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ABSTRACT

Breast cancer is the most commonly diagnosed malignancy in women. Several key 
genes and pathways have been proven to correlate with breast cancer pathology. This 
study sought to explore the differences in key transcription factors (TFs), transcriptional 
regulation networks and dysregulated pathways in different tissues in breast cancer. 
We employed 14 breast cancer datasets from NCBI-GEO and performed an integrated 
analysis in three different tissues including breast, blood and saliva. The results showed 
that there were eight genes (CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and NFIL3) 
down-regulated in breast tissue but up-regulated in blood tissue. Furthermore, we 
identified several unreported tissue-specific TFs that may contribute to breast cancer, 
including ATOH8, DMRT2, TBX15 and ZNF367. The dysregulation of these TFs damaged 
lipid metabolism, development, cell adhesion, proliferation, differentiation and metastasis 
processes. Among these pathways, the breast tissue showed the most serious impairment 
and the blood tissue showed a relatively moderate damage, whereas the saliva tissue 
was almost unaffected. This study could be helpful for future biomarker discovery, drug 
design, and therapeutic and predictive applications in breast cancers.

INTRODUCTION

According to the World Health Organization, 
breast cancer is the most commonly diagnosed cancer in 
females worldwide. Epidemiology studies have shown 
that breast cancer incidence has increased by 3.1% per 

annum between 1980 and 2010 [1]. Based on incidence 
data from the Globocan 2008 database extrapolated to the 
projected world population in 2030, the World Economic 
Forum estimates that nearly 2.2 million new cases of 
breast cancer will be diagnosed worldwide in 2030 [2]. 
Furthermore, despite the high treatment success rate, it 
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remains the number one cause of cancer death in women 
[3]. Approximately 522,000 women worldwide died of 
breast cancer in 2012, including 324,000 women in less 
developed countries where the malignancy is currently 
the leading cause of female cancer deaths, accounting for 
14.3% of all cancer fatalities [4].

Several key transcription factors (TFs) play critical 
roles in the proliferation, invasion and migration of breast 
cancer cells [5, 6]. A recent study identified 8 TFs that are 
critical for basal-like breast cancer (BLBC) cell growth, 
and SOX11 was the only TF required for BLBC growth 
but not for the growth of non-BLBC cells [7]. PITX2, 
a paired-like Homeobox transcription factor, contributes 
to the invasiveness of breast cancer cells, which is an 
activity that appears to be mediated by the Wnt/beta-
Catenin pathway [8]. In addition, another study identified 
Tbx3 as a novel target of tumor suppressor miR-206 
and characterized the miR-206/Tbx3 signaling pathway, 
which is involved in the proliferation, invasion and 
maintenance of the cancer stem cell population in breast 
cancer cells [9].

A cross-tissue gene expression comparison in 
disease will help us to understand the global molecular 
landscape and reveal new candidate genes that may serve 
as suitable drug targets. A recent study reconstructed gene 
regulatory networks in coronary artery disease from seven 
tissues (atherosclerotic arterial wall, internal mammary 
artery, liver, skeletal muscle, visceral fat, subcutaneous fat 
and whole blood) and identified key drivers including AIP, 
DRAP1, POLR2I and PQBP1 [10]. Another study revealed 
several early warning signal genes in liver, muscle and 
adipose tissues in type 2 diabetes mellitus in rats based 
on a dynamic network method [11]. Furthermore, a 
recent clinical study showed that DNA methylation and 
the gene expression of HIF3A were associated with BMI 
and insulin resistance by cross-tissue validation (blood, 
subcutaneous adipose and skeletal muscle) [12].

Several abnormal metabolic pathways, potential 
biomarkers and drug target genes have already been 
identified in breast cancer [13–15]. However, to our 
knowledge, no study has conducted a cross-tissue 
comparison via the integration of multiple sets of breast 
cancer gene expression data. Therefore, in the present 
study, we integrated 14 breast cancer gene expression 
datasets containing breast, blood and saliva tissues in order 
to explore the differences in the transcriptional regulation 
relationships between TFs and TF-target genes as well as 
impaired pathways in breast cancer and mine the diverse 
gene signatures among these three tissues.

