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Identification of microRNAs associated with glioma diagnosis 
and prognosis
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ABSTRACT

The sensitivity and specificity of microRNAs (miRNAs) for diagnosing glioma 
are controversial. We therefore performed a meta-analysis to systematically identify 
glioma-associated miRNAs. We initially screened five miRNA microarray datasets to 
evaluate the differential expression of miRNAs between glioma and normal tissues. We 
next compared the expression of the miRNAs in different organs and tissues to assess 
the sensitivity and specificity of the differentially expressed miRNAs in the diagnosis 
of glioma. Finally, pathway analysis was performed using GeneGO. We identified 
27 candidate miRNAs associated with glioma initiation, progression, and patient 
prognosis. Sensitivity and specificity analysis indicated miR-15a, miR-16, miR-21, miR-
23a, and miR-9 were up-regulated, while miR-124 was down-regulated in glioma. Ten 
signaling pathways showed the strongest association with glioma development and 
progression: the p53 pathway feedback loops 2, Interleukin signaling pathway, Toll 
receptor signaling pathway, Parkinson’s disease, Notch signaling pathway, Cadherin 
signaling pathway, Apoptosis signaling pathway, VEGF signaling pathway, Alzheimer 
disease-amyloid secretase pathway, and the FGF signaling pathway. Our results 
indicate that the integration of miRNA, gene, and protein expression data can yield 
valuable biomarkers for glioma diagnosis and treatment. Indeed, six of the miRNAs 
identified in this study may be useful diagnostic and prognostic biomarkers in glioma.

INTRODUCTION

MicroRNAs (miRNAs) are single stranded, 
endogenous, non-coding RNAs of approximately 22 
nucleotides. The first miRNA was discovered in 1993 
and named lin-4. This gene was found to control the 
timing of C. elegans larval development [1]. However, 
miRNAs were not recognized as a distinct class of 
biological regulators with conserved functions until 
the second miRNA, let-7, was identified in 2000 [2, 3]. 
Since then, thousands of miRNAs have been identified in 
Homo sapiens. These molecules have diverse biological 
functions in glioma initiation and progression [4–8]. More 
than half of all miRNAs inhibit target gene expression by 
binding to complementary sequences in the 3’ untranslated 
regions of mRNAs [9, 10]. A single miRNA may have 

hundreds of mRNA targets, and a single gene may have 
hundreds of miRNA regulators. Approximately 30% of all 
protein-coding genes may be regulated by miRNAs.

Glioma is an extremely aggressive and lethal 
type of brain tumor that arises from glial cells [11–16]. 
Therefore, early diagnosis and treatment is critical. 
Dysregulation of miRNAs has been shown to promote 
tumorigenesis through inhibition of tumor suppressor 
genes or inappropriate activation of oncogenes [17–
26]. For example, miRNA-21 (miR-21) enhances the 
chemotherapeutic effects of taxol on human glioblastoma 
multiforme cells [27]. Zhang et al. identified nine miRNAs 
associated with survival in 82 glioblastoma patients [28]. 
Additionally, Piwecka et al. identified many new miRNAs 
that were differentially expressed in malignant glioma 
tissue, and Drusco et al. identified miRNAs that were 
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differentially expressed in cerebrospinal fluid, which could 
be used to diagnose central nervous system malignancies 
[29, 30]. Along with recent advances in microRNA 
technology, the number of miRNAs with diagnostic and 
prognostic value has increased. These biomarkers could 
improve the rapid and accurate diagnosis of glioma [31]. 
Several studies have achieved conflicting results, which 
could be explained by differences in the miRNA profiling 
systems and analytic platforms used in the studies.

Although the expression of individual miRNAs may 
be useful for distinguishing between cancer types, the 
potential of miRNAs as biomarkers for glioma requires 
a systematic analysis of the existing data. Therefore, we 
performed a meta-analysis to determine whether specific 
miRNAs could differentiate between glioma and normal 
tissue, and whether these miRNAs could be used as 
diagnostic or prognostic biomarkers. Additionally, we 
investigated the genes and pathways targeted by these 
miRNAs.

