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ABSTRACT

Rationale: Timely detection of pseudoprogression (PSP) is crucial for the 
management of patients with high-grade glioma (HGG) but remains difficult. Textural 
features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) 
mirror tumor uptake heterogeneity; some of them may be associated with tumor 
progression.

Methods: Fourteen patients with HGG and suspected of PSP underwent FET-
PET imaging. A set of 19 conventional and textural FET-PET features were evaluated 
and subjected to unsupervised consensus clustering. The final diagnosis of true 
progression vs. PSP was based on follow-up MRI using RANO criteria.

Results: Three robust clusters have been identified based on 10 predominantly 
textural FET-PET features. None of the patients with PSP fell into cluster 2, which was 
associated with high values for textural FET-PET markers of uptake heterogeneity. 
Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated 
with low values of textural FET-PET features. By comparison, tumor-to-normal 
brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative 
predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, 
p=0.04).

Principal Conclusions: Clustering based on textural O-(2-[18F]fluoroethyl)-L-
tyrosine PET features may provide valuable information in assessing the elusive 
phenomenon of pseudoprogression.

INTRODUCTION

Despite state-of-the-art surgery, radiation therapy 
and chemotherapy, the prognosis of patients with high-

grade glioma (HGG) is grim. In patients with the most 
aggressive and devastating form of HGG, glioblastoma [1], 
median overall survival is about 17 months. Considering 
the limited therapeutic options for patients with these 
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tumors, it is important to detect tumor progression reliably, 
because otherwise, potentially efficacious therapies might 
be discontinued prematurely. In some cases, it is difficult 
to interpret post-therapeutic MRI alterations since true 
progression cannot be clearly distinguished from the so-
called pseudoprogression, which may be due to tumor 
necrosis rather than due to tumor progression and therefore 
may reflect therapeutic efficacy [2]. So far, the diagnosis 
of pseudoprogression is built on increasing contrast-
enhancement on MRI. This is similar for true tumor 
progression, but in the event of PSP contrast-enhancing 
lesions are stable or even regressive on subsequent MRI 
scans [3–8]. When increasing contrast-enhancing lesions 
on MRI indicate pseudoprogression, the current gold 
standard is to perform follow-up MRIs to evaluate for 
potential changes in lesion size over time. Consequently, 
the diagnosis of pseudoprogression is retrospective, 
requiring follow-up MRIs. Patient management would 
benefit from earliest diagnosis of pseudoprogression, 
ideally, when expanding contrast-enhancing lesions are 
detected for the first time. This is particularly important 
for patients with greatly increasing contrast-enhancing 
lesions and deteriorating clinical status. These patients 
might not be able to wait for 4-8 weeks for a follow-up 
MRI to decide whether secondary surgery or any other 
therapeutic adjustments are necessary.

Position emission tomography (PET) using 
radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-
L-tyrosine (FET) allows imaging of amino acid transport 
in brain tumors and has shown promise in distinguishing 
pseudoprogression from truly progressive tumor [9]. 
Some static and dynamic PET features have been 
shown to be strongly associated with early and late 
pseudoprogression [10]. As to static PET parameters, 
particularly the maximum tumor-to-normal brain ratio 
(TNRmax) at an optimal cutoff of 1.9 has been shown to 
be useful with a high sensitivity and specificity (sensitivity 
84%, specificity 86%, negative predictive value 67%) in 
detecting true progression [11]. However, some patients 
with borderline TNRmax values remain subject to 
uncertainty when it comes to classifying to either true 
progression or pseudoprogression.

Besides the conventional markers derived from 
a PET image that reflect metabolism, which are usually 
variations of the standardized uptake value (SUV) within 
a region of interest (ROI), PET tracer uptake depends on 
several other physiological features pertinent to a tumor, 
such as perfusion, cell proliferation, tumor viability, 
hypoxia and aggressiveness [12]. Those properties account 
for tumor uptake heterogeneity. Textural PET markers are 
held to capture these properties by describing the tracer 
activity distribution within the tumor ROI [12]. Textural 
parameters assessed in 18F-FDG PET reflecting the texture 
of intratumoral tracer uptake (tumor uptake heterogeneity) 
have been shown to be prognostically relevant in several 
tumor etiologies, such as soft-tissue sarcoma, bone 

sarcoma, esophageal cancer and non-small cell lung cancer 
[12–14]. Additionally, it is suggested that textural markers 
might be valuable for tissue classification, particularly in 
separating malignant from benign tissue with a specificity 
as high as 99% [15].

Since HGG are heterogeneous tumors at 
histopathological and molecular levels [17], we 
investigated in a hypothesis-generating pilot study 
whether textural FET-PET features might be of value for 
drawing a distinction between true tumor progression and 
pseudoprogression. To address this, we retrospectively 
examined the predictive value of FET-PET parameters 
for detecting pseudoprogression in 14 patients with HGG 
using a set of textural parameters as compared with 
established PET features.