RESULTS

Differentially expressed genes overview

Table 1 shows the details of 14 integrated breast 
cancer datasets. We mapped 20,307 genes in the integrated 
breast cancer datasets. Differentially expressed genes in 

the three subgroups are shown in Table 2 . In the breast 
group, we obtained 1,300 up-regulated and 1,201 down-
regulated genes. Furthermore, there were 64 up-regulated 
and 15 down-regulated genes in the blood group. However, 
we found no differential expression genes in the saliva 
group. Commonly and tissue-specific dysregulated genes 
in the breast and blood group are shown in Supplementary 
Table 1. We obtained 16 commonly up-regulated genes 
and 2 commonly down-regulated genes. In addition, 2 
genes were up-regulated in the breast and down-regulated 
in blood. However, 15 genes were down-regulated in 
the breast but up-regulated in blood. Among these 35 
genes, the effect of NCEH1, THOC4, UBE2M, EPB42 or 
SNORD104 on breast cancer still has yet to be reported.

Tissue-specific dysregulated pathways in breast 
cancer

Gene set enrichment analysis (GSEA) results 
showed that there were 22 up-regulated and 25 down-
regulated pathways in the breast group, and 77 up-
regulated and 3 down-regulated pathways in the blood 
group. Only 1 up-regulated pathway was enriched in 
the saliva group. The Venn diagram of these enriched 
pathways is shown in Figure 1. There were 17 commonly 
up-regulated pathways and 3 commonly down-regulated 
pathways between breast and blood. Table 3  shows 
the top 10 significantly enriched pathways in the three 
groups. The cell cycle, DNA replication, spliceosome, 
proteasomes, mismatch repair, p53 signaling pathway, 
nucleotide excision repair and other 10 pathways were 
up-regulated in the breast and blood groups. Additionally, 
the down-regulated pathways in the blood group were 
all enriched in the breast group (olfactory transduction, 
renin angiotensin system and neuroactive ligand receptor 
interaction). However, three pathways (fatty acid 
metabolism, adipocytokine signaling pathway and valine, 
leucine and isoleucine degradation) were down-regulated 
in the breast group but up-regulated in the blood group.

Expression profiles of TFs and TF-target genes

The expression profiles of 1,469 mapped TFs in 
three tissues are shown in Figure 2. We obtained 145 
and 13 differentially expressed TFs in breast and blood, 
respectively (Supplementary Table 2). No dysregulated 
TF was found in the saliva group. There were eight TFs 
(CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and 
NFIL3) that were down-regulated in the breast group 
but up-regulated in the blood group. We used TRRUST 
web server and mapped 11, 87, 5, 3, 55, 3, 1 and 10 
target genes of these TFs to our datasets, respectively. 
Next, we filtered the TFs that have more than 15 target 
genes and showed their expression profiles. Figure 3 
shows the expression profiles of EGR1 and its target 
genes in the three groups. There were several target 
genes that were activated by EGR1, such as FAP, FN1, 
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PLAU, PLAUR, UBE2S and VEGFA, in the breast 
group. Furthermore, we found that PTGS2, PPARG, F3, 
SPRY1, SYN2, TFPI2 and TGFBR2 were suppressed by 
EGR1 (Figure 3A). However, these genes were activated 
by EGR1 or unaffected in the blood group (Figure 3B). 
No expression change was observed in the saliva group 
(Figure 3C). The expression profiles of FOS and its 

target genes are shown in Figure 4. Several target genes 
were suppressed by FOS in the breast group, such as 
PTGS2, CLU, FOS, CSTA, FIGF and OXTR (Figure 
4A). However, these genes were unaffected or activated 
by FOS in the blood group (Figure 4B). In the saliva 
group, we found only CSTA was activated by FOS 
(Figure 4C).