RESULTS

MiRNA expression profiling

We downloaded glioma miRNA datasets from the 
Gene Expression Omnibus (GEO), a public database 
at the National Center for Biotechnology Information. 
We manually screened the studies to identify those that 
included miRNA arrays and false discovery rate (FDR) 
and fold-change (FC) calculations. Five studies met 
the inclusion criteria and were included in our meta-
analysis (Table 1). All studies were published between 
2012 and 2015. Three of the studies were performed in 
China, one was performed in the United States, and one 
was performed in Poland. A total of 147 glioma and 34 
normal tissue samples were included in the meta-analysis. 
There were 68,362 miRNAs that were reported to be 
differentially expressed in glioma compared to normal 
tissue. The study details are shown in Table 1.

Predictive value of miRNA expression in glioma

Glioma histological subtypes are diagnosed 
pathologically. Because the datasets were collected using 
different platforms, the probe sequences were mapped to 
miRBase (http://www.mirbase.org) using BLAST tools to 
identify concordant miRNA names. To determine whether 
the expression of the miRNAs could be used to distinguish 
between glioma and control cases, we performed a meta-
analysis of three primary datasets (GSE25631, GSE61710, 
and GSE62381). These datasets comprised the training 
cohort and contained 118 cancer and 24 control tissue 
samples. The validation cohort consisted of two additional 
miRNA datasets (GSE65626 and GSE44726). We 
analyzed miRNA expression profiles in these five glioma 
microarray datasets compared to normal controls. The 

miRNAs that were differentially expressed in various 
tissues are shown in Table 2. Microarray datasets were 
normalized using a normalization algorithm in GeneSpring 
13.0 (Agilent). Normalization removed batch effects. We 
identified 27 miRNAs that were differentially expressed 
between normal and malignant tissue (Figure 1). Of these 
miRNAs, miR-124, miR-128, miR-323-3p, miR-665, 
miR-127-5p, and miR-886-3p were down-regulated, while 
miR-21, miR-10b, miR-92b, miR-25, miR-193a-3p, miR-
106b, miR-23a, miR-19b, miR-105, miR-19a, miR-15b, 
miR-182, miR-16, miR-130b, miR-15a, miR-17, miR-
9, miR-424, miR-181a-2, let-7c, and 193a-5p were up-
regulated in glioma tissue.

Sensitivity and specificity of differentially 
expressed miRNAs

We obtained expression data for differentially 
expressed miRNAs in the liver, ovary, uterus, brain, and 
glioma tissue from the GEO database. We found that 
miR-15a, miR-16, miR-21, miR-23a, and miR-9 were up-
regulated while miR-124 was down-regulated in glioma 
compared to normal tissue (Table 2).

Interestingly, miR-124 and miR-9 were selectively 
expressed in neural tissues. The highest miR-124 
expression was observed in the hippocampus followed 
by the cerebellum, cerebral cortex, and midbrain. 
Decreased miR-124 expression was observed in various 
types of glioma including neuroblastoma, astrocytoma, 
medulloblastoma, and glioblastoma (Figure 2A). 
Finally, the highest miR-9 expression was observed in 
glioblastoma and neuroblastoma, followed by astrocytoma 
and normal brain tissue (hippocampus and midbrain) 
(Figure 2B).

MiR-15a, miR-16, miR-21, and miR-23a are non-
specific miRNAs that are expressed in many tissues. The 
expression of miR-15a and miR-16, which are primarily 
expressed in lymphocytes and monocytes, was higher in 
glioma compared to normal brain tissue (Figure 3A and 
3B). MiR-21 was highly expressed in all cancer cells 
evaluated including hepatocellular carcinoma, ovarian 
cancer, lung cancer, and osteosarcoma. In contrast, low 
levels were observed in normal brain tissue (Figure 3C). 
The expression of miR-23a was higher in various cancer 
cells (e.g. glioma, HeLa, and breast cancer cells) compared 
to normal brain tissue (Figure 3D).

