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ABSTRACT
As one of the most commonly diagnosed cancers worldwide, colorectal 

adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is 
an increase among younger patients under 50. Routine screenings are recommended 
for this age group to improve early detection. The multifactorial etiology of colorectal 
cancer consists of both genetic and epigenetic factors. Recently, studies have shown 
that the development and progression of colorectal cancer can be attributed to 
aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key 
role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. 
Given the rapid accumulating knowledge in the field, an updated review regarding 
microRNA and ROS in colorectal cancer is necessary. An extensive literature search 
has been conducted in PubMed/Medline databases to review the roles of microRNAs 
and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral 
blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic 
approaches focusing on microRNA and ROS in colorectal cancer treatment is also 
delineated. This review aims to summarize the newest knowledge on the pathogenesis 
of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and 
therapeutic techniques.

INTRODUCTION

Over one million new cases of colorectal cancer 
are identified annually, making it the third most common 
cancer worldwide [1]. It is largely diagnosed in individuals 
older than 50 years of age. Thus, standard colonoscopy is 
recommended starting at the age of 50 to improve early 
screening and detection [2]. The multifactorial etiology of 
colorectal cancer consists of both genetic and epigenetic 
factors. The hereditary syndromes comprise familial 
adenomatous polyposis, Lynch syndrome (hereditary 
nonpolyposis colon cancer), MYH-associated polyposis, 
and juvenile polyposis. Inflammatory bowel disease is also 
considered a risk factor [3, 4]. Moreover, inappropriate 
diets and lifestyles are known to associate with increased 
colorectal cancer incidence. Some risk factors include 
high intake of red meat/processed food, heavy alcohol 

consumption, obesity, smoking, and physical inactivity. 
It is suggested that the development of colorectal cancer 
can be prevented by regular exercise and proper diets [5, 
6]. The progression of normal colonic mucosa to invasive 
colorectal cancer requires multiple steps of molecular 
alterations. The estimated time interval of malignant 
transformation from normal mucosa to adenomatous polyp 
and invasive adenocarcinoma is 5-10 years [7]. Five year 
survival rates for Tumor Node Metastasis (TNM) stages 
I to IV colorectal cancer are 90%, 80%, 60%, and 8%, 
respectively [8].

MicroRNA is encoded within the genomes of a 
variety of eukaryotes, including over 2,500 human mature 
microRNA sequences in the miRBase database [9-11]. 
MicroRNAs are evolutionarily conserved, single-stranded 
noncoding RNA molecules of 19-24 nucleotides, which 
can suppress gene expression at posttranscriptional 
levels. MicroRNAs concurrently modulate the expression 
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Table 1: Dysregulated microRNAs in tumor tissues in patients with colorectal cancer

Dysregulation Number of 
studies microRNAs and references

Upregulated

17 miR-21[44, 45, 64, 65, 71, 75-79, 82, 84, 116-120]
12 miR-31[45, 64-71, 77, 78, 116]
9 miR-135b[45, 65, 70, 71, 77, 83, 93, 116, 121]
8 miR-20a[66, 71, 75, 76, 78, 79, 94, 95]; miR-183[45, 66, 67, 70, 71, 77, 78, 116] 
7 miR-18a[66, 70, 78, 95, 121-123]

6 miR-19a[71, 77, 78, 95, 116, 121]; miR-96[65, 70, 77, 78, 93, 116]; miR-181b[76, 78, 79, 117, 
124, 125] 

5 miR-92[66, 67, 69, 77, 94]; miR-106a[75-79] ; miR-203[67, 76-79] 

4
miR-17[67, 71, 95, 122]; miR-17-5p[66, 75, 77, 78]; miR-19b[71, 78, 95]; miR-20[67, 77, 116, 
126]; miR-25[67, 77, 78, 122]; miR-182[70, 71, 77, 78]; miR-200c[69, 77, 124, 125]; miR-224[70, 
77, 78, 121]

3 miR-29a[77, 78, 120]; miR-93[67, 71, 78]; miR-106b[78, 121, 122]; miR-130b[71, 77, 78]; miR-
142-3p[69, 71, 77]; miR-191[75, 77, 125]; miR-221[71, 75, 127];

2

miR-15a[71, 77]; miR-15b[77, 125]; miR-17-3p[70, 77]; miR-29b[78, 120]; miR-32[70, 75]; miR-
34a[77, 78]; miR-92a[44, 122]; miR-95[77, 78]; miR-98[71, 77];miR-105[77, 93]; miR-107[75, 
77]; miR-135a[67, 77]; miR-148a[71, 77]; miR-182*[70, 77];miR-188[69, 70]; miR-200a*[77, 
94]; miR-210[69, 77]; miR-223[67, 75];miR-301b[45, 121]; miR-320[77, 94]; miR-324-5p[71, 
77]; miR-424[121]; miR-493[45, 93]; miR-513a-5p[82, 120]; miR-552[70, 93]; miR-584[70, 93]; 
miR-let-7g[77, 124]

