
Oncotarget10498www.impactjournals.com/oncotarget

Investigating the utility of human melanoma cell lines as tumour 
models

Krista Marie Vincent1,2, Lynne-Marie Postovit1

1Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
2Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, London, 
ON N6A 3K7, Canada

Correspondence to: Lynne-Marie Postovit, email: postovit@ualberta.ca
Keywords: cell lines, tumour models, microenvironment
Received: October 13, 2016    Accepted: December 13, 2016    Published: January 02, 2017

ABSTRACT

Melanoma researchers utilize cell lines to model many tumour phenomena. 
It is thus important to understand similarities and differences between cell lines 
and the tumours that they represent, so that the optimal models can be chosen to 
answer specific research questions. Herein, we compared the transcriptomes of 42 
melanoma cell lines to hundreds of tumours from The Cancer Genome Atlas and 
thousands of single melanoma cells. Tumour purity was accounted for using the 
ESTIMATE algorithm, so that differences likely resulting from non-tumour cells could 
be accounted for. In addition, UV mutational signatures and the expression of skin-
associated genes were analyzed in order to identify the putative origin of various 
cell lines. We found the transcriptional and mutational characteristics of melanoma 
cell lines to mirror those of the tumours, with the exception of immune-associated 
transcripts, which were absent in cell culture. We also determined cell lines that 
highly or poorly recapitulate melanomas and have identified colon (COLO 741) and 
lung (COLO 699) cancer cell lines that may actually be melanoma. In summary, this 
study represents a comprehensive comparison of melanoma cell lines and tumours 
that can be used as a guide for researchers when selecting melanoma cell line models.

INTRODUCTION

Human malignant melanoma is the most deadly 
form of skin cancer. Although it accounts for only 2% of 
skin cancer cases, it causes the majority of skin cancer 
deaths [1]. Furthermore, the incidence of melanoma 
has been approximately doubling every 10-20 years 
[2, 3]. While highly treatable if detected early, metastatic 
melanoma has a five year survival rate of only 10-20% 
and it remains a particularly aggressive form of cancer 
[4]. New targeted therapies, such as BRAF and immune 
checkpoint inhibitors, have achieved success in extending 
patient survival, however, innate or acquired therapy 
resistance and tumour recurrence is almost unavoidable 
[5, 6]. Appropriately modeling melanoma is paramount 
to understanding the molecular mechanisms behind 
melanoma tumourigenicity and therapy resistance.

Cell lines have been used to model molecular 
phenomena since the generation of the first immortalized 
cancer line, HeLa, in 1951. The use of these in vitro 
models has propelled our understanding of molecular 

cancer biology and led to numerous landmark discoveries, 
such as the prevalence of BRAF V600E mutations in 
melanoma [7]. However, certain in vitro phenomena 
are often difficult or impossible to replicate in vivo and 
the suitability of cell lines as tumour models has been 
questioned. Caveats of cell culture include (1) possible 
selection of a subset of clones particularly amenable to 
cell culture, (2) loss of in vivo microenvironment (eg. 
three-dimensionality, regions of hypoxia), and (3) loss 
of stromal, vascular, and immune cellular populations 
(summarized in [8]). Considering those potential 
differences, it would not be surprising if cell lines diverged 
from the tumours they had been established to represent. 
Understanding the extent to which cell lines accurately 
represent their parental tumours will help to optimize 
future research efforts.

Differences in genomic and transcriptional profiles 
between cancer cell lines and tumour samples have been 
investigated for several types of cancer including glioma, 
breast, colorectal and ovarian cancer [9–12]. For example, 
analysis of high-grade serous ovarian cancer cell lines 
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revealed that the most frequently used cell lines are poorly 
representative of their tumour counterparts. To aid future 
research efforts, the authors were able to identify several 
infrequently used cell lines that more accurately represent 
their parental tumours in mutational and transcriptional 
profiles [11]. A comparison of melanoma cell lines to 
melanoma tumours has been lacking and would likely be 
of great benefit to the melanoma field.

Recent transcriptional and mutational profiling of 610 
cancer cell lines, hundreds of melanoma tumour samples 
from The Cancer Genome Atlas (TCGA), and thousands 
of malignant melanoma single cells has enabled a direct 
comparison of these in vitro and in vivo groups [13–15]. In 
this study, we investigate the strengths and weaknesses of cell 
lines as melanoma models. We show that many melanoma 
cell lines recapitulate a UV-induced mutational signature; 
however, there are many transcriptional differences that are 
primarily driven by clinically relevant immune related genes; 
thus highlighting the importance of immune system presence 
in accurate melanoma modeling. In addition, we sought to 
identify melanoma cell lines that are better models of their 
tumour counterparts while accounting for MITF or AXL 
enriched transcriptional states. Importantly, we show that an 
annotated lung and an annotated colorectal cell line cluster 
with and display melanoma characteristics, indicating that 
they may be of melanoma origin.