Table 1: Summary of the breast cancer datasets

Series ID Contributor Samples 1 Title Tissue

GSE8977 Richardson A, 
2007 22 (22) Bone-marrow-derived mesenchymal stem cells 

promote breast cancer metastasis Breast

GSE10810 Fárez-Vidal ME, 
2008 58 (58)

Gene expression signatures in breast cancer 
distinguish phenotype charact., histological 

subtypes, and tumor invasivness
Breast

GSE16391 Haibe-Kains B, 
2009 55 (48)

GGI: a potential predictor of relapse for 
endocrine-treated breast cancer patients in the 

BIG 1-98 trial
Breast

GSE20266 Zhang L, 2010 20 (20) Salivary Transcriptomic and Proteomic 
Biomarkers for Breast Cancer Detection Saliva

GSE26910 Planche A, 2011 24 (12) Stromal molecular signatures of breast and 
prostate cancer Breast

GSE27562 LaBreche HG, 
2011 162 (162) Expression data from human PBMCs from 

breast cancer patients and controls Blood

GSE29431 Lopez FJ, 2011 66 (66) Identifying breast cancer biomarkers Breast

GSE31192 Harvell DM, 
2011 33 (33) Molecular Signature of Pregnancy Associated 

Breast Cancer (PABC) Breast

GSE35925 Katayama MH, 
2012 30 (29)

Calcitriol supplementation effects on Ki67 
expression and transcriptional profile of breast 

cancer specimens from post-menopausal 
patients

Breast

GSE36765 Willard-Gallo K, 
2012 34 (14) Gene expression profiling of CD4+ T cells 

infiltrating human breast cancer (Discovery Set) Blood

GSE42568 Clarke C, 2012 121 (121) Breast Cancer Gene Expression Analysis Breast

GSE45827 Gruosso T, 2013 155 (141) Expression data from Breast cancer subtypes Breast

GSE50567 Lisowska KM, 
2013 41 (41) BRCA1-related gene signature in breast cancer: 

the role of ER status and molecular type Breast

GSE61304 Yenamandra SP, 
2014 62 (62) Novel bio-marker discovery for stratification 

and prognosis of breast cancer patients Breast

1 All samples of this dataset (samples used in this study).

Table 2: Differentially expressed genes in breast cancer

Group Cases/Controls Mapped Genes Up-regulated Down-regulated

Breast 470/163 20307 1300 1201

Blood 141/35 20307 64 15

Saliva 10/10 20307 0 0
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Tissue-specific transcriptional regulatory 
network

The tissue-specific transcriptional regulatory 
networks (TRNs) of breast, blood and saliva are shown in 
Supplementary Figure 3-5. The TRN properties of three 
tissues were listed in Supplementary Table 3. We found 
that breast TRN had the highest clustering coefficient 
of 0.083; this value in blood TRN is 0.038 and 0.000 
in saliva TRN. Furthermore, breast TRN showed the 
highest connected component of 153, followed by blood 
TRN (116) and saliva TRN (28). In addition, breast TRN 
had the most multi-edge node pairs of 95, followed by 
blood TRN (55) and saliva TRN (9). The betweenness 
centrality of three TRNs were displayed in Supplementary 
Figure 6. In breast TRN, we found several TFs had high 
betweenness centralities, suggesting that this network 
could be divided into multiple modules (Supplementary 
Figure 3 and 6A). However, TFs in blood and saliva TRNs 
had low betweenness centralities (Supplementary Figure 
6B and 6C). We listed TFs ≥ 100 degrees in these TRNs 
in Supplementary Table 4. There were 23 TFs in breast 
TRN and 8 TFs in blood TRN; no TF ≥ 100 degrees were 
found in saliva TRN. In breast TRN, we also found 5 TFs 
≥ 200 degrees; these TFs were NR1H4, HNF4A, POU4F2, 
PPARG and ZNF528. In addition, 8 TFs ≥ 100 degrees in 
breast and blood TRNs still have no data; most of them are 

zinc finger proteins (ZNF528, ZNF479, DMRT2, ZNF583, 
TBX15, ATOH8, ZNF367 and YBX2).

