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ABSTRACT

Pancreatic cancer is the currently most lethal malignancy. Toward an accurate 
diagnosis of the disease in body liquids, we studied the protein composition 
of the secretomes of 16 primary and established cell lines of pancreatic ductal 
adenocarcinoma (PDAC). Compared to the secretome of non-tumorous cells, 112 
proteins exhibited significantly different abundances. Functionally, the proteins were 
associated with PDAC features, such as decreased apoptosis, better cell survival and 
immune cell regulation. The result was compared to profiles obtained from 164 serum 
samples from two independent cohorts – a training and a test set – of patients with 
PDAC or chronic pancreatitis and healthy donors. Eight of the 112 secretome proteins 
exhibited similar variations in their abundance in the serum profile specific for PDAC 
patients, which was composed of altogether 189 proteins. The 8 markers shared by 
secretome and serum yielded a 95.1% accuracy of distinguishing PDAC from healthy 
in a Receiver Operating Characteristic curve analysis, while any number of serum-only 
markers produced substantially less accurate results. Utility of the identified markers 
was confirmed by classical enzyme linked immunosorbent assays (ELISAs). The study 
highlights the value of cell secretome analysis as a means of defining reliable serum 
biomarkers.

INTRODUCTION

Due to advances in cancer research and medicine, 
the death rates of several cancer types like lung, colorectal, 
breast and prostate cancer are decreasing [1]. However, 
there are also tumor entities for which there is no such 
improvement. One of them is pancreatic cancer. It is 
currently the fourth or seventh leading cause of cancer-
related deaths in the Western world [2, 3] or China [4], 
respectively, although only ranked tenth in incidence, 
and numbers are increasing. Mortality is almost equal to 
incidence and the average survival period after diagnosis is 

about five months. This dismal prognosis can be attributed 
to three major factors. One is the absence of apparent signs 
and symptoms during early disease stages; consequently, 
less than 9% of all cases are identified at an early stage 
of the disease [5]. Second, there is a lack of adequate 
therapeutic means and the tumors quickly develop 
resistance to available chemotherapy. Currently, the only 
effective clinical intervention is surgery, but a mere 10% to 
20% of all cases are admissible to tumor resection. Finally, 
pancreatic cancer exhibits a very early and high rate of 
metastasis; peritoneal dissemination and liver metastasis 
are actually the most common cause of death [6].
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A major obstacle toward a better prognosis is the 
absence of reliable and sensitive tools for diagnosis. The 
available serum biomarkers, such as CEA and CA19-9, are 
of only limited utility due to a significant lack of specificity 
and sensitivity [7, 8]. Therefore, the search is on for better 
performing biomarkers in body fluids for a non-invasive 
detection of the disease. In a recent report, GPC1+ circulating 
exosomes were described as accurately detecting pancreatic 
cancer patients [9]. With respect to protein profiles, the 
screening of PDAC patient sera for suitable biomarkers was 
reported using recombinant single-chain variable fragment 
(scFv) binders that target mainly immunoregulatory 
biomolecules [10]. However, the definition of specific 
protein biomarkers in blood can be a challenge. One 
reason is the fact that the origin of the proteins that exhibit 
variations is not really known [11, 12]. Unless there would 
be tumor-specific isoforms, proteins could come from all 
over the body and may not have any direct relation to cancer. 
Thus, the information could be circumstantial.

Studying the secretome from conditioned media 
of cultured tumor cells could offer a complementary 
and well-defined source of molecular information for 
the discovery of tumor-specific biomarkers (for reviews 
see [13–16]). The term secretome stands for all proteins 
that are released from cells into the extracellular space. 
About 10% of the 22,000 protein-encoding human 
genes are estimated to encode proteins that are secreted 
[17, 18]. The secretome is very dynamic in nature and 
highly sensitive to changes of the overall cellular state, 
whether at physiological or pathological circumstances. 
Consequently, analyzing the secretome composition could 
be instrumental for deciphering the molecular architecture 
of disease, in particular for a disease as heterogeneous as 
pancreatic cancer. There have been several reports about an 
exploration of secretomes for the identification of potential 
biomarkers [19–23]. A large portion of the secreted 
proteins – cytokines, hormones or growth factors, for 
example – are present at very low levels [18]. Therefore, 
sensitivity and resolution of the analysis processes are 
limiting. In serum analyses, the problem of low abundance 
is actually magnified by the presence of large quantities 
of albumin and globins, which can obscure an analysis of 
rare proteins or mask their presence altogether. Depletion 
of highly abundant proteins is not a solution, since their 
removal does affect the abundance and relative ratios of 
the other proteins, too [12]. To circumvent these problems, 
immunofractionation with appropriate antibodies is often 
applied prior to analysis. To gather enough protein in such 
a process, rather large sample volumes are required. Also, 
quantification is difficult to achieve since different antibody 
affinities lead to different yields during the purification 
process and normalization processes are not easily 
applicable. In addition, a translation into clinical practice 
is difficult to achieve.