MiRNA target prediction and functional analysis

MiRNAs regulate various biological processes 
through inhibition of target gene expression. To identify 
potential miRNA target genes, we queried the three most 
popular computational databases, miRBase, microRNA, 
and TargetScan, to identify target genes reported in all 
three databases. We identified 1,204 genes predicted to 
be targeted by six miRNAs. We next performed gene 
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Table 2: Differential expression of miRNAs in various tissues

Hsa-miRNA Liver Ovary Uterus Prostate Brain Glioma

let-7c 0.006 0.022 0.036 0.045 0.003 0.009
miR-10b <0.001 0.003 0.005 <0.001 <0.001 0.002
miR-105 <0.001 0.002 <0.001 <0.001 <0.001 0.002
miR-106b <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
miR-124 <0.001 <0.001 <0.001 <0.001 0.227 <0.001
miR-127-5p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
miR-128 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
miR-130a 0.002 0.001 <0.001 <0.001 0.001 <0.001
miR-15a 0.002 0.005 0.003 0.004 0.019 0.044
miR-15b 0.004 0.002 0.002 0.002 <0.001 0.001
miR-16 0.034 0.044 0.036 0.056 0.048 0.127
miR-17 0.001 <0.001 0.002 <0.001 <0.001 <0.001
miR-181a 0.005 0.007 <0.001 0.002 0.027 0.027
miR-182 0.002 <0.001 0.002 <0.001 <0.001 0.002
miR-19a 0.003 <0.001 0.002 <0.001 <0.001 0.003
mir-19b <0.001 0.002 <0.001 0.001 0.001 0.002
miR-193a-3p 0.001 <0.001 <0.001 0.002 <0.001 0.002
miR-193a-5p 0.004 0.002 <0.001 <0.001 <0.001 <0.001
miR-21 0.001 0.004 0.023 0.022 0.005 0.156
miR-23a 0.001 0.005 0.007 0.008 0.001 0.037
miR-25 0.001 0.001 0.003 0.002 <0.001 0.003
miR-323-3p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
miR-424 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
miR-665 0.001 <0.001 <0.001 <0.001 0.001 <0.001
miR-886-3p <0.001 0.002 <0.001 <0.001 0.001 <0.001
miR-9 0.004 0.002 0.002 0.001 0.204 0.263
miR-92b 0.004 0.003 0.002 0.002 0.001 0.002

Table 1: Glioma miRNA expression profiling data

Author and 
Accession Number Institution

Total 
samples

Sample information MicroRNA 
Number

Year

Normal Glioma

Zhang W
GSE25631 Capital Medical University, China 87 5 82 1146 2012

Chen W
GSE44726 Nanjing Medical University, China 12 6 6 62976 2013

Piwecka M
GSE61710 Warsaw University of Life Sciences, Poland 17 5 12 909 2015

Drusco A
GSE62381 The Ohio State University, USA 58 14 44 753 2015

Yang J
GSE65626 Capital Medical University, China 6 3 3 2578 2015
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Figure 1: Meta-analysis of differentially expressed miRNAs. A total of 27 miRNAs were differentially expressed between glioma 
and normal tissue. Of these miRNAs, 21 were up-regulated and six were down-regulated.

Figure 2: Relative expression of miR-124 (A) and miR-9 (B) compared to GAPDH in various tissues. The highest miR-124 expression is 
observed in the hippocampus followed by the cerebellum, cerebral cortex, and midbrain. The expression is lower in various types of glioma. 
Higher miR-9 expression is observed in glioblastoma and neuroblastoma tissue compared to normal and astrocytoma tissue.
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ontology (GO) analysis in order to define the biological 
functions of the target genes in a broad range of biological 
processes (e.g. catalytic activity, enzyme regulatory 
activity, nucleic acid-binding transcription factor activity, 
protein-binding transcription factor activity, receptor 
activity, structural molecule activity, and transporter 
activity) (Figure 4).

We performed KEGG pathway analysis of the target 
genes in various tissues. The top 10 pathways identified 
were the following: the p53 pathway feedback loops 2, 
Interleukin signaling pathway, Toll receptor signaling 

pathway, Parkinson disease, Notch signaling pathway, 
Cadherin signaling pathway, Apoptosis signaling pathway, 
VEGF signaling pathway, Alzheimer disease-amyloid 
secretase pathway, and the FGF signaling pathway. These 
10 pathways were highly associated with glioma initiation 
and progression (Table 3).

