of key molecules. 
These may have been identified by non-
biased systems biology approaches and 
hypothesis-driven studies designed from 
the analysis of available literature

Has DM-associated colorectal cancer a specific 
molecular signature?

This may identify diagnostic signatures 
and therapeutic targets specific for DM-
associated colorectal cancer

Systems biology comparison between DM 
and non-DM associated colorectal cancer 
with DM and non-DM healthy colon as 
control

Can DM patients at high risk for cancer 
development be identified by diagnostic tests? Early diagnosis of risk or cancer

Prospective systems biology approach to 
relevant biological samples (feces, urine, 
blood or others)

Can DM patients at high risk or early colorectal 
cancer be treated by specific, DM-tailored 
approaches? Do these approaches also prevent/
treat other diabetic complications?

New preventive/therapeutic approaches 
that address both cancer and non-cancer 
DM complications

Early identification of patients at high risk 
or with early disease
Unraveling of common pathogenic 
pathways

Are there common microbiota signatures for 
colorectal cancer and other DM complications?

New preventive/therapeutic approaches 
that address both cancer and non-cancer 
DM complications

Metagenomic studies

What is the optimal therapeutic approach for 
colorectal cancer in diabetic individuals and 
the optimal therapeutic approaches for DM in 
colorectal cancer patients?

Therapy individualization and improved 
outcomes

Hypothesis-generating observational 
studies followed by randomized clinical 
trials
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expressed genes in CRC with good versus bad prognosis, 
including IQGAP1, YWHAH and TP53. [186]. IQGAP1 
is part of the podocyte filter for proteins and regulates the 
occurrence of proteinuria, the hallmark of DKD [187] 
and YWHAH expression was increased in human DKD 
transcriptomics studies [188, 189]. Furthermore, human 
DKD transcriptomics revealed that 25% of apoptosis-
related genes were differentially regulated in kidney 
tissue [190-192]. Some of the specific factors identified 
by human DKD transcriptomics and functionally 
characterized to contribute to kidney injury, also promote 
CRC growth, such as the MIF/CD74 system which is 
under study as a therapeutic target in colon cancer [193, 
194]. Furthermore, elements of the JAK/STAT, VEGFR 
signaling and inflammation-related pathways were also 
overrepresented in human DKD [184, 189]. JAK/STAT, 
VEGF and inflammation are therapeutic targets in cancer.

As part of the Human Proteome Project, the 
Biology/Disease-driven Human Proteome Project (B/D-
HPP) consortium leads specific projects on diabetes 
(HDPP) and cancer that may shed some additional 
light on the relationship between both diseases [195]. 
Protein candidate markers responding to CRC existence 
(diagnosis), stratification (different response related 
to stage) or prognosis (survival/metastasis) have been 
identified [196-199]. Most studies compared normal 
(healthy) tissue with tumor. The top four regulated 
proteins in a systematic review of CRC were 60-kDa 
heat shock protein (HSP60) and Nucleoside diphosphate 
kinase A (nm23-H1), up-regulated, and Selenium-binding 
protein 1 (SELENBP1) and Carbonic anhydrase I (CAI), 
down-regulated [200]. Interestingly, expression of the 
HSPD1 gene encoding HSP60 was upregulated and 
SELENBP1 downregulated in human DKD, according 
to the Nephromine database, further suggesting potential 
common pathogenic pathways between DKD and colon 
cancer (http://www.nephromine.org/).

Bioinformatics approaches may be used to integrate 
the growing systems biology databases. One such 
approach, the Drug-specific Signaling Pathway Network 
(DSPathNet) was used to tentatively identify seven genes 
(CDKN1A, ESR1, MAX, MYC, PPARGC1A, SP1, and 
STK11) and one novel MYC-centered pathway that might 
play a role in metformin antidiabetic and anticancer 
effects [201]. Interestingly, PPARGC1A protects from 
kidney injury and the expression is downregulated by 
inflammation [202].

IMPLICATIONS FOR THERAPY

Given the high and increasing incidence and 
prevalence of DM and CRC, it is likely that, independently 
from any common pathogenic pathways or associations, 
many DM patients will develop CRC. This brings the 
question whether physicians need to modify the approach 
to therapy of DM or CRC in diabetic patients with 

both conditions. In this regard, a diagnosis of cancer 
is frequently associated to a subsequent decrease in 
adherence to antidiabetic medication [203].

Choice of antidiabetic agent in the patient with 
CRC

The ADA Standards of Medical Care in Diabetes 
indicates that patients with DM should be encouraged 
to undergo recommended age- and sex-appropriate 
cancer screenings and to reduce their modifiable cancer 
risk factors (obesity, smoking, physical inactivity) [9]. 
In the presence of cancer, higher HbA1c goals should 
be considered: <8% in the absence of metastases and 
<8.5% for patients with metastatic cancer. If indeed 
hyperglycemia underlies the higher incidence of colon 
cancer in DM, these higher thresholds may theoretically 
impair cancer-related outcomes.

