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ABSTRACT

The outcome of kidney renal clear cell carcinoma (KIRC) differs even among 
individuals with similar clinical characteristics. DNA methylation is regarded as 
a regulator of gene expression in cancers, which may be a molecular marker of 
prognosis. In this study, we aimed to mine novel methylation markers of the prognosis 
of KIRC. We revealed a total of 2793 genes differentially methylated in their promoter 
regions (DMGs) and 2979 differentially expressed genes (DEGs) in KIRC tissues 
compared with normal tissues using The Cancer Genome Atlas datasets. Then, we 
detected 57 and 34 subpathways enriched among the DMGs and DEGs, respectively, 
using the R package iSubpathwayMiner. We retained 56 subpathways related to both 
aberrant methylation and expression based on a hypergeometric test for further 
analysis. An integrated gene regulatory network was constructed using the regulatory 
relationships between genes in the subpathways. Using the top 15% of the nodes 
from the network ranked by degree, survival analysis was performed. We validated 
four DNA methylation signatures (RAC2, PLCB2, VAV1, and PARVG) as being highly 
correlated with prognosis in KIRC. These findings suggest that DNA methylation might 
become a prognostic predictor in KIRC and could supplement histological prognostic 
prediction.

INTRODUCTION

Roughly 210,000 new cases of renal cell carcinoma, 
which is the most common malignant tumor derived 
from the kidney, are diagnosed worldwide each year, 
accounting for 2–3% of all cancers. At present, kidney 
renal clear cell carcinoma (KIRC) is the major histological 
subtype of renal cell carcinoma, accounting for 80–90% 
of cases [1, 2]. However, the prognosis of KIRC is dire 
[1]. The most commonly used predictors to assess the 
risk of patients with KIRC are TNM stage and Fuhrman 
grade [3, 4]. Nevertheless, patients with similar clinical 
features or scores may still present variable outcomes. 
Thus, there is an urgent need to identify new sensitive 
molecular markers for prognosis and diagnosis, as well 
as to explore the mechanism in patients with KIRC. One 
study has found that melanoma cell adhesion molecule 
(MCAM) and its extracellular matrix interaction partner 
laminin alpha 4 (LAMA4), which have emerged as the 

genes most consistently expressed in blood vessels, 
can predict poor survival in renal cell carcinoma [5]. A 
five-microRNA signature (hsa-let-7a, hsa-miR-221, hsa-
miR-137, hsa-miR-372, and hsa-miR-182) was also shown 
to be associated with survival and cancer relapse in non-
small-cell lung cancer patients [6].

Although cancer initiation and progression are 
mainly driven by associated genetic alterations, it 
has emerged that epigenetic changes such as DNA 
methylation in promoters of tumor-associated genes 
are extremely important among molecular barriers in 
neoplastic development [7, 8]. Aberrant DNA methylation 
in promoter regions is a hallmark of cancer, and it affects 
gene transcription and genomic integrity in tissue- and 
time-dependent manners [9–11]. DNA methylation of 
some genes has already been used as a biological label in 
the early diagnosis and prognosis of other diseases. For 
example, CDH1 promoter methylation may be correlated 
with breast carcinogenesis and associated with poor 
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prognosis in patients with breast cancer [12]. In addition, 
DNA methylation of the promoter regions of four genes 
(P16, CDH13, APC, and RUSSF1A) in patients with stage 
I non-small-cell lung cancer, treated with curative intent by 
surgery, was shown to be associated with early recurrence 
[13].

In this paper, we  proposed an integrative framework 
to predict KIRC patients’ survival (Figure 1). We utilized 
the DNA methylation profiles and mRNA expression 
profiles from The Cancer Genome Atlas (TCGA) in 
this work. For the precise identification of differentially 
methylated genes (DMGs) and differentially expressed 
genes (DEGs), we selected 316 samples with both DNA 
methylation and gene expression profiles for analysis. 
Then, we used the R package iSubpathwayMiner to detect 
subpathways enriched among the DMGs and DEGs. We 
also constructed an integrated gene regulatory network 
associated with KIRC by the regulatory relationships 
between genes in the subpathways. Based on topological 
analysis of this network, we identified 16 hub genes that 
play crucial roles in patients with KIRC. Finally, we 
identified and validated four reliable DNA methylation 
signatures with prognostic utility. Our study not only 
complements the current prognostic evaluation system 
of KIRC, but also improves the accuracy of doctors’ 
prognostic judgments by taking individual heterogeneity 
into consideration.