RESULTS

Patient characteristics

The study population comprised 14 patients (Table 
1) with histologically proven HGG (GBM, n=11; WHO 
III, n=3). A methylated MGMT promoter was found in 12 
and a non-methylated MGMT promoter in 2 patients. All 
patients underwent radiotherapy before PET investigation, 
either concomitant with chemotherapy or separated. 
Nine patients included in the study underwent FET-PET 
investigation during first-line treatment and 5 patients 
after relapse had occurred.

Diagnosis of true tumor progression versus 
pseudoprogression

Four of 14 patients had confirmed PSP. Ten patients 
were regarded as having unequivocal progression (Table 
1). All patients diagnosed with PSP had a methylated 
MGMT promoter whereas the MGMT promoter was 
methylated in 80% (8 of 10) in patients with true tumor 
progression. The mean time interval between initial MRI 
and follow-up MRI was 11 weeks.

Identification of FET-PET-based subtypes

Several methods served to detect the optimal 
number of clusters. For this purpose, we built a consensus 
matrix, which is obtained by measuring for each pair of 
patients, the proportion of clustering runs where 2 patients 
are clustered together based on the similarity of their 
FET-PET features. Descriptions of PET features used 
in this manuscript are given in Table 2. In the event of 
perfect consensus, the consensus matrix would be filled 
with 0 and 1 only. As shown in Figure 1a, the consensus 
matrix displays a well-defined 3-block structure for k=3, 
corresponding to 3 distinct cluster groups. To justify that 
k=3 corresponded to the optimal number of clusters, we 
compared the consensus matrix at k=2 through k=7 by 
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using the CDF curve. The CDF curve plots the consensus 
distribution, which is a quantification of how entries of 
the consensus matrix are distributed within the range of 0 
to1. Distributions containing only 0 and 1 would result in 
an ideal step function of the CDF curve. Here, we can see 
that for k=3 the ideal step function is approached (Figure 
1b). The shape of the CDF curve hardly changes as k is 
increased past 3 (Figure 1b). The difference between 2 
CDF curves (at k and k+1) is summarized by measuring 
the area under the CDF curves for k=2 through 7 and 

shown in Figure 1c. As k is increased, the area under the 
CDF curve stays approximately the same until k=3 and 
drops off significantly beyond that value. Any further 
increase in k does not come along with a corresponding 
marked increase in the CDF area, thus further supporting 
the choice of an optimal k=3. This result was confirmed 
by using the recently published PAC method, which 
was shown to be more accurate in determining the right 
number of k, where PAC was lowest at k=3, reflecting an 
optimal clustering with 3 groups. Of the 14 patients in 

Table 1: Patient Characteristics

No Cluster Sex Age at 
Dx (y)

Histologic 
Dx

MGMT 
methylated?

Line  
of 

therapy*

Treatment 
regimen 

until PET 
investigation

Concomitant 
dexamethasone 

treatment?

Wks  
from 
last  
Rx

Follow- 
up  

MRI + 
Clin.

Follow- 
up  

Time 
(m)

PFS 
(m)

OS  
(m)

1 1 m 29 AA yes 1 P: B, RT+TMZ no 7 stable 27.2 >26.7 >27.2

3 1 m 45 GBM* yes 2 P: B, TMZ; 1R: 
R, RT, PC yes 16 prog. 16.4 8.4 16.4

4 1 f 40 AOA yes 4
P: pR; 1R: TMZ; 

