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ABSTRACT

Aberrant methylation of CpG islands acquired in promoter regions plays an 
important role in carcinogenesis. Accumulated evidence demonstrates FHIT gene 
promoter hyper-methylation is involved in non-small cell lung cancer (NSCLC). To test 
the diagnostic ability of FHIT methylation status on NSCLC, thirteen studies, including 
2,119 samples were included in our meta-analysis. Simultaneously, four independent 
DNA methylation datasets from TCGA and GEO database were analyzed for validation. 
The pooled odds ratio of FHIT promoter methylation in cancer samples was 3.43 (95% 
CI: 1.85 to 6.36) compared with that in controls. In subgroup analysis, significant 
difference of FHIT gene promoter methylation status in NSCLC and controls was found 
in Asians but not in Caucasian population. In validation stage, 950 Caucasian samples, 
including 126 paired samples from TCGA, 568 cancer tissues and 256 normal controls 
from GEO database were analyzed, and all 8 CpG sites near the promoter region of 
FHIT gene were not significantly differentially methylated. Thus the diagnostic role 
of FHIT gene in the lung cancer may be relatively limited in the Caucasian population 
but useful in the Asians.

INTRODUCTION

Lung cancer is a complicated disease involving 
genetic and epigenetic variation, and is one of the leading 
causes of cancer death all over the world [1]. Lung cancer 
is often lacking of symptoms in its early stages, however, 
the five–year survival rate can be increased from 5% to 
63% with the early stage of NSCLC thus showing the 
importance of early diagnosis of NSCLC [2, 3]. DNA 
methylation is one of the epigenetic modifications in 
eukaryote, which regulates genes and microRNAs 
expression [4] and alternative splicing events [5]. It has 
been observed and confirmed that DNA methylation 
change is wide-spread in tumor tissues. Hence, with the 

advantages like good chemical stability, non-invasive 
detection ability, quantitative signal, reasonable cost and 
low requirements for sample quality [6], DNA methylation 
could be a promising biomarker in early cancer detection.

FHIT (fragile histidine triad) belongs to the histidine 
triad gene family, which encodes Hydrolase of Ap3A [7], 
and the FHIT-Ap3A enzyme-substrate complex appears 
to be the tumor suppressor signal [8]. FHIT is located on 
chromosome 3 and encompasses the common fragile site 
FRA3B. As a result, translocations and aberrant transcripts 
of FHIT are frequently occurred by carcinogen-induced 
damages [9]. FHIT loss was observed in 64% of non-
small-cell lung cancer patients and was significantly 
associated with squamous cell carcinoma and poor tumor 
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grade [10]. In addition, aberrant transcripts of FHIT have 
been found in other kinds of tumors, such as gastric [11], 
esophageal [12], and colon carcinomas [13]. FHIT has 
been recently seen as a genome caretaker which is of great 
importance for genome stability. Multiple studies have 
found the reduction of FHIT expression in precancerous 
lesions, indicating its potential suppressing role in 
carcinogenesis [14–19]. The FHIT -/- mice were more 
prone to develop carcinogen-induced tumors as well as 
the spontaneous tumors than wild type mice [20, 21]. And 
FHIT viral gene therapy was found to be able to prevent 
and reverse carcinogen-induced tumors in a gastric cancer 
mouse model [22]. Moreover, recent studies have found 
that FHIT can also function as the tumor suppressor 
by inhibiting EMT [23, 24]. In summary, FHIT is now 
considered as a cancer suppressor gene and the loss 
or aberrant transcripts of FHIT may be associated with 
carcinogenesis.

In this study, we performed a meta-analysis to 
evaluate the ability to use FHIT methylation level for 
early lung cancer diagnosis. Moreover, we searched The 
Cancer Genome Atlas project (TCGA) as well as the 
Gene Expression Omnibus (GEO) database, collecting 
hundreds of NSCLC samples with whole genome 
DNA methylation datasets and comprehensive clinical 
information to validate our meta-analysis and correct for 
the publication bias [25]. Several studies have showed the 
improved robustness of combining data from papers and 
databases [26, 27]. Therefore, we innovatively integrated 
the high-throughput data and published articles to assess 

and validate the diagnostic ability of FHIT methylation 
test in NSCLC.