1

miR-1[120]; miR-7[93]; miR-10a[77]; miR-19b-1[95]; miR-24-1[75]; miR-27a[77]; miR-
29b-2[75]; miR-30b[120]; miR-30c[75]; miR-33[70]; miR-92a-1[95]; miR-103[77]; miR-
122a[77]; miR-128a[77]; miR-128b[75]; miR-133b[67]; miR-134[77]; miR-135b*[83]; miR-
141[77]; miR-142-5p[77]; miR-145[120]; miR-146[77]; miR-147[77]; miR-150[75]; miR-151[77]; 
miR-154*[77]; miR-155[75]; miR-181a[77]; miR-181c[77]; miR-183*[83]; miR-186[77]; miR-
191*[94]; miR-194[77]; miR-197[77]; miR-199a-3p[120]; miR-200a[69]; miR-200b[77]; miR-
213[77]; miR-214[71]; miR-215[77]; miR-216[77]; miR-219[77]; miR-222[77]; miR-296-3p[93]; 
miR-301[77]; miR-302a[94]; miR-330[77]; miR-338[77]; miR-338-3p[120]; miR-339[77]; miR-
362[45]; miR-370[77]; miR-373[77]; miR-374[77]; miR-382[45]; miR-432*[94]; miR-451[120]; 
miR-483-3p[93]; miR-492[94]; miR-494[82]; miR-500[82]; miR-503[70]; miR-510[94]; miR-
512-5p[94]; miR-513[94]; miR-513b[82]; miR-513c[82]; miR-526c[94]; miR-527[94]; miR-542-
5p[70]; miR-549[93]; miR-582-5p[71]; miR-592[93]; miR-622[128]; miR-708[45]; miR-766[83]; 
miR-886[45]; miR-892b[82]; miR-938[128]; miR-1238[128]; miR-1247[93]; miR-1260[120]; 
miR-1269[93]; miR-1290[128]; miR-1827[93]; miR-3144-3p[93]; miR-3180-3p[93]; miR-
4326[93]; miR-HS-29[70]; miR-HS-287[70]; miR-let-7f[71]

Downregulated

14 miR-145[45, 64, 66-69, 77, 78, 82, 83, 93, 94, 116, 129]
10 miR-143[64, 66, 67, 69, 78, 82-84, 129, 130]
8 miR-1[45, 70, 71, 78, 82, 93, 128, 131]
7 miR-195[77, 78, 82, 83, 93, 105, 132]
6 miR-378[70, 78, 82, 83, 93, 121]

5 miR-133a[45, 70, 71, 78, 82]; miR-133b[45, 82, 83, 116, 128]; miR-139-5p[45, 71, 82, 83, 93]; 
miR-192[67, 69, 82, 83, 133]; miR-215[67, 71, 82, 83, 133]

4 miR-30a-3p[70, 77, 78, 116]; miR-375[70, 71, 83, 134]; miR-422a[71, 78, 83, 93]

3
miR-9[45, 70, 72]; miR-10b[70, 78, 82]; miR-16[67, 83, 135]; miR-26b[67, 83, 94]; miR-30b[82, 
83, 94]; miR-30c[78, 82, 83]; miR-138[45, 83, 128]; miR-139[70, 77, 78]; miR-194[82, 83, 133]; 
miR-363[70, 82, 93]; miR-378*[82, 83, 121]; miR-490-3p[82, 93, 128]; miR-497[70, 78, 82]; 
miR-let-7a[67, 136, 137]

2
miR-9*[70, 82]; miR-28-3p[71, 120]; miR-30a*[82, 83]; miR-30a-5p[70, 78]; miR-30e[82, 83]; 
miR-101[83, 94]; miR-125b[69, 77]; miR-137[70, 82]; miR-149[71, 77]; miR-150[120, 138]; miR-
192*[82, 83]; miR-204[45, 71]; miR-320a[139]; miR-328[70, 116]; miR-365[82, 140]; miR-486-
5p[83, 93]; miR-551b[70, 93]; miR-598[82, 83]; miR-642[70, 71]; 

1

miR-1[120]; miR-7-1*[82]; miR-20b[70]; miR-22[141]; miR-23b[120]; miR-24-1*[82]; miR-
26a[83]; miR-27b[82]; miR-28-5p[82]; miR-30a[82]; miR-30e*[83]; miR-31[82]; miR-31*[82]; 
miR-34c[142]; miR-34a[142]; miR-99a[83]; miR-100[83]; miR-113; miR-122[82]; miR-124a[116]; 
miR-125a[78]; miR-126[143]; miR-127-3p[83]; miR-129[116]; miR-133[117]; miR-139-3p[120]; 
miR-140-5p[83]; miR-143*[82]; miR-144[82]; miR-144*[83]; miR-147[70]; miR-186[83]; miR-
190[83]; miR-191[67]; miR-193b[69]; miR-196a[67]; miR-200b[83]; miR-203[118]; miR-212[69]; 
miR-214[69]; miR-218[82]; miR-299-5p[71]; miR-342-3p[83]; miR-345[144]; miR-362-3p[82]; 
miR-378c[93]; miR-381[145]; miR-383[93]; miR-411[83]; miR-422b[78]; miR-424[120]; 
miR-451[83]; miR-455[94]; miR-484[94]; miR-485-3p[71]; miR-486[70]; miR-506[146]; miR-
511[70]; miR-582-5p[82]; miR-590-5p[82]; miR-622[147]; miR-628-3p[93]; miR-628-5p[93]; 
miR-636[83]; miR-650[70]; miR-885-5p[45]; miR-886-3p[71]; miR-892b[120]; miR-1288[120]; 
miR-1297[93]; miR-1305[120]; miR-3151[93]; miR-3163[93]; miR-3622a-5p[93]; miR-3656[93] 
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levels of dozens or more messenger RNA (mRNA), and 
any given mRNA sequence may be targeted by several 
different microRNAs [9, 10, 12]. To date, microRNAs 
have been predicted to target and control the expression 
of at least 30% of all protein-coding genes, and they 
participate the regulation of nearly every cellular process 
studied so far [13]. Specifically, microRNAs appear to be 
involved in multiple pathophysiological networks and in 
the pathogenesis of a broad-spectrum of human diseases, 
including cancer and inflammation [14-21]. The greater 
stability of microRNAs relative to mRNAs supports 
the use and development of microRNAs as promising 
targets in diagnostic and therapeutic applications of 
various diseases [22]. Indeed, plasma microRNAs have 
been used for early detection of cancer such as colorectal 
cancer, which is essential in improving prognosis [23, 
24]. MicroRNAs also demonstrate high sensitivity and 
specificity in cancer diagnosis, further confirming their 
potential as biomarkers [24]. 