2R: TMZ; 3R: 
pR, RT, CCNU

no 34 prog. 126.4 >26.1 >126.4

10 1 m 43 GBM* no 1 P: pR, RT, PC no 37 prog. 24.1 8.0 24.1

12 1 m 70 GBM yes 2
P: pR, RT+TMZ, 

TMZ; 1R: R, 
TMZ

no 139 prog. 45.1 4.1 45.1

14 1 f 68 GBM yes 1 P: cR, RT+TMZ, 
TMZ yes 10 prog. 23.4 >22.1 >23.4

5 2 f 49 GBM no 1 P: pR, RT+TMZ, 
TMZ no 52 prog. 34.1 4.6 34.1

6 2 m 61 GBM yes 2
P: cR, RT+TMZ, 
TMZ; 1R: R, RT, 

CCNU/TMZ
no 25 prog. 23.5 >13.3 >23.5

8 2 m 60 GBM yes 1 P: cR, RT+TMZ, 
TMZ no 33 prog. 11.3 2.2 11.3

13 2 m 54 GBM yes 1 P: pR, RT+TMZ no 4 prog. 10.0 6.0 10.0

2 3 m 59 GBM yes 1
P: cR, RT+TMZ/

CCNU, TMZ/
CCNU

no 95 stable 44.3 >21.7 >44.3

7 3 f 47 AA yes 1 P: B, RT+TMZ, 
TMZ no 25 stable 27.5 16.7 27.5

9 3 f 66 GBM yes 1 P: cR, RT+TMZ, 
TMZ no 48 prog. 21.7 5.1 21.7

11 3 m 50 GBM yes 2

P: cR, RT+TMZ, 
TMZ; 1R: R, 

RT+CCNU/TMZ, 
CCNU/TMZ

no 41 stable 49.3 13.9 49.3

Abbreviations: AA, anaplastic astrocytoma; Clin., clinical follow-up.; cR, complete resection; Dx, diagnosis; Follow-up 
time, time from diagnosis to last follow-up; GBM*, secondary glioblastoma; GBM, glioblastoma; CCNU, lomustine; MGMT, 
O-6-methylguanine-DNA methyltransferase; stable, no progression; nyr, not yet reached; PET, positron emission tomography; 
pR, partial resection; prog., progression; R, resection of unknown extent; RT, radiotherapy; RT+CCNU/TMZ, combined 
radiotherapy and chemotherapy with temozolomide and lomustine; RT+TMZ, combined radiotherapy and chemotherapy with 
temozolomide; TMZ, temozolomide; wks, weeks; y, years; B, biopsy; OS, overall survival; PC, procarbazine and lomustine; 
PFS, progression-free survival; m, months, * Line of therapy while under PET investigation; >, indicates censored values
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our cluster cohort, 6 patients were assigned to cluster 1 
(43%), and 4 patients each (29%) were assigned to cluster 
2 and 3.

Assigning FET-PET features to each cluster

To identify FET-PET features associated with each 
cluster, we used the nearest shrunken centroid method 
called PAM. Predictor discovery by PAM identified 
10 PET features out of 19 with at least one nonzero 

component. This implies that those selected features 
simultaneously distinguish all clusters from each other. 
Figure 2a shows a heat map of all hierarchically clustered 
features corresponding to each cluster and Figure 2b shows 
the shrunken differences for the 10 PET characteristics 
differentially regulated across the 3 clusters. Of those, 8 
characteristics are textural features (Contrast, Entropy, 
Correlation, Size-zone var., Coarseness, Volume, COV, 
and Complexity) and 2 are recognized as conventional 
(TLU, Max). Notably, the upper 7 (Figure 2b) of those 

Table 2: Description of PET features

PET Feature Explanation

Correlation
A measure of continuous areas of same or similar voxel values in an image. An 

image with high correlation values is usually associated with large areas of similar 
uptake intensities.

Coarseness A measure of the intensity differences throughout the image.

COV A normalized measure of dispersion of a frequency distribution (standard deviation 
divided by the mean value of the activity concentration in the tumor volume).

Contrast A measure of local variations present in the image. A high contrast value indicates a 
high degree of local variation.

Complexity Measures the uniformity of patterns versus rate of change in an image.

Entropy Measures randomness of distribution, e.g. a homogenous matrix demonstrates low 
entropy.

Size Variation Measures the difference of the grey value when going to the next voxel. It is high 
when the intensity changes very often between single voxels.

Intensity Variation The intensity variation describes the variation of the intensity of different 
substructures.

Short Run Emphasis
Measure of consecutive pixels which have the same gray level intensity along a 

specific linear orientation. Fine textures tend to contain more short runs with similar 
gray level intensities.

Long Run Emphasis
Measure of consecutive pixels which have the same gray level intensity along a 

specific linear orientation. Coarse textures have more long runs with significantly 
different gray level intensities

Short Zone Emphasis
Measures the distribution of short zones as the difference of the grey value when 
going to the next voxel. It is high when the intensity changes very often between 

single voxels.

Long Zone Emphasis Measures the distribution of long zones as the difference of the grey value when 
going to the next voxel.

Zone Percentage Measures the percentage of zones of a given size.

SUV Mean A measure of mean radiotracer accumulation in tumor lesions.

SUV Max A measure of maximum radiotracer accumulation in tumor lesions.

TNR Mean Mean tracer uptake in the tumor divided by that in normally appearing brain tissue.

TNR Max Maximal tracer uptake in the tumor divided by that in normally appearing brain 
tissue.

TLU The total lesion volume and its metabolic activity

Volume The total lesion volume
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10 features provide the most distinct separation among 
clusters: Contrast, Volume, Entropy, TLU, Correlation, 
Size-zone var., and Coarseness. From the distribution of 
FET-PET features across clusters using PAM, it becomes 
evident that cluster 2 was particularly associated with 
high values of the textural characteristics Contrast and 
Entropy (Figure 2b). As increased values of both features 
have been tied to intratumoral tracer uptake heterogeneity 
[12], the cluster 2 phenotype was designated “high 
heterogeneity cluster”. Cluster 3 was largely associated 
with inverse loadings of FET-PET textural features 
as compared with cluster 2 - except for the feature 
Coarseness -, most strikingly Entropy, Correlation, and 
Size-zone var. With high intratumoral tracer uptake 
heterogeneity, Entropy and Correlation are known to be 
increased whereas Size-zone var. decreased [12]. Cluster 3 
was thus named “low heterogeneity cluster”. Interestingly, 
TLU was also comparably downregulated in this cluster. 
As opposed to cluster 2 and 3, cluster 1 had the least 
variability in features. Only the feature Correlation was 
considerably upregulated. As such, cluster 1 was defined 
as “intermediate cluster”.