RESULTS

Study characteristics

Based on our search strategy, we firstly identified 
948 potentially relevant articles (Medline, 229; Web 
of science, 549; Embase, 170; Cochrane Library, 0). 
Reference lists including reviews from the relevant articles 
were also manually screened for inclusion. More detailed 
information about the inclusion or exclusion criteria was 
shown in Figure 1. Finally, 12 studies [28–39] were pooled 
for analysis (Figure 2 and Table 1). The selection of the 
criteria was described in method section. All these articles 
were written in English. In total, 1090 lung cancer tissues/
plasma and 1029 normal counterpart tissues/plasma were 
collected. The age of the subjects in the 12 studies ranged 
from 28 to 86, with mean or median age ranging from 53 
to 68. The proportions of stage I samples in the 12 studies 
differed from 0 to 67.33%, and the percentage of male 
individuals in the NSCLC samples has a range of 65.2 
to 83.8% (Table 1). As for the study aim, 4 articles were 
especially aiming at NSCLC diagnosis, while the others 
were designed for the NSCLC prognosis or pathogenesis. 
For the methylation status detection methods, 10 of the 
12 inclusions were conducted with methylation-specific 
polymerase chain reaction (MSP), while others performed 
quantitative MSP (Methylight). In addition, three kinds of 

Figure 1: Flow chart of the literature collection procedure.
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methylation detection primers were designed for most of 
the 12 studies (Supplementary Table 1).

Meta-analysis and heterogeneity source 
identification

The odd ratio (OR) for FHIT methylation in cancer 
group was 3.43 (95% CI: 1.85 - 6.36) in random effects 
model, and 2.03 (95% CI: 1.60 - 2.57) in fixed effects 
model, indicating a slight increase of methylation in 
lung cancer tissues (Figure 2). Comprehensive subgroup 
analyses were also conducted based on different subtypes, 
lincluding sample types (tissue or plasma), age, counterpart 
categories (autogenous or heterogeneous), proportion of 
stage I, proportion of stage I and II, proportion of male, 
aim of the study (diagnosis or non-diagnosis), ratio of 
adenocarcinoma to squamous (Ad/Sc) and other potential 
confounding factors (Supplementary Table 2). Significant 
differences were found between the ORs of the younger 
(51.4, 95% CI: 12.07 - 221.80) and older (3.30, 95% 
CI: 1.64 - 6.64) subgroup (Figure 3A) and between the 
ORs of higher (29.58, 95% CI: 6.82 - 128.37) and lower 
(2.67, 95% CI: 1.32 - 5.40) proportion of stage I and II 
subgroup (Figure 3B). Interestingly, difference was found 
between Asian (3.50, 95% CI: 1.50 - 8.14, P = 0.005) and 

Caucasian population (2.55, 95% CI: 0.86 - 7.57, P = 0.09) 
subgroup (Figure 3C), and the differential methylation in 
Caucasian population is not significant, indicating that 
diagnostic ability of FHIT methylation might be limited 
in Caucasian population. Both tissue and plasma groups 
showed significant association between FHIT methylation 
and NSCLC (OR = 3.68 and 3.89, respectively) (Figure 
3D), which suggested that FHIT methylation test is a 
promising biomarker for NSCLC diagnosis with either 
tissue or plasma samples. FHIT has been reported to be 
related with smoking history but not with cancer, thus we 
conducted the subgroups of the percentage of smoking 
samples. And we found no significant difference between 
the smoker%<68% and smoker% >=68% subgroups 
(Supplementary Figure 7). In addition, significant 
difference between cases and controls was found in 
both subgroups of MSP and qMSP (OR = 3.22 and 4.31, 
respectively), suggesting the robustness of both methods 
in detecting the methylation status of FHIT promoter 
region. Heterogeneity analysis revealed that heterogeneity 
existed among 13 studies (I2 = 78.8%, Q2 = 61.05, P < 
0.0001) (Figure 2), whereas age, aim and stage were 
significant heterogeneity resources. The trend in ORs was 
inversely correlated with age (beta = -3.92, P = 0.05), and 
age counted for 40.03% of total variance. The aim and 