RESULTS

Comparison of cell lines and tumour expression 
profiles

Overall, transcriptional profiles of melanoma 
cell lines generally resemble that of tumours, with a 

correlation coefficient of 0.91 for the mean expression 
of 20,460 coding genes (compared to 0.83 and 0.83 for 
melanoma tumours correlated to breast and lung cell lines) 
(Figure 1a, Supplementary Figure 1). However, there 
are many outliers that have high expression in tumours 
and little to no expression in cell lines, and vice versa. 
Principal component analysis on expression data of the 
top 5,000 variable genes reveals two distinct clusters 
composed mainly of tumours or cell lines (Figure 1b). 
Interestingly, there are several cell lines that cluster 
within the tumour group, likely indicative of cell lines 
that are more transcriptionally representative of tumours. 
Principal component 1 (PC1) appears to be linked to 
extent of differentiation, with higher pigment scoring 
tumours having higher PC1 values (Figure 1c) and cell 
lines clustering with low pigment scored tumours. This 
is in line with previous work that has recognized the 
high representation of amelanotic melanoma cell lines 
[16]. On the other hand, principal component 2 (PC2) 
appears to be related to the immune presence, with higher 
lymphocyte density scoring tumours having higher PC2 
values (Figure 1d). Cell lines have comparatively low 
PC2 values.

Many of the top differentially expressed genes 
are immune-related and clinically relevant

To further examine the transcriptional differences 
between melanoma cell lines and tumours, we focused on 
the top 5% differentially expressed genes in cell culture 
(Figure 2a, Supplementary Table 1). Many of the genes 
found to have high expression in tumours compared to 
cell lines are known for immune function (eg. LCK, C1QC 
and CD14; Figure 2b-2c). They were also found to be 

Figure 1: Transcriptional comparison of 42 melanoma cell lines with 471 TCGA melanoma tumour samples suggests 
overall transcriptional similarity. a. Scatterplot of mean expression values (log2[TPM+1]) of 20,460 coding genes in melanoma cell 
lines (horizontal) and tumours (vertical). Pearson’s correlation coefficient r = 0.91. Grey line depicts the reflection line (y=x). b. The 5,000 
most variable genes were used for principal component analysis and the first two components are displayed. Most cell lines cluster apart 
from tumours. Colours of the points indicate sample type: cell line (blue), tumours (red). c,d. Boxplots of PC1 broken down by tumour 
pigment score (c) and PC2 broken down by lymphocyte density (d). ANOVA followed by Tukey’s HSD (p<0.05).
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tightly correlated with tumour-specific Immune scores (as 
determined by the ESTIMATE algorithm). As well, gene 
set enrichment analysis of cell lines and tumours revealed 
lower expression of immune gene sets in culture (eg. 
hsa04612 Antigen processing and presentation, hsa04650 
Natural killer cell mediated cytotoxicity; Supplementary 
Table 2). To help determine the contribution of immune 
and stromal cell types to the top differentially expressed 
genes, gene expression values were correlated to 
Immune and Stromal scores. 31% (314 of 1023) of the 
top differentially expressed genes were tightly correlated 
with Immune score (r > 0.4) while only 4.5% (46 of 1023) 
were tightly correlated with Stromal score (Figure 2e). 
Furthermore, the patient-specific summed scaled Z-scores 
of those 314 immune-related differentially expressed 
genes (“Immune DEG Values”) were significantly 
associated with poor overall survival, indicative of the 
clinical importance of these genes (Figure 2f).

Ranking of cell lines by transcriptional similarity 
to tumour counterparts

Tirosh et al. recently conducted single cell RNA-
sequencing on over 4,000 stromal and malignant 
melanoma cells directly extracted from tumours [15]. 
Using these data we found that cell lines more closely 
transcriptionally resembled malignant cells than all cells 
from a tumour (correlation coefficient of mean gene 
expression of 0.83 and 0.67, respectively). Thus this 
single cell analysis creates an unprecedented opportunity 

to directly compare transcriptomes from cell lines 
(composed entirely of malignant cells) to only malignant 
melanoma cells directly extracted from tumours. To 
determine the transcriptional suitability of individual cell 
lines as tumour models, we ranked the cell lines based on 
the average correlation coefficient of all genes of all cell 
line-malignant cell pairs. Although not meant to provide 
a finely graduated ranking, it can help guide researchers 
to choose cell lines that are more transcriptionally 
representative of melanoma patient tumours. This ranking 
system leads to a spread of melanoma cell lines from most 
similar to patient tumours (Table 1, top) to least similar 
(Table 1, bottom). The top three ranked cell lines (COLO 
849, SK-MEL-30, and UACC-257) have high average 
correlation coefficients of over 0.53, however, they are 
infrequently used as melanoma models, accounting for 
only 0.62% of publications on this cell line panel. On the 
other hand, the bottom three ranked cell lines (Hs 895.T, 
Hs 852.T, and Hs 839.T) have exceptionally low average 
correlation coefficients of 0.42, 0.29, and 0.22 and likely 
represent poor models of melanoma.

