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SUMMARY

Prostate-Tumor-Overexpressed-1 (PTOV1) is a conserved adaptor protein 
discovered as overexpressed in prostate cancer. Since its discovery, the number of 
binding partners and associated cellular functions has increased and helped to identify 
PTOV1 as regulator of gene expression at transcription and translation levels. Its 
overexpression is associated with increased tumor grade and proliferation in prostate 
cancer and other neoplasms, including breast, ovarian, nasopharyngeal, squamous 
laryngeal, hepatocellular and urothelial carcinomas. An important contribution to 
higher levels of PTOV1 in prostate tumors is given by the frequent rate of gene 
amplifications, also found in other tumor types. The recent resolution of the structure 
by NMR of the PTOV domain in PTOV2, also identified as Arc92/ACID1/MED25, has 
helped to shed light on the functions of PTOV1 as a transcription factor. In parallel, by 
studying its interaction with RACK1, we have discovered PTOV1 action in promoting 
mRNAs translation. Here, we will focus on the role of PTOV1 in cancer, re-examine its 
pro-oncogenic effects and re-evaluate the most relevant interactions and evidences 
of its cellular functions. The data are used to formulate a model for the mechanisms 
of action of PTOV1 in line with its recently described activities and cellular pathways 
modulated in cancer.

THE GENE STRUCTURE

Prostate Tumor Overexpressed-1 (PTOV1) was 
first described as gene and protein overexpressed in 
prostate tumors and preneoplastic lesions of high grade 
intraepithelial neoplasia (HGPIN) [1]. The gene was 
assigned to chromosome 19q13.3 by FISH analysis on 
human metaphase chromosomes. This region harbors a 
large number of androgens modulated and prostate cancer 
(PC) related genes, including the proteases prostate 
specific antigen, kallikrein 1 (KLK1), kallikrein related 
peptidase 2 (KLK2) [2], the apoptotic regulator BCL2 
associated X (BAX) [3], kallikrein related peptidase 
11 (TLSP) [4] or kallikrein related peptidase 6 (Zyme/
Neurosin) [5].

The gene PTOV1 spans 9.51 Kb and includes 12 
exons of which exons 3 to 6 code for the first PTOV 

homology block, or A domain, and exons 7 to 12 for the 
second block, or B domain [1] (Figure 1A). At least two 
transcripts resulting from differential splicing have been 
described: the first one includes 1,875 bps and translates 
for a protein of 416 residues, the second one includes 
1,539 bps and translate for protein of 374 amino acids [6]. 
Two alternative splicing events at the 5’ and 3’ ends in the 
latter transcript result in a shorter protein with different 
N