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ABSTRACT

Increasing evidence has highlighted the critical roles of long non-coding RNA 
(lncRNA) in cancer development and progression. However, the prognostic power 
of expression-based lncRNA signature for predicting overall survival in patients 
with Bladder Urothelial Carcinoma (BLCA) has not been investigated. Here, we 
performed a comprehensive analysis for lncRNA expression profiles and corresponding 
clinical information of 234 BLCA patients from The Cancer Genome Atlas (TCGA). 
We established a set of four-lncRNAs that were significantly associated with BLCA 
patients’ survival. Using the prognostic four-lncRNA signature, we successfully 
classified the BLCA patients into high-risk and low-risk groups, and the prognostic 
power of the four-lncRNA signature was further validated in the testing dataset and 
entire dataset. Multivariate Cox regression and stratified analyses demonstrated that 
the prognostic power of the four-lncRNA signature was independent of other clinical 
variables. Functional enrichment analyses suggested the four prognostic lncRNAs may 
be involved in known BLCA-related biological processes and pathways. Our results 
demonstrated that the four-lncRNA signature could be novel independent biomarkers 
for predicting survival in patients with BLCA.

INTRODUCTION

Bladder cancer is the ninth most common malignancy 
worldwide [1]. It has been estimated about 80000 newly 
diagnosed bladder cancer cases in the United States in 
2015 [2]. Bladder Urothelial Carcinoma (BLCA) is the 
most common histological subtype of bladder cancer. 
Overall, about 70% of bladder tumors are non-muscle-
invasive bladder cancer, and the others are muscle-invasive 
bladder cancer [3]. Despite recent advances in the surgical 
technique, the overall survival of BLCA patients has not 
been dramatically improved, and the five-year survival rate 
remains at only 50-60% [4-6]. Therefore, it is necessary to 
identify novel independent biomarkers for diagnostic and 
prognosis and to develop new targeted therapies for BLCA 
patients.

Long non-coding RNAs (lncRNAs) are an 
important category of non-coding RNAs (ncRNAs) 
with little or no protein-coding capacity, which range 

from 200 nucleotides to multiple kilobases in length 
[7, 8]. Accumulated evidence suggests that lncRNAs 
play crucial roles in regulating gene expression at 
transcriptional, posttranscriptional and epigenetic levels 
[7, 9], and participate in various biological processes and 
pathways, such as transcriptional regulation, cell growth 
and tumorigenesis [10, 11]. Like mRNA and miRNA, 
some well-studied lncRNAs have been found to play 
critical oncogenic or tumor suppressive roles in various 
types of cancers [12-14]. For instance, HOTAIR, MALAT1 
and CRNDE have been showed as oncogenic roles [15-
25], while GAS5, MEG3 and lincRNA-p21 as tumor 
suppressive roles [26-32]. Currently, several expression-
based lncRNA signatures have been identified in 
glioblastoma [33], oesophageal squamous cell carcinoma 
[34], breast cancer [35], colorectal cancer [36], non-small 
cell lung cancer [37], multiple myeloma [38] and ovarian 
cancer [39], highlighting their potential roles as novel 
independent biomarkers for cancer prognosis. For bladder 
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cancer, recent studies have also revealed that lncRNAs 
(HOTAIR, SPRY4-IT1, SUMO1P3 and PANDAR) are 
aberrantly expressed in BLCA patients [40-43]. However, 
the prognostic power of expression-based lncRNA 
signature for predicting BLCA patients’ survival remains 
unclear.

In this work, we performed a comprehensive 
analysis for lncRNA expression profiles and corresponding 
clinical information of BLCA patients in the TCGA 
training dataset. We identified four lncRNAs significantly 
associated with patients’ survival and constructed a four-
lncRNA signature that can effectively predict patients’ 
survival. The testing dataset and entire dataset further 
validated the prognostic power of the four-lncRNA 
signature. Our results demonstrated the four-lncRNA 
signature can function as novel independent biomarkers 
for BLCA prognosis and provide novel insights into 
understanding of the underlying molecular mechanism of 
BLCA.