DISCUSSION

In our study, we used publicly available miRNA 
datasets to evaluate whether specific miRNAs may be 

Figure 3: Relative expression of miR-15a (A) miR-16 (B) miR-21 (C) and miR-23a (D) compared to GAPDH in various tissues. MiR-
15a and miR-16 are predominantly expressed in lymphocytes and monocytes. MiR-21 is highly expressed in various types of cancer cells 
including hepatocellular carcinoma, HeLa, lung, and osteosarcoma cells. The expression of miR-23a is increased in various types of cancers 
including glioma, HeLa, and breast cancer cells.
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useful and accurate biomarkers for discriminating between 
glioma and normal tissue. We selected five microarray 
datasets and systematically identified promising miRNAs 
that could distinguish between glioma and control 
tissue. We found that 27 microRNAs were differentially 
expressed between glioma and normal tissue. Six of 
these microRNAs had more accurate predictive value 
in distinguishing glioma from control tissue (i.e. higher 
sensitivity, higher specificity, and statistical significance.

The expression patterns and functions of various 
miRNAs in glioma are diverse. Some miRNAs such as 
miR-124 and miR-9 are specifically expressed in the 
brain. MiR-124, which is highly expressed in the central 
nervous system including the hippocampus, cerebellum, 
cerebral cortex, and midbrain, stimulates neuronal 
differentiation to maintain embryonic stem cell self-
renewal and pluripotency [32]. In high-grade malignant 
gliomas and astrocytomas, miR-124 was either minimally 
expressed or absent. Loss of miR-124 enhances the stem-
like traits and invasiveness of glioma cells [32, 33]. Cai 
et al. found that down-regulation of miR-124 resulted in 
an increase in phosphorylated FAK, MMP2, vimentin, 
and N-cadherin levels in U87 cells through CAPN4, and 
that miR-124 suppressed the migration and invasion of 
glioma cells in vitro via CAPN4 [34]. Lu et al. reported 
that miR-124 inhibited glioma cell proliferation and 
invasion by blocking IQGAP1 expression and downstream 
activation of β-catenin and cyclin D1 [35]. Shi et al. 
demonstrated that down-regulation of miR-124 in tumor 
tissue promoted glioma development, angiogenesis, and 
chemoresistance, suggesting that miR-124 may be a 
useful diagnostic marker and therapeutic target in glioma 
[36]. Interestingly, miR-124 inhibited the migration 

and invasion of glioma cells through down-regulation 
of ROCK1, SOS1, CDK4, STAT3, and PPP1R13L 
expression [37–40], indicating miR-124 may be a valuable 
biomarker for glioma. The brain-enriched miR-9 also 
has been implicated in nervous system development 
and other physiological and pathological processes in 
several organisms. Increased expression of miRNA-9 was 
associated with an unfavorable prognosis in human glioma 
[41]. However, other studies have presented conflicting 
results. For example, suppression of miRNA-9 by mutant 
EGFR signaling resulted in up-regulation of FOXP1 and 
enhanced glioblastoma tumorigenicity [42–43].

Some of the miRNAs are not brain-specific. We 
found that miR-15a, miR-16, miR-21, and miR-23 were 
highly expressed in various cancer tissues including 
glioma. MiRNAs can also function as tumor suppressors. 
For example, Xie et al. demonstrated that down-regulation 
of miR-15a was associated with an adverse prognosis in 
human glioma patients [44]. Yang et al. validated the role 
of miR-16 as a tumor suppressor in glioma and uncovered 
a novel mechanism of miR-16-mediated inhibition of 
glioma growth and invasiveness through inhibition of 
BCL2 and the NF-κB1/MMP-9 signaling pathway [45, 
46]. These results indicate that increased expression of 
miR-15a and miR-16 is protective against glioma. Some 
miRNAs may be oncogenic. For example, miR-23a 
promoted the invasion of U251 and U87 cells, at least in 
part by directly targeting HOXD10 and modulating the 
expression of MMP-14 [47, 48]. Moreover, the oncogenic 
miR-23a promotes glioma development through the cAMP 
response element-binding protein [49].

MiR-21 is one of the most well-studied miRNAs. 
It is over-expressed in various cancer tissues. Here, 

Figure 4: GO analysis of target gene functions.
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we found that miR-21 expression was increased in 
several malignant cell types (particularly hepatocellular 
carcinoma cells). Dysregulated miR-21 expression was 
observed in all types of glioma. The oncogenic miR-
21 inhibits the tumor suppressive activity of FBXO11 
to promote tumorigenesis [50–54]. Moreover, miR-21 
promotes glioblastoma initiation through down-regulating 
IGFBP3 [55]. Additionally, miR-21 was shown to down-
regulate the expression of the tumor suppressor PDCD4 
in the human glioblastoma cell line T98G [56]. Plasma 
miR-21 concentration may be a useful biomarker in 
glioblastoma patients [57]. The oncogenic miRNAs 
miR-21 and miR-23a are potential therapeutic targets in 
glioma.