Using immunoassays directly for detection rather than 
just as a means of purification offers an alternative that could 

circumvent many of the above limitations [13]. Antibody 
microarrays have already been used for the measurement 
of the abundance of cytokines and growth factors in both 
conditioned media of cultured cells and human body fluids 
[24–27]. Many of these studies made use of a sandwich 
format: one antibody is attached to the array surface and 
isolates the target protein from the samples; a second 
antibody that binds to a different epitope of the same protein 
is subsequently applied for labeling purposes. Antibody 
cross-reactivity prevents the parallel measurement of more 
than a few tens of proteins [28, 29], however. For a large-
scale screening for protein markers, direct labeling of protein 
extracts prior to incubation is therefore advantageous, 
allowing the simultaneous analysis of thousands of proteins 
with sensitivities of attomolar concentrations by routine 
processes [30, 31]. Serum albumin and globins do not affect 
the analysis [32]. The result of the screening process could 
be transferred quickly to a clinical setting in a simplified 
format, once a signature has been defined. For clinical 
use, a sandwich format, for example an enzyme linked 
immunosorbent assay (ELISA), could be applied, since the 
number of target molecules is limited to a few.

Utilizing an antibody microarray, we analyzed 
the secretomes of a panel of pancreatic tumor and non-
tumorous cell lines in order to identify proteins that 
could act as biomarkers of disease. Taking advantage of 
the results, we studied serum samples of patients with 
pancreatic ductal adenocarcinoma (PDAC) and chronic 
pancreatitis (CP) as well as sera from healthy donors 
for the establishment of a set of defined biomarkers. The 
serum analysis was performed on independent training 
and test sets of patient sera, which were studied on two 
distinct formats of antibody microarrays, respectively. 
The potential of translating the identified marker signature 
into a clinical format was demonstrated by subsequent 
validation with commercial ELISA kits.

RESULTS

Basic quality assessment of cell secretome 
analysis

The secretome samples of human dermal fibroblasts, 
six primary and ten established pancreatic tumor cell lines 
were studied. The last group was selected from a panel of 24 
pancreatic cancer cell lines, whose intracellular proteomes 
had been studied with the same antibody microarray setup 
[33]. The established cell lines represent tumors that had 
originally been isolated from both male and female patients 
and also differ in their anatomic origin (primary tumor, 
metastasis and ascites) and degree of differentiation. The 
primary tumor cells were also from patients of both genders 
and represent metastases or primary tumors; the latter had 
been located in either the head or tail of the pancreas. This 
and other information about the tumor cells that were used 
in the analysis is provided in Table 1.
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Table 1: Cell lines used in the study
Description of established cell lines

Cell line Patient gender Cell source Histology Grade Age 
(years)

A818-1 Female Ascites Moderately differentiated, ductal 
adenocarcinoma G2 75

AsPC-1 Female Ascites Well-moderately differentiated, 
ductal adenocarcinoma G2 62

BxPC-3 Female Primary tumour Moderately differentiated, ductal 
adenocarcinoma G2 61

CFPAC-1 Male Liver metastasis Well differentiated, ductal 
adenocarcinoma; cystic fibrosis - 26

Colo357 - Lymph node 
metastasis

Well differentiated, ductal 
adenocarcinoma G2 -

MIA PaCa-2 Male Primary tumour Poor-moderately differentiated, 
ductal carcinoma G3 65

PaCa-44 Female Primary tumour Moderately differentiated, ductal 
adenocarcinoma G2 44

PANC-1 Male Primary tumour Poorly differentiated, ductal 
epithelioid carcinoma G3 56

Pt45P1 - Primary tumour Moderately differentiated, ductal 
adenocarcinoma G3 -

SK-PC-1 Male Primary tumour Well differentiated, ductal 
carcinoma - -

Clinical features of the primary pancreatic cancer cell lines

Cell line Patient 
gender

Tumour 
localization Histology Classification Postoperative 

survival (days)
Patient 
status

T N M G

PacaDD119 Male Pancreas 
head

Poorly 
differentiated, 

ductal 
adenocarcinoma

3 1 0 3 445 Dead

PacaDD137 Female Pancreas 
head

Moderately 
differentiated, 

ductal 
adenocarcinoma

2 0 0 2 478 Alive

PacaDD159 Male Pancreas tail

Moderately 
differentiated, 

ductal 
adenocarcinoma

3 0 0 2 169 Dead

PacaDD135 Female Liver 
metastasis

Moderate-poorly 
differentiated, 

ductal 
adenocarcinoma 

(partiallly 
mucinous)

- - Hep 2 66 Dead

PacaDD161 Female Liver 
metastasis

Poorly 
differentiated, 

adenocarcinoma
- - Hep 3 - Dead

PacaDD183 Female Pancreas 
head

Moderate 
differentiated, 

ductal 
adenocarcinoma

- - - 2 55 Dead
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The secretomes of the different cells were labeled 
with fluorescent dye and mixed individually with a 
common reference sample. This reference sample was 
made by pooling the intracellular proteomes of all the cell 
lines, from which the secretomes were isolated, and labeled 
with another dye. Analysis was performed with an antibody 
microarray targeting 735 proteins (for a complete list see 
Supplementary Table 1) [33]. The samples produced a very 
similar data quality even without normalization. Taking 
into consideration all antibody spots on the microarray 
– 3010 due to multiple spotting – without applying any 
filtering, the number of spots on which there was a signal-
to-noise ratio (SNR) larger than two times the standard 
deviation of the average background signal at this location 
was higher than 93% for the common reference and varied 
around 80% for the incubations of the secretome samples 
(Supplementary Figure 1A). For individual proteins, 
signal-to-noise ratios as high as 100 were observed; the 
mean across all proteins with signals above background 
was 4.38 (±7.68). Data normalization yielded highly 
comparable results (Supplementary Figure 1B). The intra- 
and inter-array coefficients of variation across a large 
number of microarray production batches ranged between 
13% and 20%.