RESULTS

Identification of prognostic lncRNAs associated 
with patients’ survival from the training dataset

The 234 patients with BLCA were randomly 
divided into a training dataset (n = 117) and a testing 
dataset (n = 117). The training dataset was analyzed to 
identify prognostic lncRNAs. At first, we performed 
a univariate Cox regression analysis to evaluate the 
association between the expression profiles of each 
lncRNA and patients’ survival in the training dataset. 
The result showed that four lncRNAs were identified 
as prognostic lncRNAs (p-value < 0.001). The detailed 
information of these four lncRNAs was showed in 
Table 1. Among these prognostic lncRNAs, the lncRNAs 
(AC005682.5 and CTD-2231H16.1) with higher 
expression profiles were associated with shorter survival 
(coefficient > 0), while the remaining two lncRNAs 
(CTB-92J24.2 and RP11-727F15.13) with higher 
expression profiles were associated with longer survival 
(coefficient < 0).

Construction and validation of a four-lncRNA 
signature for predicting patients’ survival in the 
training dataset

To construct a prognostic signature, these four 
lncRNAs were analyzed using a multivariate Cox 
regression analysis in the training dataset with survival as 
the dependent variable and other clinical information as 
covariables. Then we constructed a prognostic signature 
by integrating the expression profiles of the four lncRNAs 
and corresponding estimated regression coefficient 
derived from above multivariate Cox regression analysis 
as follows: Risk score = (0.371 × expression value of 

AC005682.5) + (0.175 × expression value of CTD-
2231H16.1) + (-0.251 × expression value of CTB-92J24.2) 
+ (-0.232 × expression value of RP11-727F15.13). With 
the four-lncRNA signature, we calculated a risk score 
for each patient in the training dataset and ranked them 
according to increased risk score. Thus, 117 patients of 
the training dataset were classified into a high-risk group 
(n = 59) and a low-risk group (n = 58) using the median 
risk score (-1.12) as the cutoff point. The Kaplan-Meier 
analysis showed a significant difference in patients’ 
survival between the high-risk group and the low-risk 
group (log-rank test p-value = 8.94E-09; Figure 1A). 
Patients in the high-risk group had significantly shorter 
survival (median 5.60 months) than those in the low-risk 
group (median 7.52 months). To evaluate how well the 
four-lncRNA signature for predicting the 5-year survival, 
the time-dependent ROC curve analysis was carried out. 
The AUC for the four-lncRNA signature was 0.807 at 
the survival of five years (Figure 1B), demonstrating the 
competitive performance of the four-lncRNA signature for 
survival prediction in the training dataset. In the univariate 
Cox regression analysis of the training dataset, the four-
lncRNA risk score were significantly associated with 
patients’ survival (p-value = 3.33E-05, HR = 23.141, 95% 
CI = 5.248-102.043; Table 2).

The distribution of the risk score, overall survival 
and prognostic lncRNA expression profiles in 117 patients 
of the training dataset were showed in Figure 1C, ranked 
according to increased risk score. Patients with high-risk 
scores had higher mortality than patients with low-risk 
scores. For patients with high risk scores, the expression 
profiles of lncRNAs (AC005682.5 and CTD-2231H16.1) 
are significantly up-regulated, while the remaining two 
lncRNAs (CTB-92J24.2 and RP11-727F15.13) were 
down-regulated.

Validation of the four-lncRNA signature for 
survival prediction in the testing dataset and 
entire dataset

To validate the prognostic power of the four-
lncRNA signature for survival prediction, 117 patients 
of the testing dataset were divided into a high-risk group 
(n = 62) and a low-risk group (n = 55) with the same 
lncRNA signature and cutoff point derived from the 
training dataset. In consistent with the findings in the 
training dataset, the result showed that a significantly 
different survival between the high-risk group and the 
low-risk group (log-rank test p-value = 3.49E-02, median 
6.62 months vs. 6.97 months; Figure 2A). The AUC for 
the four-lncRNA signature was 0.656 at the survival of 
five years in the testing dataset. In the univariate Cox 
regression analysis of the testing dataset, the four-
lncRNA risk score were significantly associated with 
patients’ survival (p-value = 3.97E-02, HR = 2.365, 95% 
CI = 1.042-5.372; Table 2).
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Figure 1: The four-lncRNA signature in prognosis of overall survival of BLCA patients in the training dataset. A. The 
Kaplan-Meier curves of overall survival between high-risk and low-risk patients in the training dataset. B. The ROC curve for survival 
prediction by the four-lncRNA signature within five years as the defining point in the training dataset. C. The four-lncRNA risk score 
distribution, overall survival of patients and heatmap of the four-lncRNA expression profiles in the training dataset.