Regulation type of TF-target genes in enriched 
pathways

Numerous studies have demonstrated that 
the PPAR signaling pathway and complement and 
coagulation cascades are correlated with breast 
cancer pathology [16–21]. Therefore, we showed the 
regulation types and expression profiles of genes in 
these two pathways in breast (Figure 5 and 6). We also 
showed these pathways in the blood and saliva groups 
(Supplementary Figure 7-10). In Figure 5, the results 
showed that down-regulated PPARG suppresses many 
downstream genes in the PPAR signaling pathway. 
These genes were mainly involved in lipid metabolism, 
adipocyte differentiation, gluconeogenesis and other 
intracellular processes. In Figure 6, down-regulated F3 
suppressed the expression of several downstream genes. 
Furthermore, up-regulated PALU and PALUR activated 
the cell adhesion, migration and proliferation functions. 
However, in the blood group, some genes in these two 
pathways showed opposite expression (Supplementary 
Figure 7 and 9). These two pathways were almost 
unaffected in the saliva group (Supplementary Figure 
8 and 10).

Figure 1: Venn diagram of the enriched KEGG pathways in breast cancer. The three groups (breast, blood and saliva) are 
represented by the orange, red and blue colors, respectively. Panel A. shows the up-regulated pathways in each group. Panel B. shows the 
down-regulated pathways in each group.
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DISCUSSION

The present study showed a huge discrepancy in 
the global gene expression profiles, influenced pathways, 
transcription factor signatures and their transcriptional 
regulatory networks in breast, blood and saliva tissues 
in breast cancer. Among these three tissues, the most 
seriously impaired was the breast tissue. The blood tissue 
showed a relatively moderate damage, whereas the saliva 
tissue showed an almost undetectable difference.

Previous studies have identified numerous affected 
pathways and biological functions in breast cancer. Clarke 
et al. found a severe immune response dysfunction in 
breast cancer by a weighted gene coexpression network 
method [22]. A recent study identified several affected 
pathways such as cell cycle, cell adhesion and DNA 
replication in invasive ductal carcinoma (IDC), and the 
impairment pathways and dysregulated genes in IDC 
were different between the low-genetic-grade and high-
genetic-grade groups [15]. Our previous study revealed a 

serious stromal genome heterogeneity between breast and 
prostate tumors and found that several metabolism- and 
cellular process-related pathways were affected in breast 
cancer, such as the tryptophan metabolism pathway and 
ABC transporters pathway [23]. In this study, we found 
17 common up-regulated pathways (e.g., cell cycle, 
DNA replication, and p53 signaling pathway) both in 
breast and blood tissue. However, the 3 pathways showed 
contrary regulation between breast and blood. Only the 
ribosome pathway was up-regulated in the saliva group 
(Table 3). Furthermore, we performed GSEA using 
curated canonical pathways gene sets (http://software.
broadinstitute.org/gsea/msigdb) to verify the above 
results. Our results showed that most of the enriched 
KEGG pathways are included in the enriched canonical 
pathways in both breast and blood tissues, no enriched 
canonical pathway in saliva (Supplementary Figure 11). 
These findings suggested that it had diversity in the 
impairment of pathways and biological functions in breast 
cancer for different tissues.

Table 3: Top 10 dysregulated pathways identified in breast cancer

Group Up-regulated Pathways FDR Down-regulated Pathways FDR

Breast Cell cycle <0.001 Fatty acid metabolism <0.001

DMA replication <0.001 PPAR signaling pathway <0.001

Systemic lupus erythematosus <0.001 Propanoate metabolism <0.001

Spliceosome <0.001 Drug metabolism cytochrome p450 <0.001

Mismatch repair <0.001 Adipocytokine signaling pathway <0.001

Proteasome 0.001 Retinol metabolism 0.001

Homologous recombination 0.001 Metabolism of xenobiotics by 
cytochrome p450 0.001