Over the past 15 years, researchers have identified 
distinct aberrant microRNA expression profiles in 
tumor tissue, peripheral blood, and fecal samples of 
colorectal cancer patients, suggesting the critical roles 
that microRNAs play in the pathogenesis of oncogenic 
transformation. In addition, reactive oxygen species 
(ROS), serving as important cell signaling molecules, 
are involved in the progression of cancer cells as well 
as in microRNA expression. Elevated ROS levels and 
accumulated mutations due to oxidative DNA damage are 
prominent in cancer cells, favoring the survival and growth 
of cancer [25, 26]. Particularly in colorectal cancer, the 
irritated intestines and altered gut microbiota composition 
can contribute to additional production of intestinal ROS. 
Indeed, a marked increase in oxidative stress markers such 
as 8-oxodG (an indicator of DNA oxidation) was observed 
in colorectal cancer patients, suggesting the potential role 
of ROS in colorectal cancer [27]. Growing evidence from 
cancer studies has revealed that microRNA expression 
alters in response to ROS exposure [28]. In addition to 
the ROS-mediated tumor progression, it is likely that ROS 
are also involved in the microRNA-related mechanisms 
of promoting colorectal carcinogenesis. Understanding 
the interplay between microRNAs and ROS is paramount 

since both have been shown to be dysregulated in cancers. 
Herein, the review focuses on the current understanding 
of microRNAs and ROS in the pathogenesis and potential 
diagnostic and therapeutic implication in colorectal cancer. 

ABERRANT MICRORNA PROFILES 
AND ROS LEVELS IN COLORECTAL 
CANCER

MicroRNA profiles in colorectal tissues, plasma, 
and stool samples

Nearly 400 dysregulated microRNAs have been 
identified in colorectal cancer in the past decade, yet 
minimal consistency of microRNA expression profile is 
reported. Despite the striking potential of microRNAs as 
biomarkers of cancer, the transition of microRNAs from 
bench to clinical use remains challenging as the detection 
techniques including the commonly used qRT-PCR are 
needed to be optimized. For example, the selection of 
suitable reference genes for data normalization in the 
qRT-PCR analysis is highly subjective, which may lead 
to inconsistency among different studies. The intrinsic 
properties of microRNAs, such as a high degree of 
sequence similarity within the same family, tissue-
specific expression, and small-quantity, also cause certain 
limitations of these detection methods [24]. In addition, 
by far a considerable amount of results in the literature 
is derived from retrospective cohorts, thereby limiting 
the prognostic significance of microRNAs and possibly 
contributing to some inconsistent results. 

As listed in Table 1, aberrantly elevated microRNAs 
have been frequently found in cancerous colon tissues. 
Overexpressed miR-31 is commonly observed in 
colorectal tumor tissues, and is associated with tumor 
prognosis [29]. Given the variable and diverse anatomic 
locations of colorectal cancer, treatment management, 
tissue processing, cohorts of normal control, and analytical 
methods, which all might impact results, it is not surprising 
that the findings are not consistent. Similarly, there is no 
established general consensus on the normalization of 

Table 2: Dysregulated microRNAs in sera or plasma samples in patients with colorectal cancer

Source Dysregulation Number of 
studies microRNAs and references

Sera

Upregulated

3 miR-92a[85, 148, 149]; miR-221[149-151]
2  miR-21[45, 152]; miR-210[85, 149] 

1
miR-19a[149]; miR-22*[149]; miR-24[149]; miR-92[153]; miR-125a-5p[149]; miR-
134[150]; miR-141[154]; miR-146a[150]; miR-320a[85]; miR-376a[149]; miR-378[85]; 
miR-423-5p[85]; let-7e[149] ; miR-222[150]; miR-423-5p[85]

Downregulated

2 miR-143[85, 89]

1
miR-10a[149]; miR-103[85]; miR-106a[85], miR-107[85]; miR-141[149]; miR-145[96]; 
miR-150[149]; miR-151-5p[85]; miR-188-3p[149]; miR-192[149]; miR-199a-3p[85]; 
miR-224*[149]; miR-382[85]; miR-425*[149]; miR-495[149]; miR-572[149]; miR-
601[149]; miR-720[149]; miR-760[149]; let-7a[149]; let-7d[85]
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circulating microRNAs despite the distinct microRNA 
expression profiles observed in sera or plasma of patients 
with colorectal cancer (Table 2). Among these highly 
expressed circulating microRNAs, several are found in 
the peripheral blood mononuclear cells and others are 
known to be secreted by the tumor tissues. Indeed, miR-
21 is abundantly present in colorectal tumor tissues and is 
secreted to the circulation. Levels of miR-21 in the serum 
sample decrease after surgical removal of primary tumor, 
suggesting the need of establishing an in-depth evaluation 
of circulating microRNAs for diagnosis [30]. Fecal occult 
blood testing is a useful option for early detection, but the 
sensitivity is low [31]. So far, less than 40% of colorectal 
cancers are detected in the early stage [32]. Therefore, 
there is a strong demand for the development of accurate 
and noninvasive markers. Given the continuous releasing 
of colonic epithelia into the lumen, detecting microRNA 
in fecal samples from colorectal cancer patients is a 
promising tool for the early diagnosis of colorectal cancer. 
As listed in Table 3, altered microRNA expression profiles 
are found in stool samples from patients with colorectal 
cancer. Among them, miR-21, miR-106a, miR-143, and 
miR-145, have been found by at least two independent 
groups. 