RESULTS

Identification of KIRC-related DMGs and DEGs 
at the genome scale

To identify DMGs associated with KIRC, an 
analysis of genome-wide DNA methylation in gene 
promoter regions was performed, which involved 
comparison between 316 cancerous tissues and 158 
adjacent tissues from KIRC patients. A total of 194,693 
DNA methylation sites were analyzed. To get a precise 
outcome, the R package ChAMP was utilized to eliminate 
the batch effect between samples, and probes specific 
to the sex chromosomes and regions containing single-
nucleotide polymorphisms (SNPs) were discarded. 
Then, based on the linear approximation model, we 
identified 14,125 differentially methylated sites (p<0.05; 
Δβ>0.1). Targeting genes whose expression is strongly 
affected by the DNA methylation level, we evaluated the 
relationship between DNA methylation level and gene 
expression level using Pearson’s correlation coefficient 
(PCC). In this way, we identified 6050 CpG sites mapped 
to 2793 genes. We named these genes DMGs (Figure 
2A). Of all the differentially methylated probes, 3060 
probes showed hypermethylation in the cancer samples 
compared with normal samples (51%; [cancer]>[normal]), 
while 2990 probes showed hypomethylation (49%; 
[normal]>[cancer]). Moreover, nearly half of the 

hypermethylated probes were found to be on CpG 
islands (CGIs, 1384 probes; 45%), while only 5% of the 
hypomethylated probes were (115 probes; 5%). Almost 
one-third of hypermethylated probes were on CGI shores 
(909 probes; 30%), which was similar to the proportion for 
hypomethylated probes (974 probes; 31%). Only 2% of 
hypermethylated probes were on CGI shelves (68 probes; 
2%), while 7% of hypomethylated probes were on them 
(199 probes; 7%). Finally, a total of 699 hypermethylated 
probes were on open sea (699 probes; 23%), while nearly 
half of the hypomethylated probes were on it (1702 
probes; 57%) (Figure 2B). Gene Ontology (GO) functional 
enrichment performed using the software DAVID revealed 
that these DMGs are strongly involved in some biological 
functions highly associated with characteristics of cancers 
(Figure 2C), such as immune response, cell adhesion, 
regulation of cell proliferation, and defense response.

After eliminating the batch effect of gene expression 
profiles, a whole-genome gene expression analysis was 
performed in 316 tumor tissues and 71 normal tissues 
from patients with KIRC using the R package RUVSeq 
(see Materials and Methods). The Benjamini–Hochberg 
(BH) multiple testing method was used to correct the 
p-values. False discovery rate (FDR) and fold change 
were used as the criteria (i.e., |log2FC|>2, FDR<0.01) 
for identifying DEGs, which led to 2979 DEGs being 
assigned for KIRC (Figure 3A). A volcano plot was 
created to show the values of FDR and logFC for 20,531 
genes from the whole genome (Figure 3B). One-third 
of the total DEGs were overexpressed in cancerous 
tissue (682 genes, 33%, [cancer]>[normal]), while the 
others exhibited lower expression (1397 genes, 67%, 
[normal]>[cancer]). Unsurprisingly, similar functional 
associations were found by the GO functional enrichment 
analysis using the software DAVID (Figure 3C), namely, 
that the DEGs are involved in processes such as cell 
adhesion, cell proliferation, and immune response. The 
results indicated that the DNA methylation level may 
affect gene expression. The associated genes were also 
found to participate in certain functions that induce KIRC 
cell proliferation and adhesion.

Identification of DMG- and DEG-associated 
subpathways in KIRC

Here, subpathways were applied to investigate 
biological correlations. The R package iSubpathwayMiner 
based on the distance similarity method was used to identify 
subpathways that were significantly enriched among the 
DMGs and DEGs. For the DNA methylation profiles, 
2793 DMGs were enriched in 57 significant subpathways 
(named DMsubpathways) (p<0.01; Supplementary Table 
1). These DMsubpathways are highly associated with the 
occurrence and progression of cancer, such as the p53 
signaling pathway, HIF-1 signaling pathway, and calcium 
signaling pathway. The transcriptional activator HIF1 
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is the key mediator of the cellular responses to hypoxia 
and regulates the expression of at least 40 genes that 
control angiogenesis, invasion, and metastasis of cancer. 
HIF heterodimers directly induce the expression of Twist 
by binding to hypoxia response elements (HREs) in the 
Twist proximal promoter region and promote epithelial-
to-mesenchymal transition and a metastatic phenotype 
[14]. Referred to as a cellular gatekeeper, the p53 protein 

acts as a stress-inducing signal to induce antiproliferative 
cellular responses, such as response to DNA damage, 
oncogene activation, or hypoxia, in which it subsequently 
orchestrates biological outcomes including apoptosis, cell 
cycle arrest, senescence, or the modulation of autophagy 
[15–18].