Cell lines can be divided by MITF or AXL 
transcriptional programs

In-depth analysis of high-dimensional gene 
expression data from one cancer type often leads to the 
identification of discrete and previously unrecognized 
cancer taxonomy. Bittner et al. were the first group to 
suggest that there may be transcriptional signatures that 

Figure 2: Many of the transcriptional differences between melanoma cell lines and patient tumours are related to 
immune signatures. a. Heatmap representation of the top 5% differentially expressed genes (Benjamini-Hochberg adjusted p value, 
Welch’s t test) in cell lines compared to tumour samples. All genes were investigated in tumours for potential correlation with the ESTIMATE 
paradigm stromal and immune scores. b,c,d. Differential expression (boxplot) and Immune Score correlations (scatterplot) are displayed for 
representative genes: (b) LCK, (c) C1QC, and (d) CD14. Boxplots show gene expression values (log2[TPM+1]) stratified by sample source 
(cell line or tumour). Boxes represent interquartile ranges and points represent individual sample values. Scatterplots show gene expression 
values (log2[TPM+1]) versus Immune scores (ESTIMATE algorithm) of tumours. Pearson’s correlation coefficient is displayed in the lower 
right corner. e. Table depicting the number of genes in the top 5% differentially expressed genes that strongly correlate (r > 0.4) with the 
ESTIMATE Immune score, ESTIMATE Stromal score or neither scores. f. Kaplan-Meier curves (ten year overall survival) for patients 
with high Immune DEG Values (red line, n=146) and those with low Immune DEG Values (blue line, n=146). p = 0.000094, log-rank test.
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Table 1: Summary characteristics and ranking of 42 melanoma cell lines based on average Pearson’s correlation of 
their expression profiles with single malignant melanoma cells