ROS in colorectal cancer

ROS, including superoxide (O2
•-), hydroxyl radical 

(•OH) and hydrogen peroxide (H2O2), are generated under 
physiological conditions and serve as important mediators 
in multiple cell signaling pathways. Despite their 
importance, excessive ROS can oxidize major cellular 
components (e.g., DNA, lipids, and proteins), resulting 
in irreversible damages [33]. Normally, the cellular levels 
of ROS are carefully monitored by the body’s natural 
antioxidant defense system in order to maintain redox 
homeostasis. When such homeostasis is disrupted (termed 
oxidative stress), either due to ROS overproduction or 
compromised antioxidant function, it can give rise to 
pathological conditions that ultimately leads to diseases 
[34, 35]. Compared to normal cells, the basal level of 
ROS has been shown to elevate in cancer cells, which 
is mainly attributed to increased metabolic activity and 
altered cellular signaling [26]. Originating from the 
epithelium in the intestine, colorectal cancer cells have a 
high metabolic rate and often divide rapidly, potentially 

causing DNA oxidation [27]. These ROS-induced genetic 
mutations as well as transcription factor modulations (e.g., 
hypoxia inducible factor-1) are crucial in the regulation of 
gene expression relative to cancer cell survival, growth, 
invasion, and metastasis, contributing to all three stages 
of carcinogenesis (initiation, promotion and progression) 
[25, 27]. Cancer cells are normally accompanied with 
strong antioxidant defenses, generating a powerful ROS 
scavenging capacity that can adapt to a highly oxidized 
environment and avoid apoptosis [25, 26]. Sustained and 
excessive ROS promote oncogenic activity and genomic 
instability, contributing to carcinogenesis [28]. The 
association between colorectal cancer and oxidative stress 
has been identified in the past decades. Additionally, the 
increased levels of oxidative stress biomarkers, such as 
8-oxodG in DNA, suggest that the ROS are markedly 
elevated in the whole blood of patients with colorectal 
cancer [27]. 

In a study of primary rat colonocytes, Oberreuther-
Moschner et al. observed that cells from the lower aspect 
of colon crypts, mostly proliferating cells, are more 
sensitive to ROS-H2O2 damage [36]. The stem/progenitor 
cells’ capacities of self-renewal and differentiation are 
also largely influenced by varied redox environments. 
Therefore, these cells are putative targets for colon 
cancer treatment [27]. Recent efforts have focused on 
the development of effective therapies that combat 
cancer cells, by facilitating the induction of apoptosis 
via drug-induced ROS. These methods include various 
chemotherapeutic/anti-cancer drugs [25]. In contrast, 
lowering oxidative stress or increasing the total antioxidant 
capacity through a vegetable- and fruit-rich diet has shown 
to decrease the potential risk of colorectal cancer. Western 
diets that commonly consist of red meat, which contains 
high quantity of iron, are not favorable since heme iron 
promotes cell transformation and oxidative DNA damage 
by exacerbating oxidative stress in the body [25]. Acting 
as a double-edge sword, intracellular ROS levels play 
critical roles in determination of the fate for cancer cells. 
As such, the survival of cancer cells in the presence of 
either very high or low ROS levels is not favorable, and 
therapies targeting redox disruption should be carried out 
with cautions [33]. 

Table 3: Dysregulated microRNAs in fecal samples in patients with colorectal cancer

Source Dysregulation Number of 
studies microRNAs and references

Feces
Upregulated

4 miR-21[44, 86, 155, 156]
2 miR-106a[155, 157]

1 miR-18a[156]; miR-19a[156]; miR-20a[86]; miR-92[86]; miR-92a[44]; miR-96[86]; miR-
106a[86]; miR-135a[156];  miR-135b[156]; miR-144[158]; miR-203[86]; miR-326[86]

Downregulated
2 miR-143[86, 87]; miR-145[86, 87]
1 miR-16[86]; miR-125b[86]; miR-126[86]; miR-320[86]; miR-484-5p[86]
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Table 4: Colorectal cancer-associated microRNAs and their validated gene targets 
MicroRNA Confirmed gene target References

Oncogene

miR-9 E-cadherin [159]

miR-17 RND3 [126]

miR-18a ATM [160]

miR-19a TF [161]

miR-21 PDCD4, PTEN, RASA1, Rho B, TGFβR2 [54, 56-63]

miR-26b E3 ubiquitin ligase DIP1 [162]

miR-30 GRP78 [163]

miR-31 RASA1 [73]

miR-32 PTEN [164]

[44, 165-169]

miR-92a PTEN [170]

miR-95 SNX1 [171, 172]

miR-106a RB1, TGFβR2 [80, 81]

miR-135a Metastasis suppressor 1 [173]

miR-191 C/EBPβ [174]

miR-214 FGFR1 [175]

miR-224 p21, MBD2, PHLPP1, PHLPP2, SMAD4 [176-179]

miR-499-5p FOXO4, PDCD4 [180]

miR-675 RB [181]