ADA 2016 does not provide recommendations on 
the choice of antidiabetic treatment in patients with cancer 
or CRC [204]. However, the initial antidiabetic agent 
recommended for standard T2DM patients, metformin, 
has been associated with decreased incidence or better 
outcomes in cancer patients [205-207]. Thus, even if 
prospective clinical studies confirmed the superiority of 
metformin on cancer incidence or outcome, this would 
not change the current standard therapeutic approach 
for T2DM in the cancer patient. The debate about the 
association of specific antidiabetic drugs and cancer risk 
has been marred by the lack of properly designed studies. 

Although observational studies suggest that the 
choice of treatment for DM may modify cancer risk [208], 
no prospective studies have been specifically designed 
to address this issue. Thus, no firm conclusions can be 
reached at this point. The crux of the debate has been 
whether insulin or analogs are associated to an increased 
risk of CRC (and cancer in general) [209] and whether 
metformin is associated with a decreased risk of CRC 
[210]. This may represent two sides of the same coin: if 
one drug does modify the risk of CRC, by comparison 
the other may appear to modify the risk in the opposite 
direction. Confounders may exist. Thus, insulin is 
generally prescribed and metformin remains formally 
contraindicated in advanced chronic kidney disease 
(CKD), a late event in the course of T2DM, despite recent 
clinical recommendations [211]. Renal insufficiency is 
associated with higher risk for all-cause cancer [212], 
although this association has not been demonstrated for 
CRC [213].

Recent meta-analyses have attempted to unravel 
the potential relationship between antidiabetic therapy 
and cancer or colorectal cancer. However, meta-analysis 
results heavily depend on the quality of the included 
studies. A recent meta-analysis involving approximately 
7.6 million and 137, 540 patients with diabetes from 
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observational studies and randomized controlled trials 
(RCTs), respectively, suggested that metformin or 
thiazolidinediones were associated with a lower risk of all 
cancer incidence, while insulin, sulfonylureas and alpha 
glucosidase inhibitors were associated with an increased 
risk of cancer incidence [214]. Another large (491, 
384 individuals) meta-analysis addressing specifically 
the impact of insulin, found it to be associated with a 
significant 69% increased risk of CRC in T2DM only in 
case-control but not in cohort studies [215]. The Barcelona 
nested case-control study of 275, 164 T2DM patients did 
not find an increased risk of cancer for any insulin or oral 
antidiabetic agent [216]. Finally, a metaanalysis of 19 
publications representing data for 1, 332, 120 individuals, 
insulin had no effect and insulin glargine was associated 
with a decreased risk of CRC [217].

Metformin use has been associated with a decreased 
risk of colon cancer and increased survival [210, 218, 
219]. A systematic review of 12 randomized controlled 
trials (21, 595 patients) and 41 observational studies (1, 
029, 389 patients) found that in observational studies 
the risk of CRC was 17% lower among DM patients 
treated with metformin than in those not on metformin 
[210]. In a meta-analysis of 21 observational studies 
metformin was associated with a reduction in cancer-
specific mortality, including a reduction in mortality for 
colon cancer (4 studies, HR 0.65, 0.56-0.76) [205, 220]. 
Several mechanisms may account for the antitumor effect 
of metformin. It reduces circulating insulin, promotes 
weight loss and activates 5’ adenosine monophosphate-
activated protein kinase (AMPK), thus inhibiting growth 
of colon cancer cells [221, 222]. In mice with Apc 
mutations, metformin suppressed polyp growth [223] 
and in diabetic mice metformin, alone or in combination 
with oxaliplatin, reduced the severity of colorectal tumors 
[224]. Older literature described increased expression of 
mitochondrial GPDH, the target of metformin, in rapidly 
growing, undifferentiated tumors [225, 226]. However, 
there are no data on CRC expression of mitochondrial 
GPDH. In non-diabetic subjects, oral short-term low-
dose metformin suppressed the development of colorectal 
aberrant crypt foci in a clinical trial [227]. In phase 3 RCT, 
low-dose (250 mg/day) metformin was safe and reduced 
the prevalence and number of metachronous adenomas or 
polyps after polypectomy in non-diabetic patients [228].