Variations of protein abundance in cancer cell 
secretomes

The comparison of the secretomes of the 16 
pancreatic cancer cell lines and non-cancerous fibroblast 
cells yielded 112 differentially abundant proteins 
(Supplementary Table 2). All 112 proteins were similarly 
up- or down-regulated in at least 14 of the investigated 
cancer cell lines. Analyzing the annotations of the proteins 
revealed that the majority of them are prominently 
associated with the functional categories of “cellular 
growth and differentiation”, “decreased apoptosis and 
cell death” as well as “increase in organismal death and 
cancer” (Table 2 and Supplementary Table 3). This result 
indicates a potential role of secreted proteins as anti-
apoptotic factors that could be involved in the control of 
the maintenance and survival of pancreatic tumor cells 
and reflects the bad prognosis associated with the tumor. 
In addition, the secretome profiles predict an influence of 
PDAC tumor cells on regulating immune cells and their 
quantity within the tumor, suggesting that tumor cells 
could control the trafficking of immune cells, such as 
phagocytes, monocytes and neutrophils, into the tumor 
microenvironment.

Interestingly, there was little difference between 
the secretomes of the primary and established pancreatic 
cancer cell lines. In comparison to other tumor-relevant 
cells, such as stellate cells or macrophages, the secretomes 
were rather different, however (unpublished data). Also the 
location, from which the cells had originally come from 
(primary tumor; ascites; metastases in the liver; metastases 

in the lymph node), did not make a difference, and neither 
did tumor grade or the degree of differentiation. This 
is in contrast to the results of an analysis of the cells’ 
intracellular proteomes, in which significant variations 
have been observed [33]. Four of the six primary tumor 
cell lines were basically identical, while the other two – 
isolated from mucinous PDAC and a long-term survivor, 
respectively – showed slightly more but nevertheless little 
variation. Some of the proteins that were regulated in the 
tumor cell secretome had been reported to be present in 
body fluids, such as saliva, cerebrospinal fluid, tears, blood 
or urine.

Comparison of secretomes to the related 
intracellular proteomes

We have previously studied with the very same 
antibody microarray the intracellular proteomes of the 
PDAC cell lines whose secretome data are reported here 
[33]. Comparing the profiles, the majority of changes in 
abundance were unique to either the intracellular proteome 
or the secretome. Only 17 proteins were similarly 
regulated between the two sample types (Figure 1). This 
represents 15% (17/112) of the secretome-specific and 
13% (17/132) of the intracellular proteome variations, 
or some 2% (17/735) of all studied proteins. Most of 
the 17 proteins are actually associated with extracellular 
functions, according to gene ontology (GO) terms, or 
are sheded components of the plasma membrane. All 
exhibited a substantially larger abundance variation in the 
secretome than intracellularly. For the large majority of 
proteins, however, the expression patterns were different 
in secretome and intracellular proteome. For example, 
most cytokines were found up-regulated in the secretome 
and down-regulated intracellularly, while the opposite 
was observed for nuclear proteins like RPS19, NCL and 
BRPF3.

Protein variations in patient serum samples

To investigate the impact of secretome data on the 
quality of a patient diagnosis based on serum protein 
data, serum samples from patients were studied. Two 
independent sample groups, a training and test set, 
were used in this analysis. The training set consisted of 
sera from 47 PDAC patients, 18 people with chronic 
pancreatitis (CP) and 27 age- and sex-matched healthy 
individuals. The test set was composed of 25, 25 and 
22 serum samples, respectively. The characteristics of 
the patients and donors are summarized in Table 3. Two 
distinct antibody microarrays were used for analysis. 
The training samples were studied with the antibody 
microarray of 735 antibodies already used in the secretome 
analysis. The test group was incubated on a larger 
array containing about twice the number of antibodies 
(Supplementary Table 4). However, several antibodies of 
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the smaller microarray were missing on the larger array as 
supplies had run out and could not be replaced.

Looking at the individual diagnostic accuracy 
of the 189 proteins that were found to be differentially 
abundant in serum of PDAC patients and healthy donors 
(Supplementary Tables 5 and 6), they differed in their 
ability to discriminate between the two groups as indicated 
by their individual AUC values. In the test set, rather good 
accuracy values could be determined for some of the 
proteins (Figure 2A). When controlling these performances 
in the training set, however, none exhibited an overall 
accuracy that would be sufficient individually (Figure 2B).