Figure 2: Combined estimates for the association between FHIT promoter hyper-methylation and non-small cell lung 
cancer (NSCLC) with forest plot. Author, year, country of the studies and methylated (M) and total number of the sample (T) in case 
and control, combined odds ratio (OR) with 95% confidence region were labeled in the left column of the figure. The DerSimonian-Laird 
estimator and Mantel-Haenszel method were selected to conduct combination estimation for the random effects model and fixed effect 
model, respectively.
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stage were also two important heterogeneity sources (P = 
0.028 and 0.006), explaining about 51.44% and 17.07% 
of overall heterogeneity respectively. Other factors such 
as sample type, proportion of males, detection methods, 
failed to explain the heterogeneity (Table 2).

In order to give a robust estimation and bias analysis 
of our results, a funnel plot of was conducted and the result 
showed a significant publication bias (Egger test, z =2.76, 
P = 0.019) and 7 studies exceeded the 95% confidence 
intervals (Supplementary Figure 1). The adjusted pooled 
OR after the trim and fill analysis was 2.09 (95% CI: 
1.10 - 3.96, P = 0.024) in the random effects model 
indicating a significantly positive association between 
FHIT methylation and NSCLC (Supplementary Figure 
2). Moreover, sensitivity analysis was also applied, the 
overall ORs were between 2.97 (95% CI: 1.64 - 5.37) and 
4.10 (95% CI: 2.17 - 7.76) in the random effects method, 
indicating the combined OR was consistent and reliable 
(Supplementary Figure 3). Finally, the cumulative meta-

analysis at the time of the published literature found the 
OR was tending to be stable (Supplementary Figure 4).

Validation with independent TCGA and GEO 
lung cancer datasets

In order to validate the above meta-analysis results 
with independent datasets, we searched and obtained 
several datasets from TCGA and GEO. For datasets from 
TCGA, we downloaded lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) methylation 
datasets. Eight CpG sites located in the same CpG islands 
as the three sets of primers (Table 3) were obtained after 
data filtering. In LUAD dataset, though five out of the 
eight CpG sites showed p-values with statistical significant 
both in Wilcoxon rank sum test and logistic regression, the 
absolute mean difference was < 0.1 for all (Table 3). As 
a result, none of the eight CpG sites could be considered 
as differentially methylated between lung adenocarcinoma 

Table 1: Characteristics of eligible studies considered in the report

Author Sample 
Type Agea Stage 

I%

Stage 
(I+II) 

%

Gender 
Ratio

Patients 
(M/T)

Control 
(M/T) Method Aim Multiple 

Target
Control 
design

Ad/
Sc

Primer 
set

Haroun 
et al Tissue 53.00 0.18 0.57 0.71 15/28 1/28 qMSP Non-

Diagnosis Multi Homogeneity 1.78 1

Li et al Serum 53.15 0.27 0.39 NA 19/56 0/56 MSP Non-
Diagnosis Multi Heterogeneity 0.59 1

Li et al Serum 55.03 NA NA 0.71 42/123 0/105 MSP Non-
Diagnosis Single Heterogeneity 0.61 1

Zhang 
et al Tissue 59.00 0.32 0.74 0.74 1/40 1/40 MSP Diagnosis Multi Homogeneity 0.84 2