Pseudoprogression and cluster assignment

All of the patients assigned to cluster 2 (4 
out of 4) and 5 out of 6 of cluster 1 were diagnosed 
with progression. Contrarily, 3 out of 4 patients with 
pseudoprogression fell into cluster 3 (Figure 2a). 
TNRmax differed significantly (p=0.039) between 
patients diagnosed as pseudoprogression (mean, 1.9; 
range, 1.7-2.1) and true progression (mean, 2.6; range, 
1.2-4.4).

In Figure 2c, the ability of performance metrics 
(such as sensitivity, specificity, etc.) in diagnosing true 
progression is compared between a clustering based 
classifier (cluster 3) and the conventional classifier 
(TNRmax). The cluster 3 classifier seems to be stronger 
associated with the detection of true progression (p=0.041) 
compared to TNRmax (p=0.07). Cluster 3 provided a high 
sensitivity and specificity (90% and 75%, respectively) 
for detecting true progression with a negative predictive 
value (NPV) of 75%. Similarly, TNRmax provided high 
values for specificity and sensitivity (70% and 100%, 
respectively), yet, at the cost of a low NPV (57%). 
Exemplary PET images with the corresponding MRI scans 

Figure 1: A. Consensus values heatmap, demonstrating a clearly delineated block structure for k=3, supporting a three-cluster solution; 
B. This is endorsed by the cumulative distribution function (CDF) curve, which approaches an ideal step function for k=3; C. The relative 
change in area under CDF curve illustrates that as k is increasing beyond k=3, there is a significant drop in the relative change in area under 
CDF curve, indicating an optimum at k=3.
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for pseudoprogression and true progression are given in 
Figure 3.

Putative prognostic value of clusters

As shown in Figure 4a, cluster 2 patients have 
a lower median PFS (solid line) when compared with 
the remaining clusters (5.3 months vs. 14.6 months 
in cluster 1 and 15.3 months in cluster 3). When 
calculating median PFS using the Kaplan-Meier method 
– accounting for censored values – cluster 2 (dotted 
line) remains the one with the lowest median PFS (4.6 
months vs. 8.4 months in cluster 1 and 13.9 months in 
cluster 3). Figure 4c shows that a similar finding was 
observed with the overall survival data since PET. 
Figure 4b illustrates that this effect cannot be explained 
by differentially distributed prognostic factors among 
clusters, given a balanced distribution of prognostic 
factors.

DISCUSSION

The results of this pilot study suggest that HGG 
patients with suspected pseudoprogression may be 
classified into 3 distinct clusters, solely based on a set of 
textural FET-PET features. Most of the patients assigned 
to cluster 3 had pseudoprogression while all patients 
assigned to cluster 2 had true tumor progression. Thus, 
textural FET-PET feature analysis might lend itself as 
a novel useful non-invasive tool, besides the frequently 
used TNRmax to distinguish pseudoprogression from true 
tumor progression in patients with HGG.

When we compared the value of pseudoprogression 
prediction using a cluster-based classifier (cluster 3), 
that was based on textural PET features, against the 
most widely used PET marker TNRmax [9, 11], only 
the cluster-based classifier was significantly associated 
with pseudoprogression detection. In addition, compared 
to TNRmax, NPV was higher with the cluster-based 

Figure 2: A. Heat map with patients ordered with regard to their cluster membership. On the vertical axis, the 19 FET-PET features are 
ordered by hierarchical clustering to demonstrate their association with each cluster; PET feature values are given as z-scores. Pat., patient; 
PSP, pseudoprogression; TP, true progression; MGMT, O-6-methylguanine-DNA methyltransferase; NM, not methylated; M, methylated; 
* indicates that a features belongs to the 10 most relevant features; B. Results of nearest shrunken centroid method indicating high loadings 
on textural features for cluster 2. The reverse association is observed in cluster 3. Cluster 1 was solely associated with high loading on 
Correlation. A rightward deflection signifies high loadings on that feature whereas a leftward deflection signifies the opposite. Cl1, cluster 1; 
CL2, cluster 2; CL3, cluster 3; C. Performance of cluster 3 vs. TNRmax in detecting true progression. CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value
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Figure 3: PET image with the corresponding MRI scans from a patient with pseudoprogression (patient 2, A) and true 
progression (patient 13, B). Figure 1A shows exemplary the index T1 contrast-enhanced (CE) MRI scan where a new CE lesion in the 
right-sided basal ganglia appeared for the first time. The PET scan next to it shows an increased FET uptake in that area. On follow-up, the 
CE lesion regressed spontaneously, indicating pseudoprogression. Figure 1B shows exemplary the index T1 CE MRI scan with a new CE 
lesion around the resection cavity in the posterior lobe. The corresponding PET scan shows extensive FET accumulation far beyond the 
CE lesion. In the follow-up MRI scan, the index CE lesion increased considerably and thus confirmed true progression. By a mere visual 
comparison of the PET images from the patient with pseudoprogression A. with that from the patient with true progression B. one can not 
infer that there is any difference in tracer uptake. Assessing the texture of tracer uptake, however, provides more information than can be 
delineated by visual inspection.