Of the 112 proteins found to vary in the secretome 
of tumor cells, only 8 proteins were similarly regulated 
in serum samples of PDAC patients, but not exhibiting 

different abundance in CP sera (Figure 3). In all cases, the 
variation was substantially bigger in the secretome than 
in the serum. Since it is likely that a tumor’s secretome 
gets diluted and in part obscured by the proteins that 
are secreted by cells in other organs and tissues, such a 
difference is expected. The expression of most proteins 
was either unchanged in one or both sample types or 
varied even inversely in secretome and serum.

Serum-based diagnostics

The 8 proteins that similarly varied in abundance 
in PDAC sera and in tumor cell secretomes – EPHB3, 
FGF1, ID1, IL2, IL10, IMPDH2, SELL, VCAM1 – 
did not exhibit a superior performance as markers 

Table 2: List of the most frequently predicted functions associated with the secretome of pancreatic cancer cell lines 

Function annotation Predicted 
activation state

Prediction 
(z-score) p-Value Proteins

Number 
of 

proteins

Cell death of 
pancreatic cancer cell 
lines

Decreased -2.568 4.59 E-07 ALB, CXCL8, DDIT3, FN1, MTOR, 
RPS19, SPP1, TGFB1 8

Apoptosis of 
pancreatic cancer cell 
lines

Decreased -2.365 2.27 E-06 ALB, CXCL8, DDIT3, FN1, MTOR, 
RPS19, TGFB1 7

Quantity of phagocytes Increased +2.049 3.53 E-12

BCL2A1, CNN2, CXCL8, DCN, 
FABP1, FASTK, FPR1, GJA1, ID1, 
IL10, IL1A, IL2, S100A8, SELE, 

SELL, SPP1, TGFB1, TGFBR2, TIA1, 
VCAM1

20

Quantity of neutrophils Increased +2.156 1.23 E-10
CNN2, DCN, FASTK, FPR1, GJA1, 

ID1, IL10, IL1A, S100A8, SELE, 
SELL, TGFB1, TIA1, VCAM1

14

Organismal death Increased +2.174 1.49 E-15

AKR1C3, APC, ATP6AP1, BCL2A1, 
BGN, CTTN, CXCL8, DAB2, 

DCN, DDX17, EIF2AK4, EPHB3, 
FN1, FOS, GAS1, GJA1, GPM6B, 
HNRNPC, HSP90B1, ID1, IL10, 

IL2, IMPDH2, KLF4, LAMTOR1, 
MAPK3, MLH1, MME, MMP2, 

MTOR, NCOR2, NUSAP1, PAX2, 
POU2F1, PVRL1, RPS19, RPSA, 

S100A8, SELE, SERPINB5, 
SLC19A1, SPINT2, SPP1, TCEA1, 

TGFB1, TGFBR2, TIA1, TIE1, 
TJP2, TOP2A, TPT1, UBC, VCAM1, 

ZBTB17

54

Quantity of monocytes Increased +2.256 1.85 E-08 CNN2, CXCL8, GJA1, ID1, IL10, 
IL1A, SELE, SELL, VCAM1 9

The prediction z-score (plus for activation and minus for inhibition) was calculated within IPA software as described in the 
Materials and Methods section. The complete list can be found as supplemental information (Supplementary Table 3).
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individually (Figure 2). When applied as a signature 
for PDAC diagnosis, however, a Receiver Operating 
Characteristic (ROC) curve analysis yielded an accuracy 
– expressed as area under the curve (AUC) value – of 
95.1% for distinguishing PDAC from healthy (Figure 
4A). For comparison, the best performing panel of 8 
marker molecules, which were differentially abundant 
in sera but not in the secretome, was selected based on 
the training set. Applied to the test set, they produced an 
AUC value of 84.2% (Figure 4B). Even applying more 
than 8 of the proteins that showed variation in serum 
abundance only, no better distinction of sera from cancer 
and healthy patients could be achieved. This documents 
that the information content of the signature based on 
molecules that varied in both secretome and serum is 
significantly higher than that derived from serum-only 
markers.

The 8 markers shared between PDAC cell 
secretome and PDAC patient sera were not able to 
separate PDAC from CP sera, however. In this context, 
they performed basically identical to the best serum-
only marker signature with AUC values of 71.2% and 
72.2%, respectively. For discriminating PDAC from CP 
sera, the most informative signature was made up of 25 
proteins, yielding in a ROC analysis an AUC value of 
97.1% (Supplementary Figure 2).

Validation by ELISA

Complex antibody microarrays like the ones used 
here are unlikely to be utilized in clinical routine. An 
analysis would produce information that is not required 
for diagnosis. Also in terms of robustness, other methods 
are superior and already established in a clinical setting. 
Therefore, we confirmed our results not just by applying 
a scheme of independent training and test samples but 
used commercial ELISA kits for ID1, IL2 and IL10 in 
addition. The antibodies of the three ELISA kits were 
different from the molecules on the microarrays used to 
define the diagnostic signature. ID1, IL2 and IL10 were 
selected at random from the eight proteins that define the 
signature. An analysis of all eight was not possible, since 
the amount of serum was limiting. While a protein amount 
equivalent to about two microliters of serum is sufficient 
for a microarray analysis that studies as many antigens as 
there are antibodies on the microarray, the protein content 
of 50 μl to 150 μl serum was required for each individual 
ELISA. In total, we analyzed 25 and 21 sera from PDAC 
and healthy control samples, respectively. In agreement 
with the microarray data, both ID1 and IL2 were found 
significantly lower in PDAC sera as compared to healthy 
control samples and IL10 was present at a significantly 
higher level (all three with p < 0.001) (Figure 5).