To explore the interactions between miRNAs and 
their corresponding target genes, we performed pathway 
analyses using the list of target genes referenced by all 
three computational databases. The top 10 significant 
pathways showed enrichment of 2,104 genes associated 
with cancer initiation and progression. These genes 
represented a wide range of biological processes. We took 
advantage of statistical tools to mine available data for 
each target gene. We found that the FDR and FC values 
for more than half of the target genes met our criteria.

Our results demonstrate that a combination of 
miRNA and target gene expression could enable the 
identification of promising biomarkers for glioma and 
provide novel insights into the molecular mechanisms 
responsible for glioma initiation and progression. 
Additional studies are required to validate the impact of 
the six miRNAs on glioma development, progression, and 
patient prognosis.

MATERIALS AND METHODS

Search strategies

A two-phase literature search was performed to 
identify studies involving glioma miRNA expression 
profiling. First, microarray datasets were extracted from 

the NCBI and GEO databases using the following MESH 
terms: (microRNA OR miRNA) AND (brain carcinoma 
or brain cancer or brain tumor or brain neoplasm or 
glioma or glioblastoma) AND (expression OR profile OR 
profiling). Next, references from the included studies were 
manually screened to identify additional relevant studies. 
Three reviewers independently extracted the data from all 
eligible studies. All sample datasets (i) were from humans, 
(ii) included miRNA arrays, and (iii) were part of studies 
that included FDR and FC calculations. The datasets 
analyzed in this study are summarized in Table 1.

Data collection and processing

We collected five publicly available glioma 
microRNA microarray datasets that were assembled using 
different platforms. Each of the datasets was generated by 
a separate laboratory. To obtain more consistent results, 
we performed a meta-analysis of the multiple miRNA 
microarrays. The microarray datasets were analyzed based 
on the same statistical hypothesis (cancer versus normal 
tissue). We converted log2-transformed datasets from 
the different platforms into FC. A 5% FDR in Bayesian 
statistical analysis was then used to identify statistically 
significant differences in miRNA expression between 
cancer and control cases.

Sensitivity and specificity of differentially 
expressed miRNAs

We analyzed publicly available expression data for 
miRNAs in various human tissues including the liver, 
ovary, uterus, prostate, and brain. We first collected data 
for miRNAs that were differentially expressed in these 
tissues, and then compared the expression to that observed 
in glioma tissue. The data were obtained from miRBase 
(www.mirbase.org), microRNA (www.microrna.org/
microrna/home.do), and RNAhybrid (bibiserv2.cebitec.
uni-bielefeld.de/rnahybrid). The SPSS statistical software 
was used analyze the diagnostic value of miRNAs that 

Table 3: The top 10 enriched pathways based on GeneGO analysis

Pathways Components -log (p-value)
p53 pathway feedback loops 2 32 10.1
Interleukin signaling pathway 36 7.16
Toll receptor signaling pathway 46 5.33
Parkinson disease 37 5.31
Notch signaling pathway 23 5.30
Cadherin signaling pathway 16 5.24
Apoptosis signaling pathway 72 5.16
VEGF signaling pathway 25 5.03
Alzheimer disease-amyloid secretase pathway 31 4.55
FGF signaling pathway 26 4.37
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were differentially expressed between glioma and normal 
tissue.

MiRNA target prediction and functional analysis

To identify potential miRNA target genes, we first 
queried the three most popular computational databases, 
miRBase [58], microRNA [59], and TargetScan [60]. We 
identified target genes that were present in all 3 databases. 
GO analysis of the potential target genes was based on 
the terms of the Gene Ontology database: gene function-
related biological processes were detected, and genes 
with similar functions were combined. KEGG pathway 
analysis was performed to identify the pathways that were 
significantly associated with the target gene candidates 
based on a comparison with the entire set of reference 
genes. Target genes with a FDR ≤ 0.05 were considered to 
be significantly enriched.
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