Table 1: The detailed information of four prognostic lncRNAs significantly associated with overall survival in 
patients with BLCA

Ensembl ID Gene symbol Chromosomal position P valuea Hazard 
ratioa Coefficientb

ENSG00000228649 AC005682.5 chr7: 22,854,178-22,861,579 (+) 3.39E-04 1.613 0.371

ENSG00000249430 CTD-2231H16.1 chr5: 92,151-139,863 (+) 8.44E-04 0.175 0.175

ENSG00000269397 CTB-92J24.2 chr19: 23,927,788-23,929,287 (+) 2.22E-04 0.609 -0.251

ENSG00000269463 RP11-727F15.13 chr11: 62,807,682-62,808,063 (-) 6.88E-04 0.736 -0.232

a,bDerived from the univariate and multivariate Cox regression analyses in 117 patients of the training dataset.
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Table 2: Univariate and multivariate Cox regression analyses in each dataset

Variables
Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

Training dataset (n=117)

 Four-lncRNA risk score

  Low risk/High risk 23.141 5.248-102.043 3.33E-05 21.761 4.637-102.129 9.44E-05

 Age

  ≤65/>65 1.072 0.444-2.591 0.876 0.700 0.237-2.071 0.520

 Gender

  Female/Male 0.786 0.304-2.031 0.620 0.909 0.331-2.498 0.853

 Subtype

  Non-Papillary/Papillary 0.343 0.100-1.173 8.82E-02 0.290 0.060-1.401 0.123

 Stage

  II 1 (reference) 1 (reference)

  III 2.408 0.598-9.701 0.217 0.246 0.031-1.946 0.184

  IV 3.350 0.944-11.882 6.13E-02 1.369 0.335-5.591 0.662

Testing dataset (n=117)

 Four-lncRNA risk score

  Low risk/High risk 2.365 1.042-5.372 3.97E-02 2.459 1.067-5.666 3.46E-02

 Age

  ≤65/>65 1.148 0.479-2.754 0.756 1.333 0.549-3.240 0.525

 Gender

  Female/Male 1.199 0.481-2.991 0.697 1.229 0.488-3.096 0.662

 Subtype

  Non-Papillary/Papillary 0.507 0.175-1.473 0.212 0.633 0.213-1.885 0.411

 Stage

  II 1 (reference) 1 (reference)

  III 1.680 0.515-5.484 0.390 1.479 0.422-5.180 0.541

  IV 2.472 0.791-7.720 0.119 2.024 0.634-6.468 0.234

Entire dataset (n=234)

 Four-lncRNA risk score

  Low risk/High risk 5.581 2.839-10.972 6.18E-07 4.975 2.527-9.795 3.45E-06

 Age

  ≤65/>65 1.118 0.603-2.073 0.722 1.202 0.643-2.248 0.564

 Gender

  Female/Male 0.994 0.516-1.915 0.985 1.145 0.587-2.233 0.691

 Subtype

  Non-Papillary/Papillary 0.433 0.194-0.967 4.12E-02 0.553 0.242-1.268 0.162

(Continued )



Oncotarget10489www.impactjournals.com/oncotarget

When the four-lncRNA signature was further 
applied to the entire TCGA dataset, similar results were 
observed. As in the training and testing dataset, the four-
lncRNA signature could also classify 234 patients of the 
entire dataset into a high-risk group (n = 121) and a low-
risk group (n = 113) with significantly different survival 
(log-rank test p-value = 3.89E-08, median 6.43 months vs. 
7.33 months; Figure 2B). In the entire dataset, the AUC 
for the four-lncRNA signature was 0.758 at the survival 
of five years. The univariate Cox regression analysis 
also demonstrated that the four-lncRNA risk score was 
significantly associated with patients’ survival in the 
entire dataset (p-value = 6.18E-07, HR = 5.58, 95% CI 
= 2.84-10.97; Table 2). Taken together, the above results 
demonstrated good reliability and reproducibility of the 
four-lncRNA signature for predicting BLCA patients’ 
survival.