Figure 1: Proteins that are commonly regulated in secretome and intracellular proteome of tumor cells. The proteins 
are listed, which exhibited similar regulation in both secretome and proteome analyses of the ten established pancreatic cancer cell lines in 
comparison to non-tumor cells. The bar sizes indicate the relative degree of regulation.
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DISCUSSION

Blood-based diagnosis could improve the outcome 
of therapy, even for a disease as deadly as PDAC. 
Applied to people, who are at risk of developing 
pancreatic cancer – for instance, patients who have 
undergone tumor resection, familial cases, individuals 
with particular genetic syndromes or predisposing 
diseases, such as chronic pancreatitis or diabetes – 
an improvement in diagnostic accuracy could have 
significant consequences on life expectancy and quality. 
Analyses of peripheral blood are predestined to such 
an end; studies with microRNA, circulating DNA and 
exosomes or proteins have been reported [9, 10, 34–
37]. We set out to study the secretome of tumor cells 
in order to improve accuracy of protein-based diagnosis. 
A protein profile should represent the pathological 
condition specifically as it reflects the actual changes in 
the activity of diseased cells. In the analysis, a large panel 

of antibodies was applied. Many target proteins that are 
associated with cancer according to KEGG and GO term 
annotation and had demonstrated their diagnostic power 
for other tumor forms [32, 38] and in an analysis of the 
intracellular proteome of 24 pancreatic tumor cell lines 
[33]. An earlier, mass spectrometry based analysis of 
conditioned media of six tumor cells had reported 63 
most differentially abundant molecules [23]. No overlap 
was found between them and the 112 molecules that 
we identified. This is not too surprising given the many 
differences between the studies. The criteria for selecting 
differentially abundant proteins were different; sample 
preparation was also very different. In addition, only 
about 15% of all detected proteins overlapped between 
the two studies. The reasons for this are the facts that 
the microarray analysis was biased by the availability 
of antibodies, but that its detection sensitivity is 
substantially higher. Therefore, the results are likely to 
be complementary.

Table 3: Characteristics of healthy donors and patients from whom serum samples were collected

Healthy donors

Age: range (average) Sample set 1: 39-71 (52)
Sample set 2: 35-74 (55)

Gender: male/female Sample set 1: 0.60
Sample set 2: 0.62

CP patients

Age: range (average) Sample set 1: 25-76 (44)
Sample set 2: 24-78 (51)

Gender: male/female Sample set 1: 0.70
Sample set 2: 0.85

PDAC patients

Age: range (average) Sample set 1: 39-74 (58)
Sample set 2: 38-81 (61)

Gender: male/female Sample set 1: 0.66
Sample set 2: 0.67

Tumour localisation % of cases
Pancreas head 55
Pancreas body 14
Pancreas tail 3
Papilla vateri 10
Multiple 18

Grading % of cases
G2 48
G3 34
unknown 18

R classification % of cases
R0 55
R1 38
R2 3
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The fact that there was very little correlation of 
protein abundance in secretomes and the related intracellular 
proteomes suggests that the regulation of protein secretion 
occurs independent of the intracellular protein expression. 
Similar data, focusing on the protein content of exosomes 
released from colorectal cancer cells showed also a nearly 
inverse protein abundance in exosomes and intracellularly 

[39]. In view of these results, a transfer of tumor markers 
that were identified in tissue cells for an identification of 
disease in serum does not seem promising. The functional 
annotations of the 112 proteins that were found to differ in 
the secretomes of tumor and non-tumorous cells indicated a 
potential role of secreted proteins as anti-apoptotic factors. 
Also, the results suggested an influence on immune cells. It 

Figure 2: AUC values of the 189 individual serum markers. Analysis by Receiver Operating Characteristic (ROC) curves was 
performed for all identified serum protein markers individually. Panel A shows the result calculated from the training set; the respective 
AUC values are shown, ranging from 55.2% to 96.0%. In panel B, the AUC values are shown as calculated for the individual marker 
molecules in the test set. For presentation, the order of the markers along the x-axis was kept as in panel A, highlighting the limited degree 
of reproducibility for individual markers.

Figure 3: Proteins that were similarly regulated in both tumor cell secretome and PDAC patient sera. Of the 112 
differentially expressed proteins in the tumor cell secretome compared to the non-tumorous cells, only 8 were similarly regulated in the 
serum. The red and green bars indicate the degree of regulation in secretome and PDAC serum, respectively.
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is likely that several properties of the tumor are mediated 
by secretory factors released by the various cell types in the 
tumor microenvironment, of which tumor cells are only a 
part. We are currently pursuing this line of research further 
toward a better understanding of the regulative networks 
created between microenviromental cells by means of 
secreted proteins.