DEG-associated subpathways in KIRC were 
also obtained by the same method. We discovered 

Figure 1: Flow figure indicating study design. Step I: We identified and analyzed DMGs through TCGA methylation profiles. By 
using Pearson Correlation Coefficient method, we got the CpG sites which may influence gene expression. Then gene ontology (GO) 
functional analysis and KEGG subpathway enrichment analysis were performed for the DMGs. Step II: We identified and analyzed DEGs 
through mRNA expression profiles. GO functional analysis and KEGG subpathway enrichment analysis were performed for DEGs using 
the same method mentioned above. Step III: Based on topological property analysis of the integrated network, we identified candidate genes 
associated with the survival of KIRC both in the training set and testing set.
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34 subpathways enriched for 2979 DEGs (named 
DEsubpathways) (p<0.01, Supplementary Table 2). 
Among these 34 DEsubpathways, 28 overlapped with the 
DMsubpathways (82%), such as the PI3K-Akt signaling 
pathway, MAPK signaling pathway, NF-kappa B signaling 
pathway, and cell cycle. Nuclear factor-kappa B is 
recognized as a critical regulator of immune responses, 
which could affect cell survival and proliferation, as well 
as multiple aspects of the immune responses initiated 
by pattern recognition receptors [19, 20]. A difference 
between cancer cells and normal cells in the cell cycle 
module was identified. That it, the cancer group had more 
cells in the proliferative phase, which is conducive to the 
immortality of cancer cells.

Construction of an integrated gene regulatory 
network based on DMGs and DEGs

In the field of oncology, DEGs have been used to 
identify upstream causal genes through further network 
analysis, followed by their application for tumor diagnosis 
and prognosis as new biomarkers. Construction of a 
specific network is a valid and authentic way of integrating 
complicated biological correlations and has been applied 
successfully to identify molecular markers [21, 22]. In 
our research, to construct an integrated gene regulatory 
network, we combined subpathways derived from 
DMGs and DEGs together. For the purpose of finding 
altered subpathways in both methylation and expression 

Figure 2: Identification and analysis of differentially methylated genes (DMGs). A. Hierarchical clustering of DMGs, rows 
represent CpG sites and columns represent samples. For a CpG site, red represents higher methylation level, blue represents lower methylation 
level and white represents medial methylation level for all samples. For a sample, yellow means tumor adjacent tissues and blue means tumor 
tissues from patients with KIRC. There were 316 cancer samples and 158 adjacent tissues from KIRC patients, and 6050 CpG sites totally. 
B. The distribution of all differentially methylated sites among CpG island, open sea, shelf and shore. C. Gene ontology (GO) enrichment 
analysis of DMGs, the length of green bars represents the P-value of each GO biological process (log10 transformed FDR).



Oncotarget5272www.impactjournals.com/oncotarget

profiles, a hypergeometric test was used to calculate 
the correlation between each DMsubpathway and each 
DEsubpathway. Only if there was a strong correlation 
between one DMsubpathway and one DEsubpathway, 
the two subpathways were selected for further analysis 
(hypergeometric test; p<1.0e−30). Finally, 56 subpathways 
under the regulation of both DMGs and DEGs were 
selected for further analysis (Supplementary Table 3). 
After extracting the interaction pairs in each reliable 
subpathway, we constructed a methylation-associated and 
expression-related integrated gene regulatory network. 
Visualization of the network was performed using the 
software Cytoscape (Figure 4). The network contained 
1279 nodes and 12,133 edges. The nodes in the network 
represented genes and directed edges showed that there 
was a regulatory relationship between two genes in at 
least one subpathway. The node size reflected its degree 
in the network. Orange nodes showed that the genes were 

neither DMGs nor DEGs. Green nodes showed that the 
genes were either DMGs or DEGs. Blue nodes showed 
that the genes were both DMGs and DEGs. Finally, after 
analysis of the topology of this network, 16 genes ranked 
in the top 15% of the nodes by descending order of degree 
were chosen. They are not only DMGs but also DEGs. We 
defined these 16 genes as hub genes, as follows: CALML3, 
SLC8A3, CACNA1G, ATP2B2, P2RX7, ITGA5, CLDN8, 
CLDN19, CLDN16, CLDN14, CLDN11, CLDN10, RAC2, 
PARVG, PLCB2, and VAV1.