Fischer 
et al Serum 60.90 0.00 0.00 0.65 43/92 0/7 MSP Non-

Diagnosis Multi Heterogeneity 1.71 1

Zochbauer 
et al Tissue 61.00 0.57 0.77 0.71 40/107 9/104 MSP Non-

Diagnosis Single Homogeneity 1.05 1

Kim.D 
et al Tissue 63.00 0.57 0.75 0.81 34/99 17/99 MSP Non-

Diagnosis Multi Homogeneity 0.62 3

Verri et al Tissue 63.90 0.65 NA 0.84 84/229 68/208 MSP Non-
Diagnosis Single Homogeneity 1.11 1

Yanagawa 
et al Tissue 68.10 0.67 0.74 0.71 34/101 7/101 MSP Non-

Diagnosis Multi Homogeneity 1.59 1

Hsu et alb Tissue 69.00 NA 0.65 0.71 22/57 9/63 qMSP Diagnosis Multi Homogeneity 0.76 2

Fraipont 
et al Serum NA NA NA NA 6/16 18/56 MSP Diagnosis Multi Heterogeneity NA 1

Hsu et alb Serum NA NA 0.65 0.71 18/57 7/35 qMSP Diagnosis Multi Heterogeneity 0.76 2

Kim.H 
et al Serum NA 0.59 1.00 0.67 19/85 36/127 MSP Diagnosis Multi Heterogeneity 0.72 1

amean or median age from articles; bwith two records since there are Tissue and serum data simultaneously in this article. M and T means 
methylation positive and total, respectively.



Oncotarget6849www.impactjournals.com/oncotarget

tissues and adjacent normal tissues. Concordantly, in the 
LUSC dataset, 3 out of 8 CpG sites showed a p-value 
<0.05 after multiple correction but the absolute mean 
difference of the 3 CpG sites were < 0.1, which was the 
same as in the LUAD dataset and couldn’t be regarded as 
significant methylated as well (Table 3 and Figure 4).

Because of the conflicting results came from the 
meta-analysis and TCGA dataset, we obtained other 
datasets from the GEO website. The first dataset was the 
combination of GSE39279 and GSE52401. In GSE39279 
dataset, 322 lung adenocarcinoma and 122 lung squamous 
cell tissues were included. While in GSE39279 dataset, a 
total of 244 normal lung tissues were included, and both 
of the datasets used the Illumina HumanMethylation450 

Bead Chip for methylation measurement. The two datasets 
were combined and a total of 444 tumor tissues and 244 
normal tissues were included in the subsequent analysis. 
We performed the same analysis as in TCGA dataset and 
the result was almost the same. Due to the large number 
of samples, we found all the p-values of the eight CpG 
sites were < 0.05 even after multiple test correction 
(Supplementary Table 3 and Supplementary Figure 5). 
However, the absolute mean difference of the eight CpG 
sites were < 0.1 and couldn’t be considered as significant 
methylated CpG sites.

Moreover, we downloaded GSE56044 with 
124 NSCLC tissues and 12 adjacent normal tissues 
for further validation. GSE56044 didn’t have clinical 

Figure 3: Subgroup meta-analysis for the relationship between FHIT promoter hypermethylation and non-small cell 
lung cancer (NSCLC). A. Subgroup meta-analysis based on age. B. Subgroup meta-analysis based on stage(I+II) %. C. Subgroup meta-
analysis based on race. D. Subgroup meta-analysis based on sample type.
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Table 2: Meta-regression analysis for the main potential interference factors with random-effects model