Surprisingly, the secretome analysis did not reveal 
any apparent correlation of secretome composition 
with the tumor cells’ original location – primary 
tumor, metastatic tumor or ascites – or the degree of 
differentiation, while the intracellular proteomes had 
shown significant differences [33]. This suggests that it 
is unlikely to detect informative variations of this type in 
serum either, assuming that the serum acts as a combined 
representation of the various cell secretomes. However, 

other cells of the respective microenvironment of primary 
tumor, metastatic tumor or ascites may well secrete protein 
signatures, which differ in their composition, and may 
permit serum-based diagnosis.

The 8 proteins that exhibited similar abundance 
differences in serum and secretome profiles belong to the 
proteins that are most strongly regulated in terms of their 
abundance level in tumor secretomes. One could speculate 
that they are therefore the ones most likely to remain 
detectable after becoming part of the serum. Other proteins 
may loose their discriminative power as they get diluted 
and obscured too much so as to remain informative. While 
for understanding tumor biology the identification of even 
subtle variations could be as important as that of large 
changes in expression, it could be advantageous for serum 
diagnostics to concentrate on proteins, which in secretome 

Figure 4: Diagnostic potential of the protein signatures in serum. A. A Receiver Operating Characteristic (ROC) curves was 
calculated for the signature of 8 proteins that exhibited shared expression changes in the analyses of PDAC serum and secretome, yielding 
an AUC value of 95.1%. The protein names are shown. B. In comparison, the ROC curve is presented for the best performing panel of 8 
proteins that differed in abundance in the serum only; AUC is 84.2%. The relevant proteins are listed.

Figure 5: ELISA validation of identified marker proteins. The protein content was analyzed of 25 and 21 sera, respectively, 
isolated from PDAC patients and healthy blood donors. Proteins ID1 (A), IL2 (B), and IL10 (C) were studied with commercially available 
assays. All markers showed a highly significant degree of variation of abundance, with p-values < 0.001.
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analyses are present at high concentrations and exhibit 
large differences in expression.

The value of comparing secretome analyses and 
serum studies for the definition of reliable biomarkers is 
further demonstrated by the results obtained for protein 
GRPR, for example, which was implicated as a marker 
molecule [40]. In view of contradictory results, with 
GRPR being up-regulated in tumor cell secretome while 
down-regulated in PDAC patient serum, the reliability 
of the marker could be questioned. It cannot be excluded 
that it is a bona fide marker of high predictive value 
nevertheless and that the serum abundance reflects the 
overall release of the protein from other cell types in or 
around a tumor. However, as long as this is not evaluated 
in more detail, one should act carefully with utilizing 
GRPR as a marker in liquid biopsy.

Diagnosis on basis of the sera yielded a signature of 
just eight proteins, which permitted the identification of 
PDAC patients with an accuracy of 95.1%. Some of the 
proteins, such as IL10, ID1 and IL2, had been implicated 
as possible biomarkers of pancreatic cancer before [41–43]. 
However, the result sheds new light on the process by which 
marker molecules should be selected for a useful diagnostic 
signature. Compared to the other 181 serum markers, the 
eight molecules shared between secretome and serum 
do not show any particular discriminative performance 
individually. In combination, however, they beat any panel 
of eight markers made only from serum proteins by quite a 
margin. Actually, even adding up more serum markers could 
not yield a signature with a better diagnostic performance. 
In the comparison of PDAC and CP sera, the eight proteins 
were again not different from other markers individually. 
But also as a signature, they were not superior to other 
panels. The reason for this could be the fact that they were 
identified in a secretome analysis, in which tumor and 
normal cells were compared to each other. This suggests 
that adding to a signature the apparently best individual 
markers may not yield the best possible signature. Instead, 
considering biological and functional data, such as variation 
in the secretion from different cell types, could contribute 
valuable information for selecting useful markers.

The results of this study do not represent a diagnostic 
tool as yet. To such ends, more is needed, such as a broader 
analysis of robustness and an assessment of specificity in 
other diseases. However, the data shown here are an initial 
step of identifying suitable biomarkers of high accuracy 
and highlight the fact that an analysis of cell secretomes 
can be enormously helpful in this identification process.

MATERIALS AND METHODS

Reagents and antibodies

All chemicals used in this study were purchased 
from Sigma-Aldrich (Munich, Germany), unless stated 
otherwise, and were of highest purity or protein grade. 

Two distinct antibody microarrays were used. The first 
one was composed of 735 antibodies. The experiments 
with the cell secretomes and the first set of serum samples 
were performed on this microarray. It had been used also 
for earlier studies of sera [32] and PDAC cell proteomes 
[33]. For validation with the second set of serum samples, 
a newly designed microarray was utilized that consisted 
of 1439 antibodies. A large bulk of the antibodies 
was produced by Eurogentec (Seraing, Belgium). 
The others were purchased from various sources or 
provided by collaborating partners. A complete list of the 
arrayed antibodies and their target proteins is given in 
Supplementary Tables 1 and 4, respectively.