Independence of the four-lncRNA signature for 
survival prediction from other clinical variables

To evaluate whether the prognostic power of the 
four-lncRNA signature was independent of other clinical 
variables including age, gender, subtype and tumor 
stage, the multivariate Cox regression analyses were 
first carried out in each dataset. The results from the 
three datasets demonstrated that the four-lncRNA risk 
score was significantly associated with patients’ survival. 
Specifically, the four-lncRNA signature still maintained 
an independent association with survival after adjustment 
for other clinical variables in the training dataset (p-value 
= 9.44E-05, HR = 21.761, 95% CI = 4.637-102.129), 
testing dataset (p-value = 3.46E-02, HR = 2.459, 95% 
CI = 1.067-5.666) and entire dataset (p-value = 3.45E-
06, HR = 4.975, 95% CI = 2.527-9.795; Table 2). Next, 
stratified analyses were then performed according to 
age, tumor stage and subtype, respectively. First, all 234 
BLCA patients were stratified by the age (65 years old) 
into a younger dataset (n = 86) and an elder dataset (n 
= 148). The four-lncRNA signature could classify the 
younger dataset into a high-risk group (n = 45) and a low-
risk group (n = 41) with significantly different survival 
(log-rank test p-value = 1.64E-04, median 6.00 months 
vs. 6.77 months; Figure 3A). Similarly, the four-lncRNA 
signature was also able to classify the elder dataset into 

a high-risk group (n = 76) and a low-risk group (n = 72) 
with significantly different survival (log-rank test p-value 
= 1.02E-04, median 6.45 months vs. 7.60 months; Figure 
3B). Then all patients were further stratified by the tumor 
stage into an early dataset (stage II and stage III, n = 156) 
and a late dataset (stage IV, n = 78). Similar prognostic 
power of the four-lncRNA signature was significant in 
both the early dataset and late dataset. Patients in the 
early dataset were classified into a high-risk group (n = 
80) with shorter survival and a low-risk group (n = 76) 
with longer survival (log-rank test p-value = 2.25E-04, 
median 6.48 months vs. 7.05 months; Figure 3C). Similar 
results were observed in the late dataset (log-rank test p 
= 1.55E-05, median 5.93 months vs. 7.73 months; Figure 
3D). Finally, all patients were stratified by the subtype into 
a non-papillary dataset (n = 165) and a papillary dataset 
(n = 69). Significant differences in patients’ survival 
between the high-risk groups and the low-risk groups were 
also observed in the two datasets (log-rank test p-value 
= 5.52E-05, median 6.50 months vs. 7.13 months, Figure 
3E; log-rank test p-value = 4.33E-04, median 3.73 months 
vs. 7.47 months, Figure 3F). The results of multivariate 
Cox regression analyses, together with the stratified 
analyses, demonstrated that the prognostic power of the 
four-lncRNA signature was independent of other clinical 
variables for survival prediction of patients with BLCA.

Functional characteristics of the four prognostic 
lncRNAs

To investigate potential functional roles of the 
four prognostic lncRNAs in BLCA tumorigenesis, we 
carried out functional enrichment analyses to predict their 
functions [44]. We first calculate Spearman correlation 
coefficients between lncRNAs and protein-coding genes 
by examining the paired lncRNA and the protein-coding 
gene expression profiles of 234 patients with BLCA. A 
total of 1405 protein-coding genes were significantly 
correlated with at least one of four prognostic lncRNAs 
(Spearman correlation coefficient > 0.40). Functional 
enrichment analyses of GO and KEGG pathways revealed 
that 1405 protein-coding genes were significantly enriched 
in 50 GO terms (a p-value of < 0.05 and an enrichment 
score of > 1.0) and 7 KEGG pathways (a p-value of < 0.05 
and a fold enrichment of > 2.0). These functionally related 