Subgroup Coefficient (95% CI) P-value τ2 QE QE.
P-value

Sample Type 0.18 (-1.14, 1.49) 0.793 0.90 52.84 1.92x10-7

Age -0.15 (-0.3, 0.00) 0.052 0.94 40.04 3.16x10-6

Stage I -3.92 (-7.89, 0.05) 0.052 0.76 35.74 8.13x10-6

Stage (I+II) -3.98 (-6.83, -1.14) 0.006 0.32 17.07 0.02937

Gender Ratio -5.38 (-18.19, 7.44) 0.411 1.03 46.81 4.26x10-7

Methods 0.33 (-1.14, 1.81) 0.656 0.85 53.51 1.45x10-7

Aim 1.45 (0.15, 2.74) 0.028 0.88 51.44 3.44x10-7

Multiple Target 0.36 (-1.23, 1.95) 0.655 1.08 55.52 6.22x10-8

Control Design 0.18 (-1.14, 1.49) 0.793 0.90 52.84 1.92x10-7

Ad/Sc 1.04 (-0.74, 2.82) 0.251 0.92 51.41 1.47x10-7

Race -0.30(-1.70, 1.10) 0.673 0.93 48.40 5.25x10-7

Bold P-values lower than 0.05 indicate the item would be a significant heterogeneity. QE is used to test for residual 
heterogeneity in meta regression analysis.

Table 3: Differential FHIT methylation, odds ratio between adenocarcinoma, squamous cell carcinoma and their 
counterparts from TCGA dataset

Type CpG site McaM McoM ∆β P-valuea P-valueb ORb 95%CIb

LUAD cg22215728 0.12 0.16 -0.04 0.0008 0.0097 4.33 1.93-12.6

 cg15931943 0.10 0.12 -0.02 0.0071 0.1887 1.80 0.91-4.62

 cg02854288 0.11 0.13 -0.02 0.0016 0.0488 2.81 1.29-7.97

 cg19049316 0.03 0.03 -0.00 0.2251 0.1441 1.73 0.93-3.58

 cg26322434 0.03 0.04 -0.01 0.2993 0.1703 1.63 0.89-3.28

 cg24796403 0.04 0.04 -0.00 0.6626 0.4023 1.35 0.73-2.89

 cg16986494 0.04 0.05 -0.01 0.0193 0.0488 3.12 1.33-9.44

 cg12030002 0.04 0.05 -0.01 0.2050 0.2463 1.49 0.82-2.90

LUSC cg22215728 0.10 0.14 -0.04 1.0x10-5 0.0006 3.92 2.07-8.44

 cg15931943 0.09 0.10 -0.01 1.0x10-5 0.0116 2.51 1.35-5.13

 cg02854288 0.08 0.10 -0.02 1.0x10-5 0.0048 2.76 1.50-5.58

 cg19049316 0.03 0.03 -0.00 0.5233 0.3103 0.66 0.26-1.16

 cg26322434 0.03 0.02 -0.01 0.5165 0.2971 0.77 0.45-1.21

 cg24796403 0.04 0.03 -0.01 0.5233 0.2948 0.31 0.03-1.13

 cg16986494 0.04 0.03 -0.01 0.0245 0.5445 0.84 0.26-1.37

 cg12030002 0.04 0.03 -0.01 0.1117 0.1253 0.10 0.005-0.99

McaM and McoM represent the mean of case methylation (Beta) and mean of control methylation (Beta). Methylation levels 
are calculated with formula: Beta = (M/M + U). P-valuesa were calculated from Wilcoxon rank sum test after false discovery 
rate (FDR adjustment). P-valueb and ORb and 95%CIb are from logistic regression analysis with P-valueb were also after false 
discovery rate (FDR adjustment).
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information on the subtypes of NSCLC and thus we 
just utilized NSCLC tissues for subsequent comparison. 
And the result was unsurprisingly the same as the two 
datasets mentioned before, showing no significant 
methylation state of the eight CpG sites (Supplementary 
Figure 6).

Gene expression data with TCGA RNA-Seq 
dataset

DNA methylation played a key factor in regulating 
gene expression. It may be informative to see if the gene 
expression of FHIT was changed due to the very different 
results obtained from microarray data and the meta-
analysis. We downloaded level 3 RNA-Seq data of LUAD 
and LUSC from TCGA project. However, after calculating 
the fold change and p-value with multiple correction, no 
significantly differential expression was shown both in 
LUAD (P = 0.58, Fold change = 1.30) and LUSC (P = 
5.7x10-7, Fold change=1.86) when compared with the 
adjacent normal tissues. Furthermore, the expression level 
of FHIT is relatively low in LUAD (mean RPKM=37.04) 
and its adjacent normal tissues (mean RPKM: 28.49) as 
well as in LUSC (mean RPKM=17.29) and its adjacent 
normal tissues (mean RPKM=32.18), which implied that 
the role of FHIT gene played in NSCLC carcinogenesis 
need to be further confirmed (Figure 4).