Tumor suppressor

miR-7 YY1 [182]

miR-16 CDK6, cyclin D1, survivin [135, 183]

miR-22 p21 [184]

miR-28-5p CCND1, HOXB3 [185]

miR-33a Pim-1 [186 ]

miR-34 Axin2, snail1 [187, 188 ]

miR-34a PDGFRα, LDHA, MDM4, SIRT1 [44, 165-167, 169]

miR-93 CCNB1, ERBB2, Smad 7 [189 , 190]

miR-100 Lgr5 [191]

miR-124 iASPP, STAT3 [114, 192]

miR-126 CXCR4, phosphatidylinositol 3-kinase [193-195]

miR-127 BCL6 [196]

miR-133b TBPL1 [197]

miR-139 RAP1B, IGF-IR [198, 199]

miR-139-5p IRS1, Notch1, [200]

miR-143 DNMT3A, HK2, IGF-IR, MACC1 [89-92]

miR-144 ROCK 1 [201]

miR-145 DFF45, FLI1, IRS1, N-RAS, PAK4, p70S6K1, paxillin,  STAT1, YES [96, 98-103]

miR-148a, b Bcl-2, CCK2R [202, 203]

miR-181a
miR-199a-5p GRP78 [163]

miR-195 Bcl-2 [105]

miR-203 Hakai [204]

miR-204 TFAM [205]

miR-215 DTL [206]

miR-218-5p BMI1 [207]

miR-221 MBD2 [178]

miR-320a β-catenin, neuropilin 1 [139, 208]

miR-339-5p PRL-1 [209]

miR-342 DNMT1 [210]

miR-362-3p E2F1, PTPN1, USF2 [211]

miR-365 Bcl-2, cyclin D1 [140]

miR-375 PIK3CA [212]

miR-381 LRH-1 [145]

miR-455 RAF1 [213]

miR-497 IGF-IR [214]

miR-506 EZH2 [146]

miR-622 K-Ras [147]

miR-627 JMJD1A [215]

miR-1915 Bcl-2 [216]

Let-7 K-Ras, MMP11, PBX3 [217]
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Interaction of microRNAs and ROS

Since the dysregulation of microRNAs and ROS 
are both observed in colorectal cancer, it is essential 
to understand their potential role of interaction in 
relation to colorectal carcinogenesis and progression. 
Among those microRNAs presented in our tables, 
miR-210 overexpression has been shown to increase 
ROS production in colorectal cancer cells [37, 38]. 
The augmented ROS can be attributed to compromised 
mitochondrial activity as miR-210 inhibits mitochondrial 
iron-sulfur cluster scaffold homologue and the assembly 
iron-sulfur cluster [37, 39]. MiR-210 also induces ROS 
generation under hypoxic condition, leading to a poor 
prognosis in colorectal cancer [37, 38]. Furthermore, 
Tagscherer et al. observed miR-210-induced colorectal 
cancer apoptosis. However, the roles of elevated ROS 
and miR-210 levels in the regulation of apoptosis and 
their biological relevance in colorectal cancer have not 
be thoroughly elucidated and require further investigation 
[37]. Additionally, overexpressed miR-141 and miR-
200a can modulate oxidative stress by targeting p38a and 
potentiate tumor growth [28]. 

Accumulating studies reveal that ROS can alter 
the expression of several microRNAs. For example, 
exogenous H2O2 exposure has led to the upregulation of 
miR-21 while lowered the expressions of miR-27a*, miR-
27b*, miR-29b, and miR-328 [28]. It has been shown that 
ROS regulate microRNA expression through microRNA 
biogenesis, transcription factors, and epigenetic alterations. 
In addition, microRNA response can be abrogated when 
ROS are scavenged [28]. Studies indicated that ROS 
upregulate miR-21 expression, actively involving in the 
initiation of cancer metastasis [40, 41]. MiR-21 plays an 
essential role in many aspects of colorectal carcinogenesis 
as its upregulation has been found in the tumor tissues, 
serum, and stool of patients with colorectal cancer (Table 
1, 2, 3). Although the targets of miR-21, including several 
tumor suppressors, have been successfully identified, 
the continuation of extensive research on this matter is 
essential to elucidate the diverse mechanisms of miR-21 

in the cancer development [42, 43]. It is suggested that 
one of the potential mechanisms utilized by miR-21 to 
promote tumorigenesis is through the alteration of cellular 
ROS levels [43]. In the study of Zhang et al., miR-21 has 
been shown to suppress SOD3 directly or SOD2 indirectly 
by reducing TNF-α production, thereby inhibiting the 
dismutation of O2

•- to the less damaging molecule of H2O2 
[43]. In the miR-21 overexpressing cells that are under 
irradiation (IR), the accumulated O2

•- may be involved 
in the IR-induced cell transformation. Along with other 
targets of miR-21, such modulations of ROS levels 
contribute to the carcinogenesis [43]. Although miR-21-
ROS interaction has not been documented in colorectal 
cancer yet, further research may be necessary to explore 
towards this direction, and perhaps with other microRNAs, 
given their tight association with the colorectal cancer. 

Certain microRNAs, such as miR-34a, have been 
shown to inhibit ROS synthesis by silencing the genes 
that code for mitochondrial complexes and other ROS-
producing enzymes, contributing to apoptosis resistance. 
The restoration of these microRNAs is suggested to 
sensitize the tumor in response to IR-induced oxidative 
effects [28]. Clearly, ROS and microRNAs are capable 
of interacting synergistically or antagonistically to 
influence the complex and multiphase development of 
cancer. However, limited effects have been observed in 
the application of antioxidants or microRNAs in cancer 
treatment, and the functional consequences of individual 
microRNA in colorectal cancer patients are still largely 
unknown. Further exploration on the ROS-microRNAs 
network may provide powerful therapeutic potential for 
colorectal cancer as microRNAs can be utilized to enhance 
ROS-induced apoptosis or alleviate ROS-mediated 
oxidative stress [28].