Building a survival prediction model based on 
DNA methylation profile in KIRC

Next, we used the 16 hub genes to build a KIRC 
survival prediction model. First, we assigned 316 KIRC 
samples into a training set (n = 158) and a testing set (n = 
158) randomly using criteria such as gender, age, status, 

Figure 3: Identification and analysis of differentially expressed genes (DEGs). A. Hierarchical clustering of DEGs, rows 
represent genes and columns represent samples. For a gene, red represents higher expression level, blue represents lower expression level 
and white represents medial expression level for all samples. For a sample, yellow means tumor adjacent tissues and blue means tumor tissues 
from patients with KIRC. B. Volcano plot of the whole genomic gene expression profile, the red plots represent DEGs with |log2FC|>2, 
FDR<0.01 and black plots represent non-DEGs genes with no significant difference between samples. The abscissa means the value of 
Fold-Change (log2 transformed FC) and the ordinate means the P-value of differential genes (log10 transformed FDR). C. Gene ontology 
(GO) enrichment analysis of DEGs, the length of blue bars represents the P-value of each GO biological process (log10 transformed FDR).
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and stage with the goal of eliminating the effect of clinical 
features. Table 1 lists the clinical characteristics of the 
316 patients. For each gene, we defined the mean of the 
methylation level of all the CpG sites within the promoter 
region as this gene’s final DNA methylation value. Next, 
we used only the training set to test whether these 16 
hub genes in KIRC were associated with the survival of 
patients. Through univariate Cox regression, we found not 
only that the methylation signature was related to overall 
survival, but also that the stage and age could affect 
prognosis. Thus, multivariate Cox regression was applied 
with the methylation signature, gene methylation, age, and 
stage as covariates. The results showed that four genes 
(RAC2, PLCB2, VAV1, PARVG) were still associated with 
overall survival (Table 2, Cox regression, p<0.05). More 
specifically, we assigned each patient a risk score based 
on a linear combination of the methylation values of the 
genes, weighted by the regression coefficients calculated 
by the aforementioned multivariate Cox regression 
analysis: Risk score = (−6.401261× RAC2) + (−4.704429× 
PARVG) + (−3.03787× PLCB2) + (−3.790671× VAV1). 
We divided patients in the training set into high-risk and 
low-risk groups by using the median of the risk scores as 
the cut-off point, which was −8.225330351. We used the 
Kaplan–Meier method to estimate the overall survival 

times of the patients. Differences between the high-risk 
and low-risk groups were determined by log-rank test. 
When using the distribution of risk score to estimate the 
overall survival of the patients, we found that patients 
in the high-risk group had a poor survival outcome, and 
patients with low risk scores had a longer median overall 
survival time than those with high risk scores (Figure 5A).

Next, patients in the testing set were utilized to 
validate the predictive prognostic ability of the four 
significant methylation signatures. We calculated the 
four-methylation signature risk score with the same risk 
score formula as acquired from the training set for each 
of the 158 patients in the testing set; we then classified the 
patients into the high-risk or low-risk group based on the 
same cut-off point as used in the training set. The Kaplan–
Meier method and log-rank test were used to examine the 
significance of the difference between the two subgroups 
in the testing set. This analysis revealed a significant 
decrease in the survival of patients whose risk scores were 
high in the testing set (log-rank test, p=0.0125, Figure 5B). 
Patients in the low-risk group had longer median survival 
than those in the high-risk group (45 months versus 26.5 
months). The Figure 5C shows the risk scores, follow-up 
status, and gene methylation signatures of 316 patients in 
both the training set and the testing set. Compared with 

Figure 4: A methylation-associated and expression-related integrated network. Orange nodes show the genes are neither 
DMGs nor DEGs. Green nodes show the genes are either DMGs or DEGs. Blue nodes show the genes are both DMGs and DEGs. The 
nodes in network represent genes and directed edges mean there is a correlation between genes in at least one subpathway. The nodes size 
represents its degree.
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Table 1: Clinical characteristics of KIRC patients in the training set and testing set