Figure 4: A. Dot plot of progression-free survival (PFS) by cluster groups; B. Distribution of prognostic factors by cluster. C. Dot plot of 
overall survival (OS) by cluster groups; k, Kruskal-Wallis test; f, Fisher's exact test; MGMT, O-6-methylguanine-DNA methyltransferase; 
KPS, Karnofsky performance status, SD, standard deviation; n, number; Solid line indicates median PFS values; Dotted line indicates 
median PFS values measured by Kaplan-Meier method.
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classifier, cluster 3. However, the significance of this 
analysis is limited given the retrospective and explorative 
nature of this study and its very limited sample size. 
Nevertheless, this approach is novel, the results are 
promising, and encourage to analyze the diagnostic value 
of textural markers in a larger cohort of patients.

Out of a set of 19 FET-PET features encompassing 
conventional (among others TLU, TNRmax, and 
TNRmean) as well as textural features, only 10 features 
separated all 3 clusters from one another. Of those 10, 
7 features, namely Contrast, Volume, Entropy, TLU, 
Correlation, Size-zone var., and Coarseness were most 
differentially regulated among clusters and all of the 
latter 7 – except for TLU and Volume - are considered 
textural PET markers [12]. These textural features reflect 
intratumoral uptake heterogeneity and may be used 
to quantify tumor heterogeneity [12]. The degree of 
intratumoral heterogeneity is suspected to be a prognostic 
factor [18]. Some textural markers such as Entropy and 
COV have been shown to be prognostically relevant in 
systemic tumors [12, 19]. Intriguingly, cluster 2, which 
included only patients with true progression, exhibited 
high values of heterogeneity markers (particularly Contrast 
and Entropy). By contrast, cluster 3, which included 
largely patients with confirmed pseudoprogression, was 
associated with low values of heterogeneity markers. On 
the other hand, TLU, the only non-textural marker of the 
7 highly differentially regulated FET-PET-features, has 
been shown to be negatively correlated with prognosis 
and - compared to other conventional PET features - a 
stronger predictor of outcome in systemic tumors [20, 21]. 
Interestingly, TLU was inversely associated with cluster 3, 
supporting that the cluster assignment based on our set of 
PET features might carry prognostic implications.

Similarly, in a recently published retrospective study 
[22] of patients with HGG, who received FET-PET prior 
to first-line treatment, 3 of the textural markers assessed 
here, namely Complexity, Contrast and Coarseness, were 
shown to be possibly correlated with survival. In our very 
small-sized patient cohort, cluster 2 patients showed the 
lowest median PFS and OS compared to patients from the 
other clusters. Notably, canonical prognostic markers were 
similarly distributed among clusters and are not suited to 
explain this observation. However, survival times varied 
considerably among patients sharing the same cluster and 
the sample size was too small to draw strong conclusions 
from this pilot data. In addition, it should be mentioned 
that our cohort consisted of 5 patients who underwent PET 
after relapse had occurred. With the other patients included 
in the first-line therapy, our cohort was heterogeneous to 
some degree although those patients included after relapse 
were treated again with alkylating (radio) chemotherapy. 
This cohort heterogeneity and the issue that treatment at 
recurrence might further account for varying PET data 
makes interpretation difficult. Nevertheless, because our 
findings might indicate a putatively prognostic value of 

clusters defined by textural FET-PET markers reflecting 
intratumoral uptake heterogeneity, a prospective study 
with a larger patient cohort validating our results is 
warranted.

In summary, this work provides a novel and 
interesting approach to FET-PET based identification of 
pseudoprogression, however, as mentioned above, by 
virtue of the small sample size interpretation of our results 
is limited and calls for validation in larger and systemic 
analyses.