Mean correlation to

all 
malignant 

tumour 
cells

the top 
MITF 

program 
enriched 

malignant 
cells

the top 
AXL 

program 
enriched 

malignant 
cells

Cell line 
MITF 

gene set 
enrichment

Cell line 
AXL 

gene set 
enrichment

Predominant 
MITF/AXL 

cluster

PubMed Citations, 
n

COLO 849 0.542 0.530 0.508 2.96 -0.39 MITF 0

SK-MEL-30 0.535 0.603 0.458 1.78 -0.28 MITF 15

UACC-257 0.531 0.601 0.451 2.43 -0.80 MITF 18

A375 0.529 0.510 0.512 -3.46 1.32 AXL 1663

537 MEL 0.528 0.521 0.488 0.18 1.54 Intermediate 4

IPC-298 0.523 0.510 0.488 0.25 0.93 Intermediate 6

LOX-IMVI 0.523 0.523 0.490 -3.53 1.96 AXL 39

COLO 792 0.521 0.577 0.447 2.78 -1.99 MITF 0

SK-MEL-28 0.519 0.578 0.459 2.17 -0.64 MITF 451

HMY-1 0.516 0.563 0.466 2.07 -1.91 MITF 4

SK-MEL-2 0.515 0.539 0.475 2.69 -1.48 MITF 250

SK-MEL-31 0.514 0.429 0.524 -0.50 4.30 Intermediate 4

SK-MEL-24 0.514 0.437 0.514 0.46 3.20 Intermediate 32

MeWo 0.513 0.565 0.454 1.81 1.34 MITF 322

HT-144 0.511 0.521 0.476 2.00 0.51 MITF 55

G-361 0.510 0.569 0.459 2.13 -2.76 MITF 287

624-mel 0.510 0.596 0.443 1.15 0.17 MITF 9

MEL-HO 0.507 0.575 0.415 1.75 -1.55 MITF 11

Hs 936.T 0.505 0.554 0.456 2.34 -2.22 MITF 0

SK-MEL-5 0.505 0.579 0.441 1.98 -2.45 MITF 112

IGR-37 0.503 0.566 0.444 1.87 -2.02 MITF 12

MDA-MB-435 0.503 0.474 0.484 -3.33 2.09 AXL 1239

928 mel 0.502 0.570 0.439 2.75 -2.84 MITF 8

COLO 794 0.501 0.457 0.489 -0.84 3.10 Intermediate 0

RPMI-7951 0.500 0.471 0.474 -4.46 3.22 AXL 45

COLO 679 0.500 0.488 0.500 1.14 -1.65 MITF 5

A2058 0.499 0.509 0.458 -1.09 -1.75 MITF 358

C32 0.497 0.434 0.504 -0.88 2.33 Intermediate 157

UCSD-242l 0.488 0.455 0.467 -1.01 3.01 Intermediate 0

SK23 0.484 0.537 0.441 1.88 -0.73 MITF 12

SK-MEL-1 0.483 0.473 0.452 1.84 -1.77 MITF 46

COLO 783 0.482 0.453 0.454 1.04 2.13 Intermediate 0

(Continued )
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define melanoma cell subgroups and further analysis 
by Hoek et al. defined two main states in melanoma: the 
proliferative (largely determined by MITF expression) 
and invasive state [17–20]. A recent study of single cell 
malignant melanoma transcriptomes has further refined 
these signatures and defined two main transcriptional states 
of melanoma cells: the MITF and AXL gene programs 
[15]. To investigate these newly defined gene programs in 
melanoma cell lines we investigated the expression of these 
gene sets in our panel of melanoma cell lines (Figure 3). We 
found that the cell lines displayed a spectrum of MITF/AXL 
gene set expression, but that expression of the two gene 
sets was often mutually exclusive (Figure 3a). To create 
MITF and AXL cell line scores we conducted gene set 
enrichment analysis of the two MITF and AXL gene sets. 
Cluster analysis via kernel density estimation of enrichment 
values defines three subgroups (a MITF-high, AXL-high and 
intermediate group) (Figure 3b, Table 1).

Ranking of cell lines by transcriptional similarity 
to malignant cell subgroups

To dissect out some of the subtleties likely due to 
transcriptional state, we classified the highest and lowest 
400 MITF/AXL ratio single cells as representative of MITF 
and AXL in vivo transcriptional states. We then ranked the 
cell lines based on the average correlation coefficient of all 
genes of all cell line-MITF or AXL high malignant cell pairs 

(Table 1). This analysis revealed cell lines that were highly 
representative of one transcriptional state but not the other 
(eg. SK-MEL-30 correlates strongly with MITF enriched 
cells [r = 0.60] but poorly with AXL enriched cell [r = 0.46]); 
or cell lines that were fair transcriptional representations 
of both states (eg. COLO 849 correlates with intermediate 
strength to MITF enriched cells [r = 0.53] and to AXL 
enriched cells [r = 0.51]). Interestingly, the three cell lines 
that had the lowest correlations to all malignant cells but that 
were characterized as AXL program enriched, still had low 
correlations to AXL-defined single cell entire transcriptomes, 
indicating that they are likely poor representations of both 
MITF- and AXL-enriched melanoma.

UV-induced mutational signatures are 
recapitulated in cell culture

Along with transcriptional identity, another unique 
feature of over 75% of patient melanoma samples is the 
presence of a UV-induced mutational signature [14]. 
UV signature mutations are defined by an enrichment 
of C>T substitutions at dipyrimidine sites. To see if this 
phenomenon was replicated in vitro, we assessed the 
mutational spectrum of annotated melanoma versus 
non-melanoma cell lines and found that the average 
melanoma cell lines had over a two-fold increase in 
C>T substitutions at dipyrimidine sites (Figure 4). This 
indicates that melanoma cell lines can maintain a UV-