Allograft rejection 0.001 Pyruvate metabolism 0.003

Pyrimidine metabolism 0.002 Butanoate metabolism 0.003

RNA degradation 0.003 Olfactory transduction 0.014

Blood Toll-like receptor signaling pathway <0.001 Olfactory transduction 0.001

Leishmania infection <0.001 Neuroactive ligand receptor interaction 0.008

Ubiquitin mediated proteolysis <0.001 Renin angiotensin system 0.049

Cell cycle <0.001

DNA replication <0.001

Acute myeloid leukemia <0.001

NOD-like receptor signaling pathway <0.001

T cell receptor signaling pathway <0.001

Neurotrophin signaling pathway <0.001

Lysosome <0.001

Saliva Ribosome 0.018
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We identified 8 TFs with contrasting expression in 
breast and blood tissues based on differentially expressed 
gene analysis (CEBPD, EGR1, EGR2, EGR3, FOS, 
FOSB, ID1 and NFIL3). We also performed GSEA using 
transcription factor targets (TFT) gene set in three tissues. 
The gene sets contain genes that share a transcription 
factor binding site defined in the TRANSFAC (version 
7.4, http://www.gene-regulation.com/) database. The 
identified TFs in breast and blood tissues are shown in 
Supplementary Table 5. However, we found only 17 
dysregulated TFs in 90 TFT enriched TFs in breast 

tissue, and 2 up-regulated TFs in 22 TFT enriched TFs in 
blood tissue. FOSB is a member of the Fos gene family. 
These Fos genes encode leucine zipper proteins that 
can dimerize with proteins of the JUN family, thereby 
forming the transcription factor complex AP-1. The 
encoded FOS proteins have been shown to be involved 
in cell proliferation, differentiation, and transformation 
[24]. Early growth response proteins are a family of 
zinc finger transcription factors. The following are the 
four members of this family: EGR1, EGR2, EGR3 and 
EGR4. All of these TFs have been proven to correlate 

Figure 3: Heatmap of EGR1 and its target genes. The gradient color from red to green is expressed as the logFC value of each gene. 
The red, blue and gray lines show the regulation type of EGR1 on the targets.

Figure 2: Expression profiles of transcription factors in breast cancer. The log2(FC) of all TFs in the breast, blood and saliva 
groups are displayed. The horizontal dashed lines indicate the cutoff values of log2(FC). The up- and down-regulated TFs are represented 
by red and green lines, respectively.
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Figure 5: Gene expression profiles of the PPAR signaling pathway in breast tissue. The red and green colors represent the 
log2(FC) of the corresponding genes.

Figure 4: Heatmap of FOS and its target genes. The gradient color from red to green is expressed as the logFC value of each gene. 
The red, blue and gray lines show the regulation type of FOS on the targets.
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with breast cancer pathogenesis and prognosis [25–28]. 
In addition, this study found the following tissue specific 
TFs that were not reported in breast cancer: ATOH8, 
DMRT2, TBX15 and ZNF367. Down-regulated ATOH8 
has been proven to contribute to the malignant phenotype 
of nasopharyngeal carcinoma [29] and increases the stem 
cell features of hepatocellular carcinoma cells [30]. Tun 
et al. reported that DMRT2 and other developmental TFs 
were significantly down-regulated in clear cell renal cell 
carcinoma [31]. Recently, genome-wide DNA methylation 
analysis suggested that TBX15 was hyper-methylated and 
down-expressed in hepatocellular carcinoma datasets 
[32]. However, contrary to these three TFs, ZNF367 was 
over-expressed in adrenocortical carcinoma, malignant 
pheochromocytoma, paraganglioma and thyroid cancer 
[33]. Interestingly, the expression patterns of these four 
TFs in our breast datasets were the same as those in 
previous reports. No expression change of these TFs was 
found in blood or saliva tissues.

The present study showed tissue-specific expressed 
TFs and target genes caused different impairment of 
biological functions in different tissues. We displayed 
these transcriptional regulation relationships in the 
PPAR signaling pathway and the complement and 