MICRORNA AS A POTENTIAL CARCINOGENIC 
DRIVER

The multifactorial etiology of colorectal cancer 
involves both genetic and epigenetic alterations 
of proto-oncogenes and tumor suppressor genes, 

Abbreviation: ARL2, ADP-ribosylation factor-like protein 2; ATM, ataxia telangiectasia mutated; BIM, BCL-2-interacting 
mediator of cell death; CCK2R, cholecystokinin-2 receptor; CCND1, cyclin D1; COX-2, cyclooxygenase-2 ; DAPK, death-
associated protein kinase; DFF45, DNA fragmentation factor-45; DNMT1, DNA methyltransferase 1; DNMT3A, DNA 
methyltransferases 3A; DTL, denticleless protein homolog; FGFR1, fibroblast growth factor receptor 1; FLI1, friend leukemia 
virus integration 1; HIF-2α, hypoxia-inducible factor-2α; HK2, hexokinase 2; iASPP, apoptosis-stimulating protein of p53; 
IGF-IR, type I insulin-like growth factor receptor; IRS2, insulin receptor substrate 2; LDHA, lactase dehydrogenase A; Lgr5, 
leucine-rich repeat-containing G protein-coupled receptor 5; LRH-1, liver receptor homologue 1; KLF4, krüppel-like factor 
4; K-Ras, Kirsten rat sarcoma; JMJD1A, Jumonji domain containing 1A; MACC1, metastasis-associated in colon cancer-1; 
MAPK, mitogen-activated protein kinase; NIRF, Np95 ICBP90 ring finger; PDCD4, programmed cell death 4; PHLPP, 
PH domain leucine-rich-repeats protein phosphatase; PI3K, phosphatidylinositol-3 kinase; PIAS3, the protein inhibitor of 
activated STAT3; PIK3CD, phosphoinositide 3-kinase catalytic subunit delta; PRL-1, phosphatases of regenerating liver-1; 
PDGFRα, platelet-derived growth factor receptor α; PPARγ, peroxisome proliferatior-activated receptor γ; PTEN, phosphatase 
and tensin homologue; RAF1, proto-oncogene serine/threonine-protein kinase; RASA1, RAS p21 GTPase activating protein 1; 
Rho B, ras homolog gene family, member B; ROCK1, Rho-associated coiled-coil containing protein kinase 1; SNX1, sorting 
nexin 1; TBPL1, TATA-box binding protein like 1; TF, tissue factor; TFAM, mitochondrial transcription factor A; YY1, Yin 
Yang 1
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which leads to complicated aspects of tumorigenesis, 
including cell proliferation, apoptosis, genomic stability, 
angiogenesis, metastasis and chemoresistance. Increasing 
evidence supports a specific and important role of 
noncoding genomic sequences, including microRNA 
in carcinogenesis. MicroRNAs exert various biological 
functions in tumorigenesis by altering the expression 
of oncogenes and/or tumor suppressors. MicroRNAs 
generally regulate gene expression by binding to the 3′ 
untranslated region (UTR) of their target mRNAs to 
repress translation [9, 10, 12]. Computational methods 
play an essential role in predicting proposed targets. In 
the past decade, multiple target genes of microRNAs in 
colorectal carcinogenesis have been proposed, validated, 
and confirmed in variable signaling pathways (Table 4). 
Here we focus on the microRNAs with the best evidence 
as drivers of carcinogenesis. 

Oncogenes

miR-21

Oncogenic miR-21 is one of the most extensively 
studied microRNAs. Its expression is often upregulated 
in tumor tissue, sera, and stool samples from patients 
with colorectal cancer [44-46]. Remarkably, serum 
miR-21 has been shown to be a promising biomarker of 
colorectal cancer for early detection and prognosis [30]. 
The expression level of miR-21 is associated with TNM 
staging, recurrent-free cancer-specific survival, and overall 
survival [46, 47]. In addition, the expression of miR-21 is 
decreased after chemotherapy, which is related to tumor 
response [48]. Several studies have shown that miR-
21 overexpression significantly increases the resistance 
of tumor cells to 5-fluorouracil and radiation in colon 
cancer cells [49]. Furthermore, the knockdown of miR-
21 reversed these effects on tumor cells by increasing the 
sensitivity to 5-fluorouracil chemotherapy [49, 50]. One 
study suggests that miR-21 mediates resistance through 
the regulation of Sprouty 2 protein, a tumor suppressor, 
which enhances the cytotoxic effect of 5-fluorouracil 
in colon cancer cells [51]. These findings indicate that 
targeting miR-21 could enhance the sensitivity of cancer 
cells to chemoradiotherapy.

MiR-21 participates in many facets of tumorigenesis 
including cell proliferation, apoptosis, tumor stemness, 
and invasion [52-55]. Transforming growth factor β 
receptor 2 (TGFβR2), programmed cell death 4 (PDCD4), 
Rho B, PTEN, and RAS p21 GTPase activating protein 1 
(RASA1) are the validated target genes by miR-21 (Figure 
1) [54, 56-63]. MiR-21 overexpression is associated with 
induction of tumor stemness through the downregulation 
of TGFβR2 and the augmentation of β-catenin TCF/LEF 
signaling pathway [54]. As a tumor suppressor, PDCD4 
inhibits tumor progression and neoplastic transformation, 
while miR-21 restrains the functions of PDCD4 by directly 

suppressing its expression [57]. MiR-21 also regulates 
RAS signaling pathway to affect colon cancer cell 
behaviors via direct effect on RASA1 and Rho B (Figure 
1) [58, 59]. In addition, miR-21 regulates the biological 
behavior of human colorectal cancer cells through PTEN/
PI-3 K/Akt signaling pathway [60]. Taken together, these 
findings suggest miR-21 as a carcinogenesis instigator 
and potential therapeutic target for colon cancer treatment 
worthy of further investigation. 
miR-31