Conflicting results are available on 
thiazolidinediones and cancer. A systematic review 
and meta-analysis of 840, 787 diabetic patients did not 
support an association between thiazolidinediones and 
CRC [229, 230]. In a 6-year population-based cohort 
study, thiazolidinediones were associated with decreased 
cancer risk including CRC and the association was dose-
dependent [231]. Thiazolidinediones have cytostatic 
effects and inhibit growth and metastasis of colon cancer 
cells as they induce differentiation and modulate the 
E-cadherin/β-catenin system [232-234]. However, some 

studies point to a mitogenic potential of troglitazone which 
induced colon tumors in normal C57BL/6J mice and 
increased colon carcinogenesis in Apc1638 N/+Mlh1+/− 
double mutant mice [235].

In systematic meta-analyses, sulphonylureas 
were associated with increased risk of pancreatic and 
hepatocellular cancer but not of CRC [229, 236, 237]. 
A cohort of 275, 164 T2DM patients found no evidence 
for altered cancer risk for repaglinide or α-glucosidase 
inhibitors compared to insulin-based therapies or other 
oral glucose-lowering drugs [216]. In other reports, 
acarbose was associated with reduced the risk of incident 
CRC in patients with diabetes in a dose-dependent manner 
[238, 239]. Acarbose may alter the microbiota [240] and 
decreased the size of gastrointestinal adenomas in Apc 
knockout mice [241].

Empaglifozin dramatically decreased mortality 
and slowed DKD progression and sodium-linked glucose 
transporter-2 (SGLT2) inhibitors may soon become the 
new standard of therapy [242]. A safety warning was 
issued by the FDA regarding bladder and breast cancer risk 
from early clinical trials of dapagliflozin but not for CRC 
(http://www.fda.gov/downloads/AdvisoryCommittees/
CommitteesMeetingMaterials/Drugs/
EndocrinologicandMetabolicDrugsAdvisoryCommittee/
UCM262994.pdf). Adenocarcinomas express SGLT2 and 
SGLT2 inhibitors blocked glucose uptake and reduced 
growth of tumor xenografts [243]. Whether this applies to 
CRC is unknown. 

No relationship between GLP-1-based therapies and 
CRC have been reported [244, 245]. However, exenatide 
inhibited proliferation and induced apoptosis in cultured 
murine CT26 colon cancer cells [246, 247].

Choice of chemotherapy for colorectal rectal 
cancer in patients with diabetes

Studies addressing chemotherapy efficacy or safety 
in DM are very limited and there is no evidence supporting 
specific chemotherapy approaches for CRC patients with 
DM. No differences in the survival benefit or severe 
adverse effects associated to chemotherapy were observed 
in 5, 330 elderly CRC patients with (n=950) and without 
(n=4, 380) DM [248]. By contrast, a cohort study within 
the INT-0089 randomized adjuvant chemotherapy trial 
of 3, 759 patients with high-risk stage II/III colon cancer 
concluded that in DM patients overall mortality and cancer 
recurrence were higher than in non-diabetic patients [249]. 
Treatment-related toxicities were similar between DM and 
non-DM patients, except for a higher risk of treatment-
related diarrhea among DM patients [249]. However, 
disease-free survival was lower and neurotoxicity more 
frequent in DM patients treated with capecitabine and 
oxaliplatin (CAPOX) chemotherapy than in non-diabetics 
[250]. It is likely that whether DM modifies the risk of 
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severe adverse effects that limit chemotherapy depends on 
the specific chemotherapeutic regimen.

AGENTS IN THE PIPELINE TARGETING 
BOTH CRC AND DIABETIC 
COMPLICATIONS

Some therapeutic targets are undergoing or have 
undergone RCTs in both diabetes complications (e.g. 
DKD) and cancer or are in clinical use in one condition 
and have been successfully used for the other condition 
in preclinical settings. These include statins, renin 
angiotensin aldosterone system (RAAS) blockers, 
endothelin receptor antagonists, VDR activators, mTOR 
inhibitors, anti-inflammatory molecules and inhibitors of 
EGF ligands/receptors (Table 4) [251, 252].

Statins are commonly used to treat hyperlipidemia 
and have been linked with a small reduction in the 
risk for colon cancer in diabetic patients [253] and 
improved prognosis of curatively resected CRC [254]. 
In an obesity-related colon cancer model associated 
with hyperlipidemia and hyperinsulinemia, pitavastatin 
prevented carcinogenesis and inhibited colon proliferation 
and inflammation [255], while simvastatin inhibited the 
release of inflammatory cytokines by colorectal cell lines 
[256]. Clinical trials are exploring statins in the treatment 
of human CRC.

RAAS blockers are the mainstay of therapy for 
human DKD [252]. Angiotensin-converting enzyme 
inhibitors and angiotensin-II type 1 receptor blockers 
suppress chemically-induced colonic preneoplasic lesions 
in diabetic animals [257-259]. However, their clinical use 
to prevent colon cancer is not being pursued.