coagulation cascades pathway. EGR1 is necessary and 
sufficient to activate human peroxisome proliferator-
activated receptor-γ1 (PPARG) gene expression, which 
has been verified in human aortic smooth muscle cells 
[34]. PPARG is a key regulator of lipogenic genes, 
and a previous mouse study demonstrated that PPARG 
plays a crucial role in hepatic lipid metabolism [35]. 
The present study showed that low-expressed EGR1 
suppressed PPARG, and then low-expressed PPARG 
suppressed a series of downstream genes associated 
with lipogenesis, cholesterol metabolism, fatty acid 
transport and oxidation functions, thus resulting in 
abnormal lipid metabolism in breast tissue (Figure 
3 and 5). Coagulation factor III, also known as tissue 
factor (F3, also known as TF), has been reported to be 
regulated by EGR1, is responsible for the initiation of 
the coagulation protease cascades by specific limited 
proteolysis [36, 37]. In breast tissue, down-regulated 
EGR1 suppressed F3 expression, caused the low-
expression of several downstream genes and activated 
PLAU and PLAUR, eventually disturbing cell adhesion, 
proliferation and metastasis functions (Figure 5 and 6). 
Furthermore, low-expressed FOS suppressed CLU and 
inhibited cell lysis function in breast tissue. However, 

Figure 6: Gene expression profiles of the complement and coagulation cascades pathway in breast tissue. The red and 
green colors represent the log2(FC) of the corresponding genes.
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EGR1 and FOS were all up-regulated in blood tissue, 
and some downstream genes showed high-expression. 
No expression change was observed in saliva tissue 
(Figure 3, Supplementary Figure 7 and 8). It is worth 
noting that these functions were correlated with breast 
cancer pathological processes, and the extent of damage 
in these pathways varied largely in different tissues. Our 
study also found a series of unreported tissue-specific 
TFs that may correlate with breast cancer. However, no 
TF-target data were provided. Therefore, future studies 
need to verify these correlations.

In conclusion, our study identified a series of tissue-
specific TFs that correlated with breast cancer. Some 
of them are novel, such as ATOH8, DMRT2, TBX15 
and ZNF367. These TFs may be used as biomarkers 
for accurate diagnosis and prognosis or as predictive 
markers for treatment efficiency. Furthermore, we found 
these dysregulated TFs and their target genes impaired 
lipid metabolism, the coagulation cascade, cell adhesion, 
proliferation, differentiation and metastasis processes. 
The extent of damage in these functions varied widely in 
breast, blood and saliva tissues. These results suggest that 
the tissue-specific gene expression in breast cancer would 
require careful consideration in future clinical practice and 
theoretical research.

MATERIALS AND METHODS

Microarray data collection and preprocessing

Human breast cancer microarray datasets were 
searched and downloaded from the NCBI-GEO 
database (http://www.ncbi.nlm.nih.gov/geo) in March 
2016. We used the keywords of “breast cancer”, “breast 
adenocarcinoma” and “breast tumor” to perform accurate 
searching. The data selection criteria were as follows: 
(1) all datasets were genome-wide; (2) the samples of 
each data set must include breast cancer patients and 
controls; (3) the number of cases and controls in each 
dataset must be ≥ 3; (4) all samples were non-cell-line 
samples; and (5) complete microarray raw or normalized 
data were available. Based on the above criteria, we 
have finally chosen 14 datasets for our integrated 
analysis (GSE8977, GSE10810, GSE16391, GSE20266, 
GSE26910, GSE27562, GSE29431, GSE31192, 
GSE35925, GSE36765, GSE42568, GSE45827, 
GSE50567, and GSE61304). The integrated datasets 
included 621 breast cancer patients and 208 controls. 
Details of all datasets could be seen in Table 1 . All the 
datasets were tested using the platform of Affymetrix 
Human Genome U133 Plus 2.0 Array. Among them, 
11 datasets were tested using breast tissue (including 
470 patients and 163 controls), 2 datasets were tested 
using blood (including 141 patients 35 controls) and 1 
dataset was tested using saliva (including 10 patients 

and 10 controls). Thus, we divided these datasets into 
3 subgroups based on the sample collection source 
including breast, blood and saliva.