MATERIALS AND METHODS

Patients

For this retrospective analysis, the patient files of 
the Division of Clinical Neurooncology were searched 
for pathohistologically confirmed HGG patients meeting 
the following characteristics: (1) patients experiencing 
increasing contrast-enhancing lesions on MRI (+25% 
in 2 perpendicular diameters) and/or any new lesion 
according to RANO [23] (minimum lesion size >10 mm) 
more than 4 weeks after the end of radiotherapy, (2) 
patients having a routine FET-PET following detection 
of increasing contrast-enhancing lesions, (3) after 
initial MRI and FET-PET, a further contrast-enhanced 
MRI ensued at least 4 weeks later without change of 
therapy. O-6-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation status was tested using 
pyrosequencing [24]. This study was approved by the 
institutional ethics committee of the University of Bonn 
Medical Center.

PET imaging with 18F-FET

Data were acquired with a Biograph Sensation 2 
PET/computer tomography (PET/CT) scanner (Siemens 
Medical Solutions). The axial and transverse fields of 
view were 16.2 and 58.5cm respectively. The transverse 
resolution of the scanner was about 6.5mm, whereas the 
axial resolution was 6.0mm, both at a radius of 10mm. 
The computer tomography (CT) component was a 
2-slice spiral CT scanner. About 20 minutes after the 
intravenous injection of approximately 200 MBq of 
FET, the patient was placed in the scanner. Low-dose 
CT of the head (caudocranial) was performed followed 
by the PET scan of the same area in a single bed position 
with 20 minutes acquisition time. The CT data were 
reconstructed in 512 x 512 pixel matrices. PET data 
were reconstructed into 256 x 256 matrices using the 
iterative attenuation-weighted ordered subset algorithm 
implemented by the manufacturer using 4 iterations 
and 16 subsets. Attenuation and scatter correction was 
performed using the CT data. Final voxel size was 
5.3mm x 5.3mm x 5mm. All patients gave written and 
informed consent to the imaging procedure.
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PET data analysis

Image data were transferred to an Interview Fusion 
Workstation (Mediso Medical Imaging System, Budapest, 
Hungary). Firstly, co-registration between PET and CT 
images was performed. Tumor volume was manually 
delineated on PET images. For background assessment, 5 
regions of interest (ROIs) with a fixed diameter of 15mm 
were placed on normally appearing cortex area, 2 on the 
frontal lobe, 2 on the occipital lobe and 1 on the contralateral 
region to the tumor. A mean value was then calculated for 
these ROIs. In addition, a semiautomatic segmentation in 
PET was performed based on background activity; to this 
end, the tumor delineation cutoff was set as 1.6 times the 
mean value of background ROIs. For the assessment of 
tumor uptake heterogeneity, 13 textural heterogeneity PET 
parameters were estimated, namely, Coefficient of Variation 
(COV) [19], Entropy, Correlation, Contrast, Size-zone 
variability (Size-zone var.), Intensity variability (Intensity 
var.), Coarseness, Complexity [25], Short Zone Emphasis 
(SZ emphasis), Long Zone Emphasis (LZ emphasis), Zone 
Percentage, Short Run Emphasis (SR emphasis), and Long 
Run Emphasis (LR emphasis) [12, 26]. All parameters 
were assessed in 3-dimensional volumes. In addition, the 
following 6 conventional PET parameters were evaluated: 
mean SUV (Mean), maximum SUV (Max), Morphologic 
Volume of the Lesion (Volume), Total Lesion Uptake (TLU) 
as product of lesion volume and mean uptake in the lesion 
analog to the total lesion glycolysis in glucose PET, mean 
tumor to background ratios (TNRmean) and maximum 
tumor to background ratios (TNRmax).

Diagnosis of true progression

The diagnosis of tumor progression was made when 
progressive contrast-enhancing lesions according to RANO 
criteria [23] were noted on initial MRI and when further 
progression of contrast-enhancement ensued on a follow-
up MRI at least 4 weeks later. By contrast, the diagnosis of 
pseudoprogression was applied when the follow-up MRI 
showed stabilization or regression of the contrast-enhancing 
lesions, provided that neither clinical worsening nor change 
in treatment ensued in the interim. In all patients, MRI scan 
analysis was carried out by an experienced neuroradiologist 
and another independent investigator.

In both the event of true progression and 
pseudoprogression, progression-free survival (PFS) 
was defined as the time between PET investigation and 
next progression as defined per RANO after the follow-
up MRI used to confirm either true progression or 
pseudoprogression.

Subtype discovery

Unsupervised consensus clustering was used for 
class discovery to uncover groups of items sharing FET-
PET characteristics. Consensus clustering is a class 

discovery technique for the detection of unknown possible 
clusters consisting of items with similar intrinsic features 
[27]. Being distinct from conventional clustering methods, 
it provides quantitative evidence to determine the number 
and membership of clusters. To apply this method on our 
dataset, we first standardized FET-PET features to obtain 
z-scores. This was followed by subsampling 80% of items 
and PET features 10 000 times and partitioning each 
subsample up into k=7 groups (k represents the number 
of clusters) by the agglomerative hierarchical clustering 
algorithm using Pearson correlation distance. For each 
k, a consensus matrix was filled with consensus values, 
defined as the proportion of clustering repetitions in 
which 2 items are classified together. To determine the 
optimal number of k, we drew upon empirical cumulative 
distribution function (CDF) plots to find the k at which the 
distribution reached an approximate maximum, indicating 
optimal stability. For illustration purposes, it may be apt 
to assume that we observe the outcome of this kind of 
clustering for only 2 patients. Based on their PET features, 
2 hypothetical patients are given a certain consensus index 
that may lie between 0 and 1. The CDF is an accumulation 
of all observed consensus indices for all patients at a 
given k. Consequently, the CDF is a measure of how well 
clustering turned out to be at a given k.