Characteristics 
Number of patients

P-value 
All patients n=316 Training set n=158 Testing Set n=158

State    1a

 Living 212 106 106  

 Dead 104 52 52  

Survival(months)    0.9579b

 Mean±SD 44.00±35.12 43.90±34.81 44.11±35.54  

 Range 1-152 1-136 1-152  

Gender    1a

 Male 204 102 102  

 Female 112 56 56  

Age    0.9208b

 Mean±SD 63.44±11.86 63.37±11.58 63.51±12.16  

 Range 28-92 39-92 28-90  

Stage    1b

 I 154 77 77  

 II 31 15 16  

 III 72 36 36  

 IV 59 30 29  

ap-values were determined using Fisher’s exact test.
bp-values were determined using Student’s t-test.

Table 2: Univariate and multivariate survival analysis for KIRC patients in the training set

Variable 
Univariate analysis Multivariate analysis

HR(95%CI) Regression 
coefficient p-value HR(95%CI) Regression 

coefficient p-value

Stage 2.037
(1.58-2.625) 0.711 3.9×10-8    

Age 1.03
(1.007-1.053) 0.030 1.1×10-2    

Gender 1.117
(0.6255-1.995) 0.111 7.1×10-1    

RAC2 6.73×10-4

(8.676e-06-0.05224) -7.303 1.0×10-3 1.66×10-3

(1.718e-05-0.1603) -6.401 6.05×10-3

PARVG 4.27×10-3

(0.0002186-0.08337) -5.456 3.2×10-4 9.06×10-3

(0.0002744-0.2988) -4.704 8.36×10-3

PLCB2 6.02×10-3

(0.0005959-0.06077) -5.113 1.47×10-5 0.04794
(0.003973-0.5784) -3.038 1.68×10-2

VAV1 4.99×10-3

(0.0002597-0.09591) -5.300 4.4×10-4 0.02258
(0.001371-0.372) -3.791 8.01×10-3
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patients in the low-risk group, high-risk patients tended to 
have a lower methylation level for the four genes. More 
deaths occurred in patients with high risk scores than in 
those with low ones (Figure 5C).

To evaluate whether the four prognostic predictors 
also reflect specific clinical characteristics, we compared 
the clinical characteristics between the high-risk group and 
the low-risk group and found a marked difference in TNM 
stage (chi-square test, T: p=0.004938; N: p=0.05684; M: 
p=0.03502), indicating that, compared with the low-risk 
group, tumors of the patients in the high-risk group tended 
to be larger in size, to invade adjacent surrounding tissues 
more, and to metastasize to lymph nodes and distant 
organs. Moreover, the differences in pathology grade 
and stage were also significant between the two groups 
(grade: p=0.0006263, stage: p=0.003686, chi-square 
test), indicating that tumors of the patients in the low-risk 
group were inclined to be well differentiated and to have a 
lower clinical stage. Furthermore, we collected 66 patients 
and 65 patients at a higher stage (stage III/IV) among all 
of the samples from the training set and the testing set, 
respectively, and constructed new training and testing sets 
corresponding to those in the previous analysis. Then, we 

performed survival analysis to investigate whether the 
four methylation signatures could distinguish high-risk 
patients from low-risk ones with a higher stage. By Cox 
regression, the four methylation signatures were found 
to be related to overall survival. As shown in Figure 5D, 
there was a significant difference between the survival 
time of the high-risk group and that of the low-risk group 
in the new training set. In the new testing set, the curves 
were separated perfectly, but the P-value was slightly 
above the 5% level. This may because the sample size was 
too small to reach significance (Figure 5E). In conclusion, 
the four DNA methylation signatures can predict overall 
survival of KIRC patients successfully, and can predict 
metastasis and the malignancy of tumors, which may 
have prognostic and therapeutic implications for those 
involved in decision-making regarding the treatment of 
these patients.