DISCUSSIONS

The FHIT gene loss was observed in 64% of NSCLC 
patients and is reported to be significantly associate with 
squamous cell carcinoma and poor tumor grade. However, 
the diagnostic ability of the methylation status of the FHIT 
gene in lung cancer still remains unclear. We therefore 
performed an integrated analysis to give a comprehensive 
evaluation of the diagnostic ability using FHIT promoter 
methylation level as a biomarker in NSCLC. As expected, 
a significant association was found between FHIT 
methylation and NSCLC in meta-analysis (OR = 3.43), 
indicating the existence of a strong association between 
FHIT promoter methylation and lung cancer.

In the validation stage, all the results from 
three independent datasets showed no significance of 
differential methylation between NSCLC and normal 
tissues on account of the small mean methylation 
difference. It was found that in the dataset from TCGA 
dataset, none of the eight CpG sites which shared the 
same CpG island with the primers in the meta-analysis 
is significantly different methylated. And the result is 
further confirmed by other two datasets from the GEO 
database. Furthermore, we downloaded the RNA-
Seq data from TCGA project and still no significant 
differential expression of FHIT gene was found both in 
LUAD and LUSC when compared with adjacent normal 

Figure 4: CpG sites on the HM450K Beadchip across FHIT gene region and Gene expression scatterplot with paired 
data from TCGA dataset. Methylation and gene expression status for FHIT gene (TCGA lung cancer dataset). A-B. each represents the 
different methylation status of lung cancer subtypes versus normal lung tissues in different datasets. For A-B, the x-axis shows the different 
CpG sites in FHIT genes and the y-axis shows the beta value of each CpG site to represent the methylation level of each CpG site. The green 
regions in A-B represents the CpG island region of FHIT. C-D. represents the gene expression status of paired samples. The x-axis of the 
two figures shows the different types and y-axis shows the gene expression level using RPKM as measurement.
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tissues. Besides, the expression level of the FHIT gene is 
relatively low in comparison with other functional genes 
in cancer. We should be noticed that all the independent 
datasets from TCGA and GEO were based on Caucasian 
population (Supplementary Table 5-6). The result 
about Caucasian population from datasets is consistent 
with the result from meta-analysis, so the relationship 
between FHIT methylation and NSCLC in Caucasian 
population is robust. In addition, we also detected the 
methylation status of FHIT promoter in other kinds of 
cancers using TCGA datasets for further validation,  
and similar results were obtained and showed limited 
diagnostic ability (Supplementary Table 4). Besides, 
we need more micro-assay and RNA-Seq data based on 
Asian population to distinguish whether the diagnostic 
role of FHIT is specific in the Asians.

In our meta-analysis, we found high rate of 
heterogeneity between the studies (p < 0.0001). Thus 
we did further research to explore the influential 
confounding factors. We found that ages, stages as 
well as the aims are the sources of heterogeneity (Table 
2). However, significant odds ratios between FHIT 
promoter methylation and NSCLC were still retained 
in most of the subgroups, which is in accordance with 
the overall meta-analysis results (Supplementary Table 
2). Subgroup analysis showed that FHIT methylation is 
significantly relevant to NSCLC in Asians (OR = 3.50, 
95% CI: 1.50 - 8.14) but not in Caucasian population 
(OR = 2.55, 95% CI: 0.86 - 7.57), indicating that 
aberrant methylation of FHIT can be a diagnostic 
biomarker for NSCLC in Asian population. In the 
comparative analysis with the other studies, Wu et al 
found differential methylation of FHIT promoter in both 
Caucasian and Asian populations, which was different 
with our findings [40]. In addition, the much more 
significant difference of FHIT promoter methylation 
between NSCLC and normal controls was observed 
in our meta-analysis and in Wu’s as well as in Yan’s 
study [41]. The above consistencies and inconsistencies 
between the three studies implied the need to test the 
association between FHIT methylation and NSCLC with 
larger sample sizes and more advanced technology.