Cell culture and secretome collection

All cells used in this study were checked for 
contamination with mycoplasma before and after cell 
growth. The pancreatic tumor cell lines A818-1, AsPC-
1, BxPC-3, CFPAC-1, Colo357, MIA PaCa-2, Paca44, 
PANC-1, Pt45P1 and SK-PC-1 and six primary PDAC 
cell lines were used in the analysis (Table 1); the primary 
cells have been described in detail previously [44]. 
Normal human dermal fibroblasts (NHDFs) (PromoCell, 
Heidelberg, Germany) acted as control. All cell lines 
but the fibroblasts were cultured in Iscove's Modified 
Dulbecco's Medium (IMDM) (Invitrogen, Darmstadt, 
Germany) containing 10% fetal bovine serum, 100 U/
ml penicillin and 100 μg/ml streptomycin at 37°C in 
a humidified atmosphere of 5% CO2 and 95% air. The 
fibroblasts were grown in PromoCell fibroblast growth 
medium. Cells were cultured to 85-90% confluency; 
then the medium was removed and the cells were 
washed three times with phosphate-buffered saline 
(PBS) followed by two washes with serum-free growth 
medium. Subsequently, the cells were incubated in serum-
free growth medium for 12 h in order to synchronize 
cell growth. The medium was replaced and cells were 
incubated for another 48 h. Then, the medium was 
collected, centrifuged at 3500 g for 10 min, filtered 
through 0.22 μM nylon filters and stored at -80°C.

Collection and handling of serum samples

For all samples analyzed, written informed consent 
was given by the patients and healthy donors. Ethical 
approval was obtained from the local ethics committee at 
the University of Heidelberg; ethics vote 159/2002 of 28 
December 2007. Two groups were selected and analyzed 
separately as training and test sets. For the training set, 
serum samples were collected via venipuncture from 47 
patients with pancreatic ductal adenocarcinoma (PDAC), 
18 people with chronic pancreatitis (CP) and 27 age- 
and sex-matched healthy individuals. The test set was 
composed of 25, 25 and 22 serum samples, respectively. 
Patient diagnosis was based on histological analyses. The 
disease stage was determined by classification of tumor, 
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node and metastasis (TNM). Exclusion criteria had been 
applied to patients, who had secondary conditions such 
as autoimmune, inflammatory or infectious diseases. The 
clinical characteristics of all subjects are shown in Table 
3. The serum samples were stored immediately at -80°C 
until use.

Preparation of the conditioned media

Three different methods were initially used 
for concentrating the protein content of cell media: 
trichloroacetic acid (TCA) precipitation, dialysis 
with lyophilization and ultrafiltration. In our hands, 
ultrafiltration was found to be the best method for 
obtaining protein in high quality with respect to 
reproducibility, concentration and integrity. Vivaspin-20 
tubes with a molecular weight cut-off value of 3 kDa 
(Sartorius, Göttingen, Germany) were used according to 
the manufacturer’s protocol. Each tube was filled with 20 
ml medium and spun at 5,000 g at 4°C for 2 h in a swing-
bucket Varifuge 3.0R Heraeus centrifuge (Thermo Fisher 
Scientific, Bonn, Germany). Twice, a desalting step was 
performed using 20 ml of 0.1 M bicine (pH 8.5) at the 
same centrifugation conditions. The protein concentration 
of the ultrafiltrated solution was determined with the 
bicinchoninic acid (BCA) protein assay reagent kit 
(Thermo Fisher Scientific). Protein integrity was checked 
by SDS gel electrophoresis. Samples were kept frozen at 
-80°C until use.

Samples preparation and protein labeling

The protein concentration of the serum samples or 
the secretome protein isolates was adjusted with 50 mM 
bicine buffer (pH 8.5) to 1.0 mg/ml. Proteins were labeled 
with the fluorescent dyes DY649 or DY549 (Dyomics, 
Jena, Germany), respectively, at a molar dye/protein ratio 
of 7.5 in 50 mM bicine buffer (pH 8.5) in the dark at 4°C 
for 2 h. Unreacted dye was quenched by the addition of 
10% glycine in 50 mM bicine buffer (pH 8.5).

As a common reference sample, we utilized the 
pooled cellular protein lysates of all tested cell lines as 
described previously [33]. In brief, after collecting the 
growth medium for secretome analysis, the respective 
cells were washed with PBS and layered with lysis buffer 
composed of 50 mM bicine buffer (pH 8.5) containing 
20% glycerol, 1.0 mM MgCl2, 5.0 mM EDTA, 1.0 mM 
phenylmethanesulfonyl fluoride, 1.0 U/ml benzonase 
(Merck Biosciences, Schwalbach, Germany), Halt protease 
and phosphatase inhibitor mixture (Thermo Fisher 
Scientific), 0.5% Nonidet P-40 substitute, 1.0% cholic 
acid, 0.25% n-dodecyl-β-maltoside (Genaxxon Bioscience, 
Ulm, Germany) and 0.5% amidosulfobetaine-14, and kept 
at 4°C for 30 min. The cells were collected with a cell 
scraper and passed through a fine needle multiple times 
to completely disrupt them. Samples were centrifuged at 
20,000 g and 4°C for 30 min in order to pellet the debris. 