Variables
Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

 Stage

  II 1 (reference) 1 (reference)

  III 2.070 0.840-5.099 0.114 1.070 0.383-2.992 0.898

  IV 2.917 1.256-6.775 1.28E-02 1.866 0.774-4.497 0.165
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GO terms were mainly organized into seven functional 
clusters including assembly and disassembly of protein 
and macromolecules, transcription, signal transduction and 
response to stimulus, cell apoptosis and death, metabolic 
and catabolic process, cell development, carbohydrate 
metabolic (Figure 4A). Seven significantly enriched 
KEGG pathways were observed including tight junction, 
aldosterone-regulated sodium reabsorption, pathogenic 
escherichia coli infection, adherens junction, valine, 
leucine and isoleucine degradation, p53 signaling pathway, 
glycosphingolipid biosynthesis (Figure 4B). These results 
of the functional enrichment analyses suggested that the 
four prognostic lncRNAs may participate in tumorigenesis 
through regulating or interacting protein-coding genes 
to affect known BLCA-related biological processes and 
pathways.

DISCUSSION

Considerable efforts have been made during the past 
years to identify expression-based prognostic biomarkers 
for bladder cancer at protein-coding genes and miRNAs 
levels [45-47]. More recently, accumulated evidence 
indicates that dysregulated lncRNAs are implicated in 
various tumorigenesis processes including proliferation, 
invasion and apoptosis by acting as tumor oncogenes 
or suppressor, which has developed a new area for 
biomarkers. Additionally, plenty of aberrant lncRNA 
expression in multiple cancers was discovered by the 
transcriptional profiling analyses [48, 49], highlighting 

their potential roles as novel independent biomarkers 
for cancer prognosis. By now, several expression-based 
lncRNA signatures have been identified in glioblastoma, 
oesophageal squamous cell carcinoma, breast cancer, 
colorectal cancer, non-small cell lung cancer, multiple 
myeloma and ovarian cancer. Compared with protein-
coding genes, lncRNAs exhibit greater tissue-, disease- 
and developmental stage-specific expression, and their 
expression is more closely related to the tumor status and 
biological functions [50-54]. Indeed, several lncRNAs, 
such as HOTAIR, SPRY4-IT1, SUMO1P3 and PANDAR 
have been found to be associated with bladder prognosis 
[40, 43]. However, to date, the prognostic power of 
expression-based lncRNA signature for predicting survival 
in patients with BLCA has not yet been investigated.

Here, we performed a comprehensive analysis for 
lncRNA expression profiles and corresponding clinical 
information of BLCA patients in the training dataset, 
and identified four lncRNAs significantly associated 
with patients’ survival and constructed a four-lncRNA 
signature that can effectively predict survival of BLCA 
patients. Further ROC curve analysis demonstrated the 
competitive performance of the four-lncRNA signature 
for predicting 5-year survival in the training dataset. 
Then the prognostic power of the four-lncRNA signature 
was validated in an independent non-overlapping dataset 
and an entire dataset, demonstrated good reliability 
and reproducibility of the four-lncRNA signature for 
predicting BLCA patients’ survival. Next, we performed 
multivariate Cox regression analyses in each dataset 

Figure 2: The Kaplan-Meier curves of overall survival between high-risk and low-risk patients in the testing and 
entire dataset. A. The Kaplan-Meier curves for the testing dataset. B. The Kaplan-Meier curves for the entire dataset.
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Figure 3. Survival analyses of all BLCA patients stratified by age, stage, tumor subtype with the four-lncRNA signature. 
A. The Kaplan-Meier curves for the younger dataset (age ≤ 65, n = 86). B. The Kaplan-Meier curves for the elder dataset (age > 65, 
n = 148). C. The Kaplan-Meier curves for the early dataset (stage II/III, n = 156). D. The Kaplan-Meier curves for the late dataset (stage 
IV, n = 78). E. The Kaplan-Meier curves for the non-papillary dataset (subtype of non-papillary, n = 165). F. The Kaplan-Meier curves for 
papillary dataset (subtype of papillary, n = 69).
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to evaluate whether the prognostic power of the four-
lncRNA signature was independently of other clinical 
variables, including age, gender, subtype and tumor 
stage. The four-lncRNA signature was demonstrated to 
still maintain an independent association with patients’ 
survival after adjustment for other clinical variables. In 
the stratified analyses, the four-lncRNA signature showed 
prognostic power for the younger dataset (age ≤ 65) and 
the elder dataset (age > 65), in which patients belonging 