There are several limitations in our study. Firstly, 
the strong heterogeneity of the included studies may 
decrease the statistical power of our results. Secondly, 
though we have conducted the trim and fill analysis 
and sensitivity analysis, the publication bias may still 
present. Thirdly, we have searched the papers only 
written in English, while many papers written in other 
languages were ignored. Due to the previous limitations, 
we strongly recommend to use more advanced 
methylation detection methods, like WGBS (whole 
genome bisulfite sequencing) and RRBS (restricted 
region bisulfite sequencing), to explore the association 
between FHIT promoter methylation and NSCLC with 
larger sample sizes.

MATERIALS AND METHODS

Search strategy, selection of studies and data 
extraction

This pooled study involved searching a range of 
computerized databases, including Embase, Cochrane 
Library, OVID Medline and Web of Science for articles 
published in English by October 2015. The study used a 
subject and text word strategy with (FHIT OR AP3Aase 
OR FRA3B) AND (lung cancer) as the primary search 
terms. Wildcard character of star, dollar or some other 
truncations were applied according to the rules of the 
databases to allow effective article collection.

Two independent reviewers (Geng, Guo) screened 
the titles and abstracts derived from the literature search 
to identify relevant studies. The following types of studies 
were excluded: animal and cell experiments, case reports, 
reviews or meta-analyses and studies of non-case-control 
studies or studies with insufficient data or those proving 
inaccessible after making contact with the authors. The 
remaining articles were further examined to see if they met 
the inclusion criteria: 1) the patients had to be diagnosed 
with NSCLC (Ad and Sc), 2) the studies contained FHIT 
gene promoter methylation data from tissue, blood or 
plasma, 3) the studies had to be case-control studies which 
included tissue-tissue, blood-blood or plasma-plasma in 
case and controls respectively, 4) OR can be calculated 
or extracted from the text. The reference sections of all 
retrieved articles were searched to identify further relevant 
articles. Potentially relevant papers were obtained and 
the full text articles were screened for inclusion by two 
independent reviewers (Geng, Guo). Disagreements were 
resolved by discussion with WP, ZL and AW. Included 
studies were summarized in data extraction forms. Authors 
were contacted when relevant data were missing. The 
name of the first author, year of publication, sample size, 
age (mean or median), gender proportion (male/female, 
M2F), the proportion of TNM stage I and II samples 
(proportion of early stage of NSCLC samples), publication 
aim (for diagnosis or not), analyzing multiple genes or not 
(one or more genes detected simultaneously in studies 
design), control type (autogenous or heterogeneous 
counterpart) and methylation status of the FHIT promoter 
in human NSCLC and normal or control tissues were 
extracted (Table 1).