To validate the so obtained optimal number 
of clusters, we applied the proportion of ambiguous 
clustering (PAC) method [28].

To identify a minimal subset of PET features that 
succinctly characterizes each cluster, we used the nearest 
shrunken centroids method called predictive analysis of 
microarrays (PAM) [29]. For this purpose, we used 10-
fold cross-validation to determine the amount of shrinkage 
at which the error rate was minimized.

Statistical analysis

To assess cluster stability in the unsupervised 
analysis, along with performing consensus clustering over 
10 000 iterations we used the CDF and CDF progression 
graphs to detect the optimal number of clusters. 
Furthermore, we relied on PAC to confirm our choice. To 
compare clinical and molecular data across clusters, we 
used the Kruskal-Wallis test for continuous variables and 
the Fisher’s exact test for categorical variables. Moreover, 
logistic regression and Fisher’s exact test for 2 x 2 
contingency tables were performed to assess the association 
of pseudoprogression with cluster assignments. A p-value 
below 5% was considered significant. Statistical analysis 
was carried out using Stata (release 14.0; StataCorp LP) 
and R statistical software (version 3.2.4).

CONFLICTS OF INTERESTS

RB has a non-commercial research contract with 
Mediso Medical Imaging Systems, RB is on the speaker's 



Oncotarget8303www.impactjournals.com/oncotarget

bureau for Mediso Medical Imaging Systems The other 
authors declare that they have no conflict of interest.

FUNDING

BS was supported by the Volkswagen foundation 
(Lichtenberg program). ZK was supported by the German 
Academic Exchange Service (DAAD).

REFERENCES

1. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, 
Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, 
Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T. 
Bevacizumab plus radiotherapy-temozolomide for newly 
diagnosed glioblastoma. The New England journal of 
medicine. 2014; 370:709-722.

2. Radbruch A, Fladt J, Kickingereder P, Wiestler B, 
Nowosielski M, Baumer P, Schlemmer HP, Wick A, Heiland 
S, Wick W, Bendszus M. Pseudoprogression in patients with 
glioblastoma: clinical relevance despite low incidence. 
Neuro Oncol. 2015; 17:151-159.

3. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, 
van den Bent MJ. Immediate post-radiotherapy changes in 
malignant glioma can mimic tumor progression. Neurology. 
2004; 63:535-537.

4. Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak-
Kragten AT, Smitt PA, van Es CA, van den Bent MJ. 
Incidence of early pseudo-progression in a cohort of 
malignant glioma patients treated with chemoirradiation 
with temozolomide. Cancer. 2008; 113:405-410.

5. Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, 
Sloan AE. Early necrosis following concurrent Temodar and 
radiotherapy in patients with glioblastoma. J Neurooncol. 
2007; 82:81-83.

6. Chaskis C, Neyns B, Michotte A, De Ridder M, Everaert 
H. Pseudoprogression after radiotherapy with concurrent 
temozolomide for high-grade glioma: clinical observations 
and working recommendations. Surg Neurol. 2009; 
72:423-428.

7. Gerstner ER, McNamara MB, Norden AD, Lafrankie D, 
Wen PY. Effect of adding temozolomide to radiation therapy 
on the incidence of pseudo-progression. J Neurooncol. 
2009; 94:97-101.

8. Chakravarti A, Erkkinen MG, Nestler U, Stupp R, 
Mehta M, Aldape K, Gilbert MR, Black PM, Loeffler 
JS. Temozolomide-mediated radiation enhancement in 
glioblastoma: a report on underlying mechanisms. Clin 
Cancer Res. 2006; 12:4738-4746.

9. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel 
M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, 
Hau P, Ruge MI, et al. Diagnosis of pseudoprogression 
in patients with glioblastoma using O-(2-[18F]

fluoroethyl)-L-tyrosine PET. European journal of nuclear 
medicine and molecular imaging. 2015; 42:685-695.

10. Kebir S, Fimmers R, Galldiks N, Schafer N, Mack F, 
Schaub C, Stuplich M, Niessen M, Tzaridis T, Simon M, 
Stoffels G, Langen KJ, Scheffler B, Glas M, Herrlinger U. 
Late Pseudoprogression in Glioblastoma: Diagnostic Value 
of Dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clin 
Cancer Res. 2015.