to the two datasets could be classified into high-risk and 
low-risk groups with significant differences in patients’ 
survival. Similar prognostic power of the four-lncRNA 
signature was also significant in the early dataset (stage 
II and stage III) and the late dataset (stage IV), in which 
patients in the two datasets were able to classified into 
high-risk and low-risk groups with significantly different 
survival. Moreover, similar results were observed in the 
non-papillary dataset and the papillary dataset. Taken 

Figure 4: Functional enrichment analyses of the protein-coding genes co-expressed with the four prognostic lncRNAs. 
A. The functional enrichment map of GO terms. Each node represents a GO term. An edge represents the overlap of the shared genes between 
connecting terms. Node size represents the number of gene in the GO terms. Color intensity is proportional to enrichment significance. 
B. Significantly enriched KEGG pathway.



Oncotarget10493www.impactjournals.com/oncotarget

together, these results demonstrated that the prognostic 
power of the four-lncRNA signature was independent of 
other clinical variables for survival prediction of patients 
with BLCA.

Up to date, although more than tens of thousands 
of lncRNAs have been discovered in humans over the 
past few decades [55], only a handful of lncRNAs were 
functionally well-characterized and the functional study 
of lncRNAs remains in its infancy. Previous studies have 
suggested that lncRNAs participated in biological processes 
and pathways by regulating or interacting with protein-
coding genes involved in the same processes, making it 
possible to infer lncRNA biological functions from their 
co-expressed protein-coding genes [44, 56, 57]. To detect 
the biological implication of the four prognostic lncRNAs 
in BLCA, we performed GO and KEGG functional 
enrichment analyses for co-expressed protein-coding genes. 
The results indicated the important functional roles of the 
four prognostic lncRNAs in tumorigenesis.

In summary, by performing a comprehensive 
analysis for lncRNA expression profiles and corresponding 
clinical information, our study identified four prognostic 
lncRNAs were significantly associated with BLCA 
patients’ survival and constructed a four-lncRNA 
signature that can effectively predict patients’ survival. 
The prognostic power of the four-lncRNA signature 
was independent of other clinical variables, and showed 
superior performance compared to known traditional 
clinical variables in a way. Our results demonstrated the 

four-lncRNA signature can function as novel independent 
biomarkers for BLCA prognosis and provided novel 
insights into understanding the underlying molecular 
mechanism of BLCA.

MATERIALS AND METHODS

BLCA datasets and patient information

The lncRNA expression profiles and corresponding 
clinical information of BLCA patients were obtained 
from The Cancer Genome Atlas (TCGA) data portal (up 
to May 27, 2016; https://gdc-portal.nci.nih.gov/). A total 
of 234 patients were enrolled in this study after removal 
of patients without available clinical information. Clinical 
information of BLCA patients used in this study, including 
age, gender, subtype and stage. More detailed clinical 
characteristics of all 234 BLCA patients in this study were 
listed in Table 3.

Acquisition of lncRNA expression profiles

The lncRNAs derived from TCGA and lncRNAs 
from GENCODE project [58] were cross-reference by 
Ensemble ID to reduce redundant. Then the lncRNA 
expression profiles were defined as those with an average 
RPKM ≥ 0.3 across all 234 BLCA patients. Finally, we 
obtained expression profiles of 12730 lncRNAs in 234 
BLCA patients.