Mean correlation to

all 
malignant 

tumour 
cells

the top 
MITF 

program 
enriched 

malignant 
cells

the top 
AXL 

program 
enriched 

malignant 
cells

Cell line 
MITF 

gene set 
enrichment

Cell line 
AXL 

gene set 
enrichment

Predominant 
MITF/AXL 

cluster

PubMed Citations, 
n

888 mel 0.473 0.540 0.418 2.15 -2.60 MITF 14

Hs 294.T 0.468 0.440 0.446 -4.33 3.96 AXL 74

SK-MEL-3 0.465 0.532 0.410 2.37 -0.44 MITF 43

Hs 940.T 0.460 0.456 0.431 -3.32 2.35 AXL 0

WM-115 0.449 0.393 0.453 -1.51 3.63 Intermediate 64

Hs 695.T 0.443 0.389 0.441 -1.58 2.69 Intermediate 0

DEOC-1 0.436 0.483 0.383 1.71 1.67 MITF 1

Hs 895.T 0.416 0.370 0.406 -3.18 3.34 AXL 0

Hs 852.T 0.285 0.295 0.248 -2.61 0.46 AXL 0

Hs 839.T 0.216 0.189 0.224 -2.70 2.36 AXL 1

All genes were used to compute the Pearson’s correlation of all the cell line-malignant cell pairs. The cell lines were ranked 
based on their average correlation indicated malignant cells (n = 1256). MITF and AXL program enriched cells represent 
the cells with the highest and lowest 400 MITF/AXL enriched cells, respectively. MITF or AXL gene set enrichment is 
indicated based on GAGE analyses. MITF, AXL or intermediate clusters were structured based on Gaussian kernels.
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Figure 3: MITF- and AXL-associated expression programs are recapitulated in melanoma cell lines. a. Relative expression 
(centered, scaled) of the MITF program genes (top) and AXL program genes (bottom) in 42 melanoma cell lines. Cell lines are sorted based 
on their gene set enrichment of MITF versus AXL gene sets from highest (left) to lowest (right) as determined by GAGE. b. Scatterplot 
representation of cell line AXL and MITF gene set enrichment as determined by GAGE. Shading represents kernel density estimates of the 
data. Coloured dots represent clustering as structured by Gaussian kernels (purple: MITF predominant; orange: AXL predominant; grey: 
intermediate).

Figure 4: Mutation spectrum in melanoma versus non-melanoma cell lines. Barplot depicting the spectrum of somatic variants 
at dipyrimidine and non-dipyrimidine sites in melanoma (n=42) and non-melanoma (n=567) cell lines. There is an excess of C>T transitions 
in melanoma cell lines, indicative of UV-exposure and sun-induced DNA damage. Bars denote mean percentage of total SNVs and error 
bars depict standard error of the mean.
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induced mutational signature in culture, consistent with 
prior studies [21, 22].

Tissue of origin analysis reveals potential mis-
identified melanoma cell lines

Another unique feature of melanoma is its 
aggressive nature—melanomas have the ability to 
metastasize when the primary tumour thickness is less 
than 1 mm [23]. Furthermore, no primary lesion can be 
identified in 13-17% of patients presenting with palpable 
evidence of regional metastatic melanoma [24]. This, 
along with the potential for cell lines to become cross-
contaminated or misidentified at any point during their 
extensive culture history, leads to greater than normal 
potential for melanoma cell lines to be misidentified as 
other types of cancer. To investigate this possibility in 
this cell panel, TiGER (tissue-specific gene expression 
database) was utilized to perform a skin-specific tissue 
of origin analysis along with classification based on the 
UV-induced mutational signature (Figure 5a). The analysis 
revealed a probable melanoma-origin for two annotated 
non-melanoma cell lines: COLO 741 (annotated colorectal 

origin) and COLO 699 (annotated lung origin). Along with 
this, in unsupervised hierarchal clustering, both the COLO 
741 and COLO 699 cell lines cluster in the melanoma-
specific branch (Figure 5b) and express skin-specific genes 
(eg. SILV, MLANA, DCT and SOX10) at such high levels 
that they are outliers when compared to all other annotated 
colorectal (Figure 5c) or lung cell lines (Figure 5d). On 
the other hand, the transcriptionally least representative 
melanoma cell lines (Hs 895.T, Hs 852.T, and Hs 839.T; 
Table 1) do not cluster with melanoma samples in TiGER 
skin-specific analysis or in unsupervised hierarchal 
clustering.

Genomic characterization of melanoma cell lines

To summarize transcriptional analyses and 
mutational and copy number alterations observed in 
melanoma cell lines, we assembled a tabular resource, 
which can be used by researchers when choosing cell line 
models (Figure 6, Supplementary Table 3). In general, 
the frequencies of these somatic mutational events in 
melanoma patient samples are replicated in melanoma cell 
lines with two exceptions: BRAF and TP53 are mutated at 

Figure 5: Tissue of origin analysis for melanoma cell lines. a. Scatterplot representation of fraction of C>T transitions at 
dipyrimidine sites and the weighted expression of skin genes. Vertical line at x=0.6 delineates UV mutational signature positive (>0.6) 
from UV mutational signature negative samples (<0.6). Horizontal line depicts a TiGER Skin Score of 95 and delineates the majority of 
melanoma samples from non-melanoma samples. b. Unsupervised hierarchal clustering of 610 cell lines based on gene expression data 
(VSD normalized values) of the 5,000 most variable genes. Clustering was done using Euclidean distance and Ward linkage. The bar 
represents the cell line tissue of origin (orange: melanoma cell line; grey: non-melanoma cell line). Bottom clustering depicts a closer view 
of the melanoma cluster and shows that COLO 741 and COLO 699 cell lines cluster with melanoma samples. c,d. Boxplot representation 
of the expression (VSD normalized values) of skin-specific genes: SILV, DCT, MLANA, and SOX10 in annotated colorectal cell lines (c) 
and annotated lung cell lines (d). Red points represent the values for the COLO 741 cell line (c) or the COLO 699 cell line (d).
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significantly higher frequencies in cell lines (p<0.05 by 
binomial test; Supplementary Table 4).