Meta-analysis and heterogeneity source 
identification

Data were analyzed and visualized mainly using R 
Software (R version 3.1.0) including meta, metafor and 
mada packages [42]. The strength of association was 
expressed as pooled odds ratio (OR) with corresponding 
95% confidence intervals (95% CI). Data were extracted 
from the original studies and recalculated if necessary. 
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Heterogeneity was tested using the I2 statistic with values 
over 50% and Chi-squared test with P ≤ 0.1 indicating 
strong heterogeneity between the studies. Tau-squared 
(τ2) was used to determine how much heterogeneity was 
explained by subgroup differences. The data was pooled 
using the DerSimonian and Laird random effects model 
(I2 > 50%, P ≤ 0.1) or fixed effects model (I2 < 50%) 
according to heterogeneity statistic I2[43]. A two-sided P 
≤ 0.05 was set as the threshold of being significant without 
special annotation. With a lack of heterogeneity among 
included studies, the pooled odds ratio estimates were 
calculated using the fixed-effects model [44]. Otherwise, 
the random-effects model was used [45]. Random effects 
meta-regression was employed to determine how much of 
the heterogeneity (between-study variance) was explained 
by the explanatory variables when the heterogeneity 
was significant. Nine variables were analyzed in meta-
regression, including control types (autogenous and 
heterogeneous), gender proportion, proportion of TNM 
stage I and II samples, mean or median age (> 59 or ≤ 59), 
single or multiple target detection, sample types (plasma 
or tissue), methylation detection methods (MSP, qMSP), 
study designs (diagnosis or non-diagnosis) and primer 
sets. Sensitivity analyses were performed to assess the 
contribution of single study to the final result with the 
abandonment of one article each time. Publication bias 
was analyzed by funnel plot with mixed-effects version of 
the Egger test [46]. If bias was suspected, the conventional 
meta-trim method was used to re-estimate the effect size.

TCGA and GEO datasets extraction and analysis

TCGA DNA methylation datasets which included 
23 lung adenocarcinoma and 40 lung squamous cell 
carcinoma tissues as well as 63 paired adjacent tissues, 
were collected from TCGA project [http://cancergenome.
nih.gov/] using Illumina HumanMethylation 450K 
Beadchip [47]. And The GEO datasets including 
GSE39279, GSE52401 and GSE56044 were downloaded 
from Gene Expression Omnibus [http://www.ncbi.nlm.
nih.gov/geo/], including a sum of 568 NSCLC tissues and 
256 adjacent or normal lung tissues [48–50]. All of the 
above datasets are using Illumina HumanMethylation450 
Bead Chip for methylation measurement. The estimation 
of methylation for each CG probe was calculated between 
methylated (M) and unmethylated (U) alleles. Specifically:

beta = 
)

) )
(

( (+
max M,0

max M,0 max U,0

M and U represent the mean signal intensities for about 
30 replicates on the array. The methylation signals of the 
CpG sites in the datasets previously mentioned were all 
defined according to the beta value. CpG site would be 
immediately omitted when it was missing in any one or 
more samples. CpG sites of FHIT gene in TCGA dataset 

and GEO dataset were not completely the same due to the 
quality control previously mentioned.

P-value was calculated with Wilcoxon rank sum 
test. To correct for multiple testing, Benjamini and 
Hochberg procedure was conducted. For identification 
of differentially methylated CpG sites, adjusted P-value 
≤0.05 and absolute mean difference ≥0.1 was set as the 
criteria. Besides, logistic regression was also conducted 
to calculate the OR and p-value for every CpG site with 
Benjamini and Hochberg multiple comparison correction 
followed. Data was analyzed and visualized mainly with 
R software (R 3.1.0) [51][52].

RNA-Seq data extraction and analysis

RNA-Seq data was downloaded from TCGA Data 
Portal, including 114 lung adenocarcinoma and 104 lung 
squamous cell carcinoma and 218 paired adjacent normal 
lung tissues. Level 3 RNA-Seq data was obtained and 
per million mapped reads (RPKM) was used for gene 
expression quantification. We assessed the significance 
of the differential gene expression by comparing the 
tumor tissues with paired adjacent normal tissues using 
Wilcoxon rank sum test and following the Benjamini and 
Hochberg false discovery rate (FDR) correction [52]. For 
identification of differentially expression genes, adjusted 
p-value ≤0.05 and fold change ≥2.0 were set as the criteria. 
All the data analysis was conducted with open-source R 
software (version 3.1.0).

CONCLUSION

The diagnostic role of FHIT gene in the lung 
cancer is relatively limited in the Caucasian population 
but may be useful in the Asians. However, more datasets 
and studies with large sample sizes are needed for further 
confirmation.
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