Uniformly elevated expression of miR-31 is also 
observed in tumor tissue of colorectal cancer patients 
[64-70]. The expression level of miR-31 is positively 
correlated with the tumor TNM staging [65, 71]. MiR-31 
is involved in cell proliferation and apoptosis by activating 
RAS signaling pathway through the inhibition of its target 
gene, RASA1, thereby enhancing cancer cell growth 
(Figure 1) [72, 73]. Functional analysis has demonstrated 
that an inhibitor of miR-31 has an anti-tumor effect [74]. 
Thus, miR-31 may serve as a diagnostic biomarker and a 
promising therapeutic target in colon cancers.
miR-106a

As an oncogene, miR-106a is upregulated in 
colorectal cancer, which is also associated with tumor 
metastasis [75-80]. Retinoblastoma 1 (RB1) and TGFβR2 
are validated direct target genes of miR-106a [80, 81]. 
RB1, an important tumor suppressor gene involved in cell 
cycle, is directly regulated by miR-106a [81]. In addition, 
miR-106a is highly expressed in metastatic colon cancer 
cell lines that can enhance tumor migration and invasion 
by modifying TGFβR2 directly (Figure 1) [80].

TUMOR SUPPRESSOR GENES

miR-143

As a tumor suppressor, miR-143 is downregulated 
in tumor tissue, sera, and fecal samples of patients with 
colorectal cancer [82-87]. Its expression is also decreased 
in the front-specific tumor invasion in liver metastasis 
[88]. Reduced expression of miR-143 is associated with 
aggressive mucinous phenotype and is strongly correlated 
with clinical stage and nodal metastasis [71, 89]. The 
augmented postchemotherapy level of miR-143 is thought 
to be associated with a better prognosis [48]. 

Hexokinase 2 (HK2), metastasis-associated in 
colon cancer-1 (MACC1), insulin-like growth factor-I 
receptor (IGF-IR), KRAS, and DNA methyltransferases 
3A (DNMT3A) are the confirmed target genes of miR-
143 [89-92]. Studies have shown that HK2 is involved in 
glucose metabolism in colon cancer cells [90]. MACC1 
has been identified to express highly in colorectal cancer 
cells and promotes tumor metastasis through activating a 
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metastasis-inducing HGF/MET signaling pathway [91]. 
MiR-143 plays a role in suppressing colorectal cancer 
cell growth via directly inhibiting KRAS [69]. IGF-IR, a 
known oncogene, has expression levels that are inversely 
correlated with miR-143 expression in human tumor 
tissues (Figure 2). In an IGF-IR-dependent manner, miR-
143 overexpression has been shown to boost colorectal 
cancer chemosensitivity to oxaliplatin treatment [89]. In 
addition, specific changes in DNA methylation patterns 
are associated with human cancers. Methylation changes 
to the genome are controlled by DNA methyltransferases 
(DNMT). MiR-143 specifically regulates DNMT3A that 
reflects its role in the regulation of DNA methylation 
(Figure 2) [92]. Taken together, through modulating 
multiple targets, miR-143 provokes potent effects on 
cancer cell growth and tumorigenesis. 
miR-145

MiR-145 is a commonly studied tumor suppressor 
microRNA in colorectal cancer, which is downregulated 

in tumor tissue, sera, and fecal samples [29, 83, 87, 93-
96]. Its decreased expression is even present in the front-
specific tumor invasion in liver metastasis [88]. Similar to 
miR-143, the increased postchemotherapy level of miR-
145 is predictive of a better prognosis [48].

Reduced expression of miR-145 has been observed 
in the non-mutated adenomatous polyposis coli, 
suggesting its role in the initiation of colorectal tumor 
development [97]. PAK4, N-RAS, IRS1, paxillin, FLI1, 
DFF45, and p70S6K1 are the known recognized targets 
of miR-145 (Figure 2) [96, 98-105]. PAK4, a subfamily 
of serine/threonine kinases linked to cell growth, 
motility, and cytoskeletal dynamics, is greatly involved 
in oncogenic signaling pathways [101]. Overexpressed 
miR-145 exerts its anti-tumor function by modulating a 
target gene, PAK4, which blocks the activation of AKT 
and ERK1/2 pathways, thus inhibiting tumor growth 
[101]. In addition, miR-145 also blocks the activation of 
AKT and ERK1/2 pathways and the expression of HIF-1 

Figure 1: Schematic illustrating the oncogenic effect regulated by miR-31, miR-21, and miR-106a in colorectal cancer. 
Abbreviations: PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homologue; RASA1, RAS p21 GTPase activating protein 
1; RB1, retinoblastoma 1; Rho B, Ras Homolog Family Member B; TGFβR2, transforming growth factor β receptor 2.
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and VEGF via directly targeting N-RAS and IRS1, leading 
to the inhibition of tumor growth [96]. Meanwhile, miR-
145 is involved in inhibiting cell proliferation, migration, 
and invasion by targeting paxillin [99]. MiR-145 also 
regulates the 3′-UTR of Fli-1 mRNA. The downregulation 
of Fli-1 has a profound effect on the growth of colon 
cancer [102]. DNA fragmentation factor-45, a direct 
target by miR-145, plays an essential role in apoptosis, 
a crucial aspect of tumorigenesis [106]. MiR-145 is a 
key regulator of intestinal cell differentiation by directly 
targeting SOX9, a marker of undifferentiated progenitors 
in the colonic crypts [100]. However, whether SOX9 is 
oncogenic remains controversial as inactivating mutation 
of this gene is frequent in colorectal cancer [107]. Indeed, 
Bastide et al. observed the presence of microadenomas 
in the intestinal epithelium of SOX9-knockout mice. 
SOX9 acts a regulator of Wnt/beta-catenin pathway and 
a transcriptional target to maintain intestinal epithelium 
homeostasis [108]. In addition, SOX9 expression is an 
important biomarker for the prediction of colorectal cancer 
relapse [109]. MiR-145 also directly targets catenin δ-1 
and contributes largely to oncogenic Wnt/beta-catenin 
signaling in human colon cancer cells (Figure 2) [104]. 
Moreover, miR-145 targets p70S6K1 and downregulates 
HIF-1 and VEGF expression thereby inhibiting tumor 
growth and angiogenesis [103]. These findings support 

miR-145 as an important mediator in tumorigenesis and 
indicate the potential development of the miR-145-based 
targeted approach for the treatment of colorectal cancer.