11. Kebir S, Fimmers R, Galldiks N, Schafer N, Mack F, 
Schaub C, Stuplich M, Niessen M, Tzaridis T, Simon M, 
Stoffels G, Langen KJ, Scheffler B, Glas M, Herrlinger U. 
Late Pseudoprogression in Glioblastoma: Diagnostic Value 
of Dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clin 
Cancer Res. 2016; 22:2190-2196.

12. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, 
Metges JP, Corcos L, Visvikis D. Intratumor heterogeneity 
characterized by textural features on baseline 18F-FDG PET 
images predicts response to concomitant radiochemotherapy 
in esophageal cancer. J Nucl Med. 2011; 52:369-378.

13. Eary JF, O'Sullivan F, O'Sullivan J, Conrad EU. Spatial 
heterogeneity in sarcoma 18F-FDG uptake as a predictor of 
patient outcome. J Nucl Med. 2008; 49:1973-1979.

14. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy 
A, Marsden P, Ahmad S, Landau D. Are pretreatment 
18F-FDG PET tumor textural features in non-small cell 
lung cancer associated with response and survival after 
chemoradiotherapy? Journal of nuclear medicine. 2013; 
54:19-26.

15. Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG 
PET/CT-based textural characterization of head and neck 
cancer for radiation treatment planning. IEEE transactions 
on medical imaging. 2009; 28:374-383.

16. Lapa C, Werner RA, Schmid JS, Papp L, Zsoter N, Biko 
J, Reiners C, Herrmann K, Buck AK, Bundschuh RA. 
Prognostic value of positron emission tomography-
assessed tumor heterogeneity in patients with thyroid cancer 
undergoing treatment with radiopeptide therapy. Nucl Med 
Biol. 2015; 42:349-354.

17. Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler 
HR. Molecular heterogeneity in glioblastoma: potential 
clinical implications. Frontiers in oncology. 2015; 5:55.

18. Almendro V, Marusyk A, Polyak K. Cellular heterogeneity 
and molecular evolution in cancer. Annu Rev Pathol. 2013; 
8:277-302.

19. Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsoter 
N, Papp L, Rosenberg R, Becker K, Astner ST, Henninger 
M, Herrmann K, Ziegler SI, Schwaiger M, Essler M. 
Textural Parameters of Tumor Heterogeneity in (1) (8) 
F-FDG PET/CT for Therapy Response Assessment and 
Prognosis in Patients with Locally Advanced Rectal Cancer. 
J Nucl Med. 2014; 55:891-897.

20. Hyun SH, Kim HS, Choi SH, Choi DW, Lee JK, Lee 
KH, Park JO, Lee KH, Kim BT, Choi JY. Intratumoral 
heterogeneity of F-FDG uptake predicts survival in patients 



Oncotarget8304www.impactjournals.com/oncotarget

with pancreatic ductal adenocarcinoma. Eur J Nucl Med 
Mol Imaging. 2016.

21. Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I. 
Total lesion glycolysis by 18F-FDG PET/CT is a reliable 
predictor of prognosis in soft-tissue sarcoma. Eur J Nucl 
Med Mol Imaging. 2013; 40:1836-1842.

22. Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S, 
Wester HJ, Meyer B, Forster S. Textural analysis of pre-
therapeutic [18F]-FET-PET and its correlation with tumor 
grade and patient survival in high-grade gliomas. European 
journal of nuclear medicine and molecular imaging. 2016; 
43:133-141.

23. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, 
Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert 
MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, et 
al. Updated response assessment criteria for high-grade 
gliomas: response assessment in neuro-oncology working 
group. J Clin Oncol. 2010; 28:1963-1972.

24. Mikeska T, Bock C, El-Maarri O, Hubner A, Ehrentraut 
D, Schramm J, Felsberg J, Kahl P, Buttner R, Pietsch T, 
Waha A. Optimization of quantitative MGMT promoter 

methylation analysis using pyrosequencing and combined 
bisulfite restriction analysis. J Mol Diagn. 2007; 9:368-381.

25. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, 
Cook GJ. Quantifying tumour heterogeneity in 18F-FDG 
PET/CT imaging by texture analysis. Eur J Nucl Med Mol 
Imaging. 2013; 40:133-140.

26. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar 
D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad 
W, Deasy JO. Exploring feature-based approaches in PET 
images for predicting cancer treatment outcomes. Pattern 
Recognit. 2009; 42:1162-1171.

27. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class 
discovery tool with confidence assessments and item 
tracking. Bioinformatics. 2010; 26:1572-1573.

28. Senbabaoglu Y, Michailidis G, Li JZ. Critical limitations of 
consensus clustering in class discovery. Scientific reports. 
2014; 4:6207.

29. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis 
of multiple cancer types by shrunken centroids of gene 
expression. Proceedings of the National Academy 
of Sciences of the United States of America. 2002; 
99:6567-6572.