DISCUSSION

KIRC is the eighth most common cancer with the 
highest fatality rate of all genitourinary tumors, with 
approximately 65,000 new cases and approximately 

Figure 5: Survival analysis in KIRC. The Kaplan-Meier plots show overall survival in high-risk group (red) and low-risk group 
(blue). The P-value was calculated by log-rank test. Overall survival was indicated in months. A. The Kaplan-Meier plots in training set. B. 
The Kaplan-Meier plots in testing set. C. The upper panel shows the risk score distribution of all samples that contains both in the training 
set and testing set. The middle panel shows the status of patients, where red plots represent that patients were dead and blue plots represent 
patients were alive. The bottom panel is the color-gram of gene methylation value. Rows represent genes and columns represent patients. 
The black dotted line represents the median methylation signature cutoff dividing patients into high-risk and low-risk groups. D. The 
Kaplan-Meier plots of patients in training set of late stage. E. The Kaplan-Meier plots of patients in late stage in testing set.
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13,000 deaths annually in the United States [23–25]. 
Thus, there is an urgent need to identify reliable 
molecular markers to predict patient survival in KIRC. 
Although a few markers were revealed to be related to the 
prognosis of KIRC in previous studies, the results were 
not consistent. There are a range of possible reasons for 
this inconsistency, such as the ethnicity of the subjects, 
the analytical methods selected, and the number of 
patients included. Given this background, more accurate 
and reliable results can be obtained by using a scientific 
approach to identify molecular markers for the prognosis 
of KIRC.

In this study, we systematically analyzed KIRC 
genomic data, including DNA promoter methylation and 
gene expression, to discover novel and reliable molecular 
markers. First, we eliminated factors such as the batch 
effect that can influence outcomes by using R packages. 
Second, to better understand the effect of DNA promoter 
methylation on gene expression, we selected 316 samples 
with both DNA promoter methylation profiles and mRNA 
expression profiles, so the individual personal factors 
were minimized. We also calculated the PCC between 
each differentially methylated DNA promoter site and 
the matched gene expression data in the same individual. 
The identified DEGs not only confirmed some previous 
research findings, but also provided new findings. For 
example, TNFAIP, a well-known tumor α-induced protein 
that acts as a natural brake on inflammation, was found to 
be upregulated in this KIRC research [26]. Another DEG, 
SLC6A3, which has already been implicated in lung and 
breast cancer, was here found to be involved in KIRC for 
the first time [27, 28].

Cancer is extraordinarily complex in that its 
emergence involves a multigene process that contributes 
to malignant transformation. Thus, it is necessary to 
construct a biological network to shed light on the 
initiation and progression of cancer. Although a few 
studies have constructed biological networks, most of 
them only constructed networks based on a single genomic 
profile. However, in this study, we performed enrichment 
analysis based on both DNA promoter methylation profile 
and gene expression profile at the same time. Biological 
subpathways instead of pathways enriched for DEGs 
were identified, which can increase the validity of the 
enrichment analysis. This is because the subpathway 
enrichment analysis method, with the ability to identify 
unregulated local areas, takes complicated structural 
information into account, and can reveal the correlation 
between diseases and biological pathways more precisely. 
After the enrichment analysis, we analyzed the relationship 
between each DMsubpathway and DEsubpathway by a 
hypergeometric test. The results showed there were 56 
subpathways shared by both profiles, such as the HIF-1 
signaling pathway and the calcium signaling pathway. 
With the goal of identifying markers that have a strong 
relationship with KIRC, we built an integrated gene 

regulatory network. Hub genes were typically defined 
as the top 15% of the nodes ranked by degree [29–31], 
including about 190 genes. In this case, as selection for 
further analysis, we required the nodes to be DMGs 
overlapping with DEGs; using this criterion, only 16 hub 
genes were selected. Since the hub genes play a central 
role in the biological network, they were considered as 
candidate signatures for further study.

Using Cox regression analysis, DNA promoter 
methylation of four methylation signatures (RAC2, 
PLCB2, VAV1, PARVG) was found to be associated 
with survival in both the training set and the testing set. 
Specifically, after eliminating other characteristics such as 
age or stage, patients with high-risk scores were found to 
have poor survival compared with the other patients with 
low-risk scores; furthermore, patients in the high-risk 
group showed the features of invasion, metastasis, and 
a poor pathology grade. The four methylation signatures 
thus have potential as molecular markers to predict 
patient prognosis in a clinical context, for the following 
two reasons: (1) The four methylation signatures can 
predict disease status, progression, and patient survival 
in a precise way, as mentioned above. (2) Although a 
few studies have analyzed genomic profiles in KIRC and 
identified their potential clinical relevance [32–35], these 
signatures have limited usefulness in clinical practice 
because of the large numbers of genes included. However, 
in this study, we used the DNA methylation level of only 
four highly prognostic DNA promoter regions; this low 
number of markers makes our classifier faster to use and 
more feasible in a clinical context.