The endothelin receptor antagonist atrasentan is 
undergoing RCTs for DKD [260, 261], and as add-on to 
docetaxel and prednisone for stage IV hormone therapy-
resistant prostate cancer bone metastases (NCT00134056) 
[262-264]. However, no trial is exploring CRC.

Paricalcitol is a VDR activator that may have 
antiproteinuric effects on DKD as suggested by RCTs 
[265] and may also slow cancer cell growth [266]. Phase 
I trials have tested combinations of paricalcitol and 
chemotherapeutic agents (NCT00217477). Additionally, 
vitamin D has been explored for colon cancer prevention. 
However, a combination of calcitriol, aspirin, and calcium 
carbonate or vitamin D/calcium did not prevent recurrence 
of colorectal adenomas over a 3- to 5-year period [267, 
268].

mTOR inhibitors are used as anticancer agents and 
also improve experimental DKD [99, 269]. The mTOR 
inhibitors RAD001 (NCT01058655) and everolimus 
and the dual PI3K/mTOR inhibitor PF-05212384 
(NCT01937715, NCT01154335) are undergoing clinical 
trials for metastatic CRC.

Several agents targeting cytokines and chemokines 
have been tested both in T2DM and cancer [251, 252, 

270-273]. Plerixafor is a CXCR4 antagonist undergoing 
trials for advanced CRC (NCT02179970). Although not 
specifically tested in DM, a selective CXCR4 antagonist 
AMD3465 decreased mineralocorticoid-dependent renal 
fibrosis in mice [274] and targeting CXCR4 prevented 
glomerular injury associated to high podocyte CXCR4 
expression in mice [275].

JAK2 targeting prevented high-glucose-induced 
fibrogenic responses in renal cells and prevented kidney 
and vascular injury in experimental diabetes [276-279]. 
An ongoing phase II RCT is testing the JAK1 and JAK2 
inhibitor baricitinib as add-on to RAS blockade in patients 
with DKD (NCT01683409) while another will explore the 
JAK2/FLT3 inhibitor pacritinib in patients with refractory 
CRC and KRAS mutations (NCT02277093).

UNANSWERED QUESTIONS AND THE 
WAY FORWARD

Table 5 summarizes the key points of the review. 
The association between DM and CRC is recognized by 
scientific consensus [4]. However, a number of issues 
require more detailed studies (Table 6).

An overview of T2DM and CRC country-based 
prevalence/incidence suggests that environmental, 
development-associated or other factors may interact 
with the T2DM milieu to increase the risk of CRC. 
Identification of these putative factors and whether 
DM associates with increased CRC risk in different 
cultures and countries may provide further insights into 
mechanisms underlying the relationship between DM and 
cancer.

The case for a causal association should be 
strengthened by the characterization of the DM-initiated 
molecular pathways involved. This information may 
also lead to the development of specific preventive 
or therapeutic approaches. Studies should address the 
relationship between DM-associated CRC and the 
development of other DM-associated complications, i.e., 
whether there is a patient profile prone to develop any 
DM-related complications. If this were the case, tools 
should be developed for the early identification of such 
patients. Urine proteomics holds promise in this regard, 
as it allows identification of DKD at earlier stages than 
currently available methods and predicts progression [280, 
281] and may also be useful for the diagnosis of cancer 
outside the urogenital system [282]. Early identification 
of the subpopulation of DM patients at highest risk for 
developing cancer or classical complications may allow 
enrollment in trials assessing the efficacy of drugs 
targeting shared molecular mechanisms for prevention 
and/or therapy. Additional systems biology approaches 
may also contribute to define molecular pathways leading 
to DM-associated cancer or target organ damage. The most 
promising approaches should undergo clinical trial testing, 
ideally in high-risk populations or in early disease stages 
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identified by the study of specific molecular signatures.
Research is needed to define the optimal therapeutic 

approach for the patient with T2DM and CRC. Studies 
of the impact of different antidiabetic agents on cancer 
incidence are marred by the fact that both sides of the 
comparison may theoretically modulate cancer incidence. 
Additionally, there are potential biases related to the 
indication of the specific agent. These research efforts 
have the potential to decrease the incidence of DM-
associated complications and to improve outcomes. 
The DiabetesCancerConnect Consortium funded by the 
Spanish Government is attempting to answer some of 
these questions.
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 NF-κB- Nuclear factor kappa-light-chain-enhancer 
of activated B cells
 ERK- Extracellular Signal-regulated Kinase
CTGF- Connective tissue growth factor
TGF-beta- Transforming growth factor beta
CXCR4- Chemokine Receptor type 4
CCL2- Chemokine Ligand 2.
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