The supernatants were collected and pooled in identical 
amounts. This protein reference sample was labeled with 
the dye DY549 for analyses of secretome samples labeled 
with DY649, and vice versa. For serum analyses, a pool 
reference was prepared in an identical manner from a pool 
of all serum samples.

Antibody microarrays production

A protocol was used, which has been described in 
very detail before [33, 45]. In brief, the antibodies were 
spotted on epoxysilane-coated slides (Nexterion-E; Schott, 
Jena, Germany) using the contact printer MicroGrid-2 
(BioRobotics, Cambridge, UK) and SMP3B pins 
(Telechem, Sunnyvale, USA) at a humidity of 55-65%. 
The printing buffer was composed of 100 mM bicine 
buffer (pH 8.5) containing 0.005% Tween-20, 0.05% 
sodium azide, 5% trehalose, 5 mM magnesium chloride, 
137 mM sodium chloride, and 1 mg/ml of the respective 
antibody. Each antibody was spotted in quadruplicates. 
Positional marker molecules as well as negative and 
housekeeping controls were included on all microarrays. 
After the actual printing process, the slides were allowed 
to equilibrate at room temperature and 55-65% humidity 
overnight. They were then stored in dry and dark 
conditions at 4°C.

Antibody microarray analysis

Incubation of arrays was performed as previously 
reported [45]. Prior to incubation with labeled 
samples, the printed arrays were equilibrated at room 
temperature for 30 min followed by washing twice 
with PBS containing 0.05% Tween-20 (PBST). Arrays 
were blocked with 5 ml of 10% non-fat dry milk (Bio-
Rad, Munich, Germany) in PBST at room temperature 
for 3 h using Quadriperm chambers (Greiner Bio-One, 
Frickenhausen, Germany). The blocked slides were 
incubated with 35 μg each of a labeled secretome sample 
and the pool reference in 5 ml of 1% milk in PBST in 
the dark, constantly shaking at 4°C overnight. For serum 
analyses, 25 μg protein were used. After the incubation, 
the slides were washed five times for 5 min with PBST 
and 10 min with distilled water, constantly shaking at 
150 rpm. The microarrays were dried in a ventilated 
oven at 37°C. A Tecan PowerScanner system (Tecan, 
Männedorf, Switzerland) was used for image capture. 
Scanning was done at constant laser power and photo-
multiplier tube gain. The resulting images were analyzed 
with the software package GenePix Pro 6.0 (Molecular 
Devices, Sunnyvale, USA).

Enzyme linked immunosorbent assay (ELISA) 
analysis

ELISA testing was performed for proteins ID1, 
IL2 and IL10 by means of the respective ELISA kit of 
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Abcam (Cambridge, UK) according to the manufacturer’s 
instructions. Serum samples from the test set were used 
for analysis.

Data analysis

Statistical analysis of microarray data was 
conducted with the Chipster software package (v1.4.6, 
CSC, Finland). The data were presented as the median 
of the signal intensities in the red (DY-649) and green 
(DY-549) channels, respectively. The coefficient of 
variance for the pool reference was less than 10% across 
all tested microarrays. Signal-to-noise ratio (SNR) was 
calculated as (median foreground vs. median background) 
/ (standard deviation of background) for both the red and 
green channel. The Loess approach was used for data 
normalization with background correction offset (0, 50) 
of the normexp [46]. Two-group test between normal and 
cancer cells was done using the empirical Bayes test with 
Bonferroni-Hochberg adjustment for multiple testing [47]. 
A p-value of 0.05 or less was considered significant. Array 
quality was assessed using the ordinate method Detrended 
Correspondence Analysis [48]. In addition, array results 
were clustered using their Pearson correlations and a 
dendrogram was constructed using the Average Linkage 
method.

For a prediction of the functional aspects of the 
differentially expressed proteins, the Ingenuity Pathways 
Analysis (IPA) software package (version 6.3; Ingenuity 
Systems, Redwood City, USA) was applied. Prediction of 
function activation of inhibition was calculated within IPA 
using z-score method. Component annotation was mapped 
using the web-based Gene Ontology tool of UniProt 
(www.uniprot.org). The Ingenuity software also permitted 
a literature analysis with respect to the biomarker status of 
particular proteins.

The sensitivity and specificity of discriminating 
patient groups were calculated with support vector 
machine (SVM) algorithms in R programming [49] with 
a threshold level of zero. The samples were divided 
into a training set and test set. Using the SVM decision 
values, a receiver operating characteristics (ROC) curve 
and the respective area under the curve (AUC) value 
were calculated. To define biomarker signatures, a leave-
one-out cross-validation procedure was applied. A linear 
kernel was used and all the other parameters were set 
as default to avoid overfitting. Each time one sample is 
removed from the training set, the remained samples were 
analyzed as follows: each protein in the remained samples 
was removed in turn, the remaining protein groups were 
analyzed with Wilcoxon test. The most significant group 
was chosen and used for calculating a SVM decision value 
with the left-out sample. The same strategy was used with 
the chosen group until only one protein is left. By this 
approach, a candidate biomarker list was found, which 
was then evaluated with the test set.
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