DISCUSSION

This is the first study that employs next generation 
sequencing data to investigate the suitability of melanoma 

cell lines as tumour models. We have demonstrated that in 
general, melanoma cell lines recapitulate the mutational 
and transcriptional profiles of patient tumours with a 
notable exception: immune profiles of patient tumours 
are absent in cell lines. Therefore, the clinically important 
immune landscape of melanoma is poorly represented in 
vitro and alternative tumour models should be considered 

Figure 6: Genomic summary of melanoma cell lines. Both average properties (left) and selected genetic events (right) can be 
used to choose the optimal cell model for specific occasions. Average properties include MITF/AXL/intermediate clustering, UV signature 
status, the citation frequency in the literature, the average transcriptional correlation with malignant melanoma cells, and the number of 
non-synonymous mutations. The selected genetic events include 20 possible somatic mutations (BRAF, NRAS, NF1, TP53, IDH1, GNA11, 
GNAQ, CDK4, CDKN2A, DDX3X, KIT, MAP2K1, PPP6C, PTEN, RAC1, RB1, ARID2, TERT, CTNNB1, and ITGA4) and 7 possible copy 
number alterations (BRAF, MITF, CDK4, MDM2, CCND1, CDKN2A, and PTEN) determined to be significantly altered in the landmark 
melanoma study by The Cancer Genome Atlas.
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to more appropriately represent these scenarios. In 
addition, we were able to rank cell lines based on their 
transcriptional similarity to tumours—recommending 
that cell line choices be informed by this summary. We 
have also pointed out annotated colorectal and lung cell 
lines that are of probable melanoma origin, and identified 
several annotated cell lines that are exceptionally poor 
models of melanoma. We anticipate that this analysis will 
help the melanoma field make more informed choices 
regarding model selection for each specific research 
question.

In general, we found that melanoma cell lines 
were transcriptionally representative of their respective 
tumours, with the majority of genes having a similar mean 
expression in cell lines and tumours. However, there were 
a subset of genes with drastic differences in expression 
levels, predominantly in the direction of high expression in 
tumours and little to no expression in cell lines. When we 
investigated the identity of these top differentially expressed 
genes, we found that many of them are known immune 
genes and tightly correlated with immune presence. This is 
not surprising given the immunogenic nature of melanoma 
and the absence of immune cells in cancer cell monoculture. 
Melanoma cell monoculture fails to address the role of the 
immune system. Hence, phenotypic behaviors observed 
in vitro may not always translate due to unforeseen 
interactions with immune cells in situ, and without 
syngeneic models, significant biological consequences of 
affecting immunogenicity could be missed.

Fortunately, there are murine models of melanoma, 
including the popular B16 cell line series, which may 
allow the melanoma field to overcome some of these 
difficulties. The B16 series of cell lines are derived from 
a spontaneous melanoma in C57BL/6 mice [25]. Thus 
the cells can be implanted back in this murine strain 
within the context of an intact immune system as a 
syngeneic model of melanoma [26]. However, it should 
be recognized that animals provide only an approximation 
of the reality in humans. Due to differences in skin 
architecture, mouse melanomagenesis does not exactly 
phenocopy disease progression in humans (reviewed in 
[27]). Mice, as heavily hair-covered species, have no need 
for skin pigmentation, and therefore almost completely 
lack epidermal melanocytes. Instead, melanocytes are 
located in dermal hair papilla. Thus, unlike most human 
melanomas that are of epidermal origin and usually lack 
pigment, most murine lesions are dermal with very high 
levels of pigment. In addition, the most commonly used 
murine melanoma model (B16) does not harbor a BRAF 
mutation [28]. Accordingly, murine melanomas likely 
do not recapitulate some of the key features of human 
melanoma and come with a different set of caveats.