R v3.2.2 was used to perform data preprocessing. 
We used the Robust Multichip Average (RMA) algorithm 
in oligo package [38] to normalize the raw expression 
data and generate normalized gene expression intensity. 
Gene annotation, integration and renormalization of 
the 14 datasets were carried out using a custom written 
Python code. We have removed probes with no gene 
annotation or that matched multiple gene symbols. Next, 
we calculated the average expression value of multiple 
probe IDs that matched to an official gene symbol and 
took this value to represent the expression intensity of 
the corresponding gene symbol. The renormalization 
method and scripts are described in our previous 
publications [39, 40]. The distributions of RMA 
processed and global renormalized gene expression 
values across all studies are shown in Supplementary 
Figure 1 and 2. After the global expression was 
renormalized, the distribution of gene expression values 
across all studies had a consistent range.

Differential expression genes analysis

Differential expression gene analysis was performed 
using R v3.2.2 and the Bioconductor Library. The 
empirical Bayes algorithm (function “eBayes”) in the 
limma package [41] was used to detect differentially 
expressed genes between breast cancer patients and 
controls. Significantly up-regulated genes were defined 
by as a logarithmic transformed fold-change (log2(FC)) 
≥ log2(1.5) and a false discovery rate (FDR) adjusted P 
value ≤ 0.05. Significantly down-regulated genes were 
defined by a log2(FC) ≤ -log2(1.5) and an FDR-P value 
≤ 0.05. We carried out the differential expression analysis 
in three tissues.

Gene set enrichment analysis

We used javaGSEA Desktop Application v2.2.2 
to perform gene set enrichment analysis (GSEA) of 
breast cancer datasets. We chose KEGG pathway 
enrichment analysis to compare the impaired pathways 
in breast, blood and saliva tissues and tried to find the 
correlations between TFs and impaired pathways. The 
curated KEGG gene sets v5.1 (including 186 gene sets) 
(http://software.broadinstitute.org/gsea/msigdb/genesets.
jsp?collection=CP:KEGG) were chosen to perform KEGG 
pathway enrichment analysis among the three groups. 
Additionally, the gene sets less than 15 genes or more 
than 500 genes were excluded. The phenotype label was 
set as breast cancer vs. control. The t-statistic mean of 
the genes was computed in each KEGG pathway using a 
permutation test with 1000 replications. The up-regulated 
pathways were defined by a normalized enrichment score 
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(NES) > 0 and the down-regulated pathways were defined 
by an NES < 0. Pathways with an FDR-P value ≤ 0.05 
were chosen as significantly enriched. We used Venn 
diagram in InteractiVenn (http://www.interactivenn.net/) 
[42] to show the enriched KEGG pathways among these 
groups.

Transcription factor analysis

We downloaded 1,544 human transcription factors 
(TFs) from the Animal Transcription Factor Database 
(AnimalTFDB, http://www.bioguo.org/AnimalTFDB/
index.php) [43] and mapped 1,469 TFs to our integrated 
datasets. We filtered TFs that were differentially expressed 
in two and more groups and used the TRRUST web server 
(http://www.grnpedia.org/trrust/) [44] to find the target 
genes of the commonly dysregulated TFs. TRRUST could 
provide the information of the regulation type (such as 
activation and repression) between the queried TFs and 
target genes. We used heatmap in the “pheatmap” package 
to show the expression profiles of TFs and TF-target genes 
in the three groups.

Reconstruction of tissue-specific transcriptional 
regulatory networks (including breast, blood and saliva) 
were used GENIE3 software [45]. We used the gene 
expression matrix of the three tissues and transcriptional 
regulation relationship list in TRRUST as the input 
data and ran GENIE3 with its default parameters. The 
original output contained 4.12E8 TF-target interactions 
and we extracted the top 10,000 interactions. Next, we 
used Cytoscape v3.2.1 to visualize the output results. We 
used the NetworkAnalyzer tool in Cytoscape to perform 
network analysis of the three networks.

Based on previous reports, the PPAR signaling 
pathway and complement and coagulation cascades 
were critical in breast cancer pathology [16–21]. 
Therefore, we chose these two pathways and showed the 
expression profiles of the corresponding genes. We used 
the “pathview” package [46] to display these results. 
This package could provide the links between genes and 
pathways based on the KEGG pathway. We showed the 
gene expression profiles, their interactions and regulations, 
and related functions in the selected pathways in each 
group (breast, blood and saliva).
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