The final four methylation signatures participate 
in the regulation of tumor cell function, which further 
demonstrates the validity of our work. For example, 
the guanine nucleotide exchange factor VAV1, which is 
an activator of Rho family GTPases, is unregulated in 
many pancreatic cancers, where it facilitates the survival 
and migration of tumor cells [36, 37]. RAC2 controls 
macrophage differentiation from M1 to M2, which is 
well known to be important in tumor progression and the 
metastatic phenotype. In addition, a long noncoding RNA 
was shown to indicate a poor prognosis of hepatocellular 
carcinoma via upregulation of RhoA/Rac2 signaling. 
Moreover, Rac2 was shown to be associated with a poor 
prognosis in patients with systemic mastocytosis and 
acute myeloid leukemia. Thus, we believe RAC2 has a 
significant effect in tumor growth, angiogenesis, and 
metastasis [38–40]. PLC in breast cancer has also been 
demonstrated to be overexpressed compared with the 
level in normal tissue. This suggests that upregulation of 
PLC-γ1 is associated with growth factor-mediated tumor 
cell migration and invasiveness [41–43]. Furthermore, 
PARVG, located on 22q13, was identified as a candidate 
tumor suppressor gene for colorectal and breast cancer, 
and ILK-γ-parvin complex was revealed to be critically 
involved in the initial integrin signaling for leukocyte 
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migration [44, 45]. A study also showed that Vav1 plays 
a unique role in T-cell leukemia survival by selectively 
triggering the Rac2-Akt axis and elevating the expression 
of anti-apoptotic Bcl-2. All of these findings suggest 
that our biomarkers can be linked together as a pathway 
associated with survival [46].

Owing to individual differences, the current clinical 
prognostic system cannot precisely predict each patient’s 
survival and patients with similar clinical features may 
have diverse outcomes. Thus, there is a demand to increase 
the prognostic value for the current staging system. Our 
study suggests that, if we add the four DNA methylation 
signatures to the current clinical prognostic system, it may 
be easier for doctors to predict the survival of patients with 
similar clinical features or the rate of metastasis and to 
improve the outcome by establishing a better therapy for 
patients in the high-risk group.

MATERIALS AND METHODS

Retrieval of data on DNA methylation in the 
gene promoter regions and gene expression 
profiles

Data on DNA methylation in the gene promoter 
regions and gene expression data of KIRC were collected 
from The Cancer Genome Atlas (https://tcga-data.nci.nih.
gov/tcga/). Two sets of paired data (cancerous and normal 
adjacent tissues from KIRC patients) were downloaded, 
including mRNA expression profiles (level 3 data, RNA-
seq Version 2, Illumina) of 532 cancer samples and 71 
adjacent tissues from KIRC patients; the gene set type is 
Refseq, DNA methylation profiles (level 3 data, Infinium 
HumanMethylation450BeadChIP) of 321 cancer samples 
and 158 adjacent tissues from KIRC patients. The clinical 
data included retrospectively identified information of 532 
patients, such as gender, age, and clinical status.

Identification of DMGs associated with KIRC

The R package ChAMP [47] was used to identify 
DMGs among the DNA methylation profiles in gene 
promoter regions. This study only considered CpG sites 
around DNA promoter regions [2000 bp upstream of the 
transcription start site (TSS) to 500 bp downstream of 
the TSS]. CGIs are defined as regions with CG content 
>50% and length >200 bp, and CGI shores are regions 
flanking CGIs in their upstream 2-kb region. CGI shelves 
are regions up to 2 kb from CGI shores and beyond of 
these are open sea. After discarding probes specific for the 
sex chromosomes or regions containing SNPs, there were 
194,693 eligible sites for further analysis. To minimize the 
batch effects between samples, we used ComBat to process 
the data. Based on the linear model of the R package 
limma, we identified differentially methylated sites. The 
BH method was used to adjust the P-value of the model. 