Despite the transcriptional differences that we 
observed between human melanoma cell lines and 
tumours, we did observe cell lines that clustered closer 
to their tumour counterparts than others in the principal 

component analysis. Accordingly, we predicted that 
some cell lines would more accurately represent the 
transcriptional profile of melanoma tumours. Recent 
single cell RNA-sequencing of over 4,000 melanoma cells 
provides an unprecedented opportunity to directly compare 
the trancriptomes of in vivo malignant melanoma cells 
with cell lines (composed entirely of malignant cells). Our 
analysis found that the correlation coefficient of individual 
cell lines to malignant cells varied from 0.22 to 0.54. This 
was somewhat similar to the ranges of 0.41-0.58 and 0.43-
0.60 that has been previously observed in similar analyses 
conducted on breast and ovarian cell lines, respectively 
[10, 11]. It also revealed instances wherein certain cell 
lines better represented one transcriptional state over 
another (eg. SK-MEL-30 cells have a high average 
correlation coefficient to MITF-defined malignant cells [r 
= 0.60] but not AXL-defined malignant cells [r = 0.46]). 
While several melanoma cell lines appear to be good 
tumour models, there are also three cell lines (Hs 895.T, 
Hs 852.T, and Hs 839.T) that display exceptionally poor 
transcriptional resemblance to their tumour counterparts. 
As well, these three cell lines cluster with non-melanoma 
cell lines using tissue of origin analyses and unsupervised 
hierarchal clustering. While it’s difficult to conclude if 
these three cell lines have been misidentified as melanoma 
lines, it is convincing that they represent exceptionally 
poor models of melanoma.

On the other hand, it may be more feasible to identify 
annotated non-melanoma cell lines as being of probable 
melanoma origin. The precedent for this was set in 2000, 
when the annotated breast cancer MDA-MB-435 cell line 
was shown to cluster with melanoma cell lines and express 
melanoma-specific genes [29]. Follow-up analysis revealed 
the likelihood that all available MDA-MB-435 cells are 
derived from the M14 melanoma cell line [30]. The decades 
of extensive breast cancer-specific literature conducted on 
this cell line represent a valuable resource for the melanoma 
field. In our tissue of origin analysis and unsupervised 
hierarchal clustering, we identified two annotated non-
melanoma cell lines that are probably of melanoma origin: 
the COLO 741 annotated colorectal cell line and the COLO 
699 annotated lung cell line. A separate study by Medico et 
al. of 151 colorectal cell lines has previously questioned the 
origin of COLO 741 cells [12]. It is difficult to tell if these 
probable misidentifications are a result of cell line cross-
contamination, like in the case of MDA-MB-435 cells, or a 
result of an original incorrect tumour diagnosis. However, 
we can conclude through the SNP profiling conducted by 
Klijn et al. on 675 cell lines, that while the COLO 741 cell 
line was genetically dissimilar to all other cell lines tested, 
the COLO 699 cell line was highly concordant to the 
annotated melanoma cell line CHL-1 and may be a result 
of cross-contamination. Until a thorough investigation 
into the background of these two cell lines is conducted, 
we recommend that researchers exercise caution when 
interpreting results obtained using them.
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This study is the first of its kind to determine the extent 
to which melanoma cell lines represent tumours in terms 
of gene expression and mutational burden. While generally 
quite similar, we determined that cell lines and tumours differ 
at the transcriptional level, likely due to a loss of immune 
components in cell culture. Additionally, we were able to 
rank cell lines based on their transcriptional similarity to 
malignant cell tumour counterparts and identified three cell 
lines that were exceptionally poor models of melanoma. We 
have also identified two cell lines, COLO 741 and COLO 
699, which are of probable melanoma origin. Knowing the 
strengths and weaknesses of our widely used tumour models 
can help direct tumour model choice and improve the clinical 
value of future research efforts.

MATERIALS AND METHODS

Datasets

Level 3 TCGA RNAseqV2 gene expression and 
Level 2 TCGA somatic mutation data (BI mutation 
calling) was obtained from the TCGA Data Portal in 
January 2016. Patient survival information, pigment 
scores and lymphocyte density values for TCGA samples 
was obtained from the supplementary information of the 
SKCM TCGA landmark paper (original publication [14]). 
RNA-sequencing expression, mutational and copy number 
information was retrieved in January 2016 for 675 cancer 
cell lines from the supplementary information of Klijn et 
al. (original publication [13]). Cell line analysis and details, 
including growth conditions and sequencing methods, are 
described in the original publication. Single cell RNA-
sequencing of malignant melanoma cells were obtained 
from Gene Expression Omnibus GSE72056 in June 2016.

Data preparation

Relative abundance (transcripts per million, TPM) 
was calculated for 471 melanoma patient samples (104 
primary tumours and 367 metastases) by multiplying the 
scaled estimate data by 106, and for 42 melanoma cell lines 
by converting RPKM (reads per kilobase of exons per 
million mapped reads) to TPM. To avoid infinite values 
in log calculations, a value of 1 was added to TPM values 
before log2 transformation. Values for the genes that 
were available on both datasets were used in downstream 
analyses (20,460 coding genes in total). For single cell 
analysis, TPM values were divided by 10 as in the original 
paper, given that the complexity of single cell libraries is 
estimated to be in the order of 100,000 transcripts.