Table 3: Clinical characteristics of patients with BLCA in this study

Characteristics Training dataset
(n=117)

Testing dataset
(n=117)

Entire dataset
(n=234)

Vital status
 Alive 96 (82.1%) 91 (77.8%) 187 (79.9%)
 Dead 21 (17.9%) 26 (22.2%) 47 (20.1%)
Age
 ≤65 50 (42.7%) 36 (30.8%) 86 (36.8%)
 >65 67 (57.3%) 81 (69.2%) 148 (63.2%)
Gender
 Female 31 (26.5%) 28 (23.9%) 59 (25.2%)
 Male 86 (73.5%) 89 (76.1%) 175 (74.8%)
Subtype
 Non-papillary 82 (70.1%) 83 (70.9%) 165 (70.5%)
 Papillary 35 (29.9%) 34 (29.1%) 69 (29.5%)
Stage
 II 41 (35.0%) 29 (24.8%) 70 (29.9%)
 III 37 (31.6%) 49 (41.9%) 86 (36.8%)
 IV 39 (33.3%) 39 (33.3%) 78 (33.3%)
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Construction of a prognostic lncRNA signature

The lncRNAs expression profiles were normalized by 
log2 transformed. The association between the expression 
profiles of each lncRNA and patients’ survival was evaluated 
in the training dataset using a univariate Cox regression 
analysis with survival as the dependent variable. LncRNAs 
whose expression profiles were significantly associated 
with patients’ survival were identified (p-value < 0.001) as 
prognostic lncRNAs, and then subjected to a multivariate 
Cox regression analysis in the training dataset with survival 
as the dependent variable and other clinical information as 
covariables. Subsequently, a prognostic lncRNA signature 
was constructed based on a linear combination of the 
expression profiles of prognostic lncRNAs with weighted 
by the estimated regression coefficient as follows:

*Risk Score RS Exp Coe( ) ( )i i

i

N

1
∑=

=

where N is the number of prognostic lncRNAs, Expi 
is the expression profiles of lncRNAi, and Coei is the 
estimated regression coefficient of lncRNAi derived from 
the multivariate Cox regression analysis. The lncRNA 
signature could calculate a risk score for each patient. 
With the lncRNA signature, BLCA patients in each dataset 
were classified into high-risk and low-risk groups using 
the median risk score derived from the training dataset as 
a cutoff point.

Statistical analysis

Differences in patients’ survival between the high-risk 
group and the low-risk group in each dataset were accessed 
by the Kaplan-Meier survival analyses, and compared by the 
two-sided log-rank test using the R package “survival” [59]. 
Furthermore, in order to evaluate whether the prognostic 
power of the four-lncRNA signature was independent of 
other clinical variables including age, gender, subtype and 
tumor stage, multivariate Cox regression and stratified 
analyses were carried out in each dataset with survival 
as the dependent variable, lncRNA risk score and other 
clinical variables as explanatory variables. Hazard ratios 
(HR) and 95% confidence intervals (CI) were calculated. 
The time-dependent receiver operating characteristic (ROC) 
curve analyses within five years as the defining points were 
performed using the R package “survivalROCR” [60], 
which has been widely used to evaluate the prognostic 
performance for survival prediction [61]. Area under the 
ROC curve (AUC) values were calculated from the ROC 
curves. All analyses were performed using R software and 
Bioconductor (version 3.3.0).

Functional enrichment analyses

Spearman correlation coefficients were computed 
to evaluate co-expression relationships between 

prognostic lncRNAs and protein-coding genes. Functional 
enrichment analyses for the co-expressed protein-coding 
genes were carried out using the DAVID Bioinformatics 
Tool (version 6.7) [62, 63] limited to Gene ontology (GO) 
terms in the “Biological Process” (GOTERM-BP-FAT) 
and Kyoto encyclopedia of genes and genomes (KEGG) 
pathway categories with the human whole genome as the 
background. GO terms with a p-value of < 0.05 and an 
enrichment score of > 1.0, KEGG pathway with a p-value 
of < 0.05 and a fold enrichment of > 2.0 were considered 
as significantly enriched function annotations. Significant 
enrichment results were visualized and clustered based 
on the similar function using the Enrichment Map plugin 
[64] in Cytoscape (version 3.4.0) [65] and R package 
“goProfiles” [66].
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