The threshold for defining a differentially methylated site 
was that the adjusted P-value must be less than 0.05, and 
the differential level (Δβ value) between cancer and normal 
tissues must be greater than 0.1. PCC was calculated to 
assess the correlation between DNA methylation values of 
differentially methylated CpG sites and the corresponding 
mRNA expression values. Only when the P-value was less 
than 0.05 and there was a negative correlation between the 
methylation and expression did we use genes for further 
analysis. We named the genes mapped by the differentially 
methylated sites as DMGs.

Identification of DEGs associated with KIRC

The R package RUVSeq [44] was used to minimize 
batch effects between cancer and normal tissues, and based 
on the edgeR [48] algorithm we identified DEGs with 
mRNA expression profiles. The BH method was used to 
adjust the P-value (FDR). The thresholds were FDR<0.01 
and |log2FC|>2. We named the genes that satisfied these 
criterias as DEGs.

GO and subpathway enrichment analyses

Based on DMGs and DEGs, DAVID was used for 
GO enrichment analysis [49]. Fisher’s exact test with 
multiple test correction (FDR<0.05) was used to obtain 
significant GO terms associated with KIRC. We also 
used the R package iSubpathwayMiner [50] to identify 
subpathways enriched among DEGs. First, we used the 
package iSubpathwayMiner to convert each complex 
structure of pathways from KEGG to a simple directed 
graph with the genes as nodes. Two nodes in a directed 
graph were connected by an edge if there was a reaction 
between them. Then, based on distance similarity among 
genes, we identified subpathways associated with KIRC. 
Compared with the methods used to identify entire 
pathways, our method can identify the subpathways 
more precisely because the results are sometimes highly 
significant in our subpathway identification, but not 
significant in the entire pathway identification. Thus, this 
approach can identify local disordered regions of entire 
pathways, which makes further research reliable.

Constructing an integrated network associated 
with KIRC

Hypergeometric tests were used to assess the 
correlation between subpathways of methylation profiles 
and subpathways of expression profiles. Only when the 
P-values were less than 1.0e−30 were these subpathways 
selected for further analysis. This means that the 
remaining subpathways were involved in both DNA 
methylation and gene expression. After extracting the 
correlation pairs, the software Cytoscape [51] was used 
to visualize the network, in which nodes represent genes 



Oncotarget5278www.impactjournals.com/oncotarget

and edges represent relationships between genes in at least 
one subpathway. The topological features of the network 
provide a quantified method to describe networks. In this 
research, we used the most common topological features 
of a network, the degree, which can represent the number 
of neighboring nodes, or the number of edges linked to 
the node.

Survival analysis

To identify and validate prognostic markers with 
target genes, the 316 samples were randomly assigned to 
a training set (n=158) or a testing set (n=158). The two 
sample sets were required similar clinical features such as 
stage or gender. We used the term hub genes to refer to the 
top 15% of the nodes in the network ranked by descending 
order of degree, which would be not only DMGs but also 
DEGs. Then, we used univariate Cox regression analysis 
to assess the association between survival and DNA 
methylation levels of hub genes as well as other clinical 
factors. As the clinical features were also related to patient 
survival, multivariate Cox regression analysis was used 
to assess the independent contribution of each gene to 
prognosis, with the gene methylation, age, gender, and 
stage as covariates. A regression coefficient with a plus 
sign indicates that increased methylation is associated with 
an increased risk of mortality (risk genes) and a minus 
sign indicates that increased methylation is associated 
with a reduced risk of mortality (protective genes). After 
selecting hub genes that were significantly associated with 
survival (p<0.05), according to a linear combination of 
methylation levels of genes, a mathematical formula for 
survival prediction was constructed. Specifically, the risk 
score formula for each patient was calculated as follows:

Risk Score = i
i=1

n
i∑ β Χ

where iβ  is the Cox regression coefficient of hub gene 
i in the training set, xi  is the methylation level of 
hub gene i, and n is the number of hub genes that are 
significantly associated with survival. Thus, all patients 
in the training set were dichotomized into high-risk 
and low-risk groups using the median risk score as the 
cut-off point. To estimate overall survival, the Kaplan–
Meier method was used and the log-rank test was used 
to determine whether there was a significant difference in 
survival between the two risk groups. Then, the testing 
set was used to validate the four methylation signatures. 
The regression coefficients and the threshold of risk score 
derived from the training set were directly applied to the 
methylation profiles of the testing set, and then the patients 
in the testing set were divided into high-risk and low-risk 
groups. Evaluation of the survival time and comparison 
between two groups were performed in the same way as 
for the training set.
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