Gene expression profiling analysis

The top 5,000 genes by variance across the 
combined cell line-tumour dataset were chosen for 
principal component analysis. Significant differences 

in relative transcript abundances between cell lines and 
tumours were calculated with Welch’s t test and p values 
were corrected for multiple testing using the Benjamini-
Hochberg method. Unsupervised hierarchal clustering was 
done using Euclidean distance and Ward’s agglomeration 
method (ward.D2). Enrichment for functionally related 
genes between the two datasets was tested using Generally 
Applicable Gene-set Enrichment (GAGE, v2.12.3) with 
KEGG gene sets.

Tumour purity

Stromal and Immune scores were defined for 
tumours through the use of the ESTIMATE (Estimation of 
STromal and Immune cells in MAlignant Tumour tissues 
using Expression data; original publication [31]) algorithm 
using RNASeqV2 data. Pearson’s correlation coefficient 
was used to calculate the association of specific genes to 
Stromal and Immune scores.

Survival analysis

Immune Differentially Expressed Gene (DEG) 
Values were calculated for tumours by creating and 
summing Z-scores for genes that were (1) in the top 5% 
of differentially expressed between cell lines and tumours 
and (2) strongly correlated with immune score (r > 0.4). 
Immune DEG Values were dichotimized by median 
and ten year survival curves were constructed using the 
Kaplan-Meier method on metastatic samples that had 
survival information available (n=292). Significance was 
determined by log-rank test.

MITF/AXL program analysis

MITF and AXL gene programs as defined by Tirosh 
et al. were used to characterize cell lines [15]. Enrichment 
for gene sets in the cell lines was tested using Generally 
Applicable Gene-set Enrichment (GAGE, v2.12.3) with 
Tirosh et al. defined gene sets. Kernel density estimation 
was conducted on MITF and AXL cell line enrichment 
scores and clusters were defined using Gaussian kernels.

To define the top MITF and AXL gene set enriched 
single melanoma cells, MITF and AXL cell scores were 
calculated as in the original paper [15] and a ratio of the 
two values were taken to rank the malignant cells. Briefly, 
we defined both MITF/AXL average relative expression 
cell scores and control gene set cell scores. Control gene 
set scores were subtracted from their respective MITF/AXL 
cell scores. All genes were used to compute Pearson’s 
correlation of all cell line-single malignant cell pairs and 
cell lines were ranked based on their average correlation 
with all malignant cells. In MITF/AXL specific analyses, 
Pearson’s correlation of the malignant single cells with the 
highest or lowest 400 MITF/AXL ratios were used instead 
of all malignant cells.
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Mutational analysis

Non-synonymous coding mutations with neighbouring 
nucleotide information were extracted from all non-
synonymous coding mutations and used in mutational 
spectrum analyses. Patterns of particular nucleotide 
substitutions were determined for melanoma (n=42) and non-
melanoma (n=567) cell lines as a mean percentage of total 
somatic variants. Cell lines were classified as UV signature 
positive if the fraction of C>T transitions at dipyrimidines was 
>0.6 as defined in the landmark TCGA SKCM paper [14].

In our genomics summary, selected mutational 
events and copy number alterations were considered if they 
were found to be significantly altered from normal tissue 
in the landmark TCGA SKCM study [14]. Copy number 
alterations represent ploidy-corrected copy number calls; 
copy number amplifications represent ploidy-corrected copy 
number values > 1 and copy number deletions represent 
ploidy-corrected copy number values < -0.75.

Tissue of origin analysis

The skin tissue-specific panel of genes was retrieved 
from the TiGER portal (bioinfo.wilmer.jhu.edu/tiger/). 
Gene symbols were filtered for presence in the SKCM 
RNA-sequencing dataset. TiGER Skin Scores were 
determined for each cell line as previously described [12]. 
The TiGER database provides an “EST Enrichment” (EE) 
score, proportional to enrichment in that specific tissue. To 
weigh the genes more strongly associated with skin-specific 
expression, EE scores were squared and summed, and the 
squared EE square of each gene was divided by the sum to 
obtain a scaled EE score. The cell line specific TiGER Skin 
Scores were calculated by summing the products of gene 
expression (VSD normalized values) and the scaled EE score.

PubMed citation analysis

The number of PubMed abstracts that mentioned 
one of the 42 melanoma cell lines was determined as 
an estimator of frequency of use. Hits were determined 
using the PubMed search function (www.pubmed.com) on 
February 29, 2016. Several punctuation alternatives were 
used for the cell line names.

Statistical analysis

We conducted all analyses and visualizations in 
the RStudio programming environment (v0.98.501). R/
Bioconductor packages ggplot2, plyr, gplots, ggdendro, 
survival, pdfCluster, and GAGE were used where 
appropriate.
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