MICRORNAS AS PROMISING THERAPEUTIC 
TARGETS FOR COLORECTAL CANCER

Exploring the underlying mechanisms that regulate 
gene expression and the complex signaling pathways is 
essential in developing novel therapeutics in colorectal 
cancer treatment. The distinctive ability of microRNAs 
to target multiple genes and signaling pathways has 
drawn great attention to their roles as potential innovative 
therapeutic agents. Generally, microRNA-based therapies 
include the restoration of downregulated/tumor suppressor 
microRNA expression or the inhibition of overexpressed/
oncogenic microRNAs [110]. For example, the silencing 
of miR-135b, in which its upregulation corresponds to 
colorectal tumor progression, reduces the number and 
size of tumors in a mouse model with no obvious signs of 
toxicity [111]. In a mouse model of colon carcinoma, intact 
tumor suppressor miR-145 molecules that are successfully 
delivered into xenograft tumors result in profound anti-
tumor effects by increasing apoptosis and reducing tumor 
size [98]. Despite functioning as oncogenes or tumor 
suppressors, microRNAs are also involved in immune 

Figure 2: Schematic illustrating the tumor suppression effect regulated by miR-143 and miR-145 in colorectal cancer. 
Abbreviations: DNMT3A, DNA methyltransferases 3A; DFF45, DNA fragmentation factor-45; IGF-IR, insulin-like growth factor-I 
receptor; IRS1, insulin receptor substrate-1; KRAS, Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; MACC1, metastasis-associated 
in colon cancer-1; p70S6K1, phosphorylated 70-kDa ribosomal protein S6 kinase 1; PAK4, p-21 activated kinase 4.
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responses and their aberrant expressions in the immune 
system are observed in cancers. Indeed, microRNA-related 
immunotherapy has recently been employed in colorectal 
cancer treatment.

More than half of the patients with colorectal 
cancer experience recurrence and metastasis after surgical 
resection. Sadly, conventional non-surgical treatment such 
as chemotherapy is ineffective against metastasis, and the 
poor prognosis further indicates the urge of developing 
novel therapeutics that improve clinical outcomes 
[112]. The immunomodulatory role of microRNAs is 
gradually recognized and investigated by multiple studies. 
MicroRNAs have been shown to mediate tumor immune 
escape by indirectly suppressing T cell activation and 
proliferation. For example, upregulated MiR-21 and miR-
130b in advanced colorectal cancer can inhibit phosphatase 
and tensin homolog (PTEN; a tumor suppressor gene) 
expression, leading to programmed death ligand 1 (PD-
L1) overexpression and immune evasion of colorectal 
cancer [112, 113]. MiR-124 has been shown to post-
transcriptionally target signal transducer and activator of 
transcription 3 (STAT3), which is overly activated in each 
stage of colorectal cancer development and is associated 
with tumor-mediated immunosuppression [112, 114]. 
Accordingly, Zhang et al. observed reduced colorectal 
cancer cell survival and tumor growth in vitro and in vivo, 
respectively, when miR-124, a microRNA known to be 
downregulated in colorectal cancer, was re-introduced 
[114]. It is plausible to control inflammatory signaling 
pathways and immune responses via microRNA therapy, 
thereby decreasing the risk of colorectal tumorigenesis.

The development of microRNA-based treatments, 
including immunotherapy, remains challenging [110, 
112, 115]. Although one single microRNA can regulate a 
broad set of genes simultaneously, allowing for effective 
targeting of heterogeneous cancer cells, it is likely to 
induce off-target side effects due to lack of specificity . 
The safe delivery and retention of exogenous microRNAs 
in vivo also pose difficulty in microRNA-based treatments 
[110, 115]. To date, no therapeutic manipulation of 
microRNAs has been applied in human patients with 
colorectal cancer; research is only at an experimental 
stage in either cell lines or animal models. Given the great 
significance of microRNAs as biomarkers that can be 
manipulated to reverse tumor progression, we cannot help 
speculating that a new therapeutic concept--a microRNA-
based therapy--might be used in colorectal cancer in 
the near future. However, standardized microRNA 
measurement and analysis should be utilized to obtain 
valid prognostic and diagnostic microRNA profiles in 
colorectal cancer before their application in the clinical 
setting. 

CONCLUSIONS

Accumulating evidence has significantly expanded 

our understanding of microRNA in the pathogenesis 
of colorectal cancer in all critical progressions of 
tumorigenesis including cell proliferation, apoptosis, 
metastasis, and chemoresistance. However, we do not 
yet completely understand the biology of microRNAs in 
colorectal cancer development, as well as its association 
with oxidative stress. In addition, varied methods of 
handing and processing of microRNA yield inconsistent 
or incomparable results. It is therefore necessary 
to establish standardized microRNA protocols and 
analysis to obtain reliable data and accurately quantify 
microRNAs by developing a set of stable reference 
genes for each type of cancer. Besides all the unknowns 
and difficulties, microRNAs have demonstrated their 
potential as diagnostic biomarkers. Along with redox 
therapies targeting cancer cells, the development of 
personalized therapeutic targets utilizing microRNA for 
colorectal cancer is feasible. However, the aforementioned 
challenges should be addressed for the successful 
transition of microRNAs as prospective biomarkers from 
bench to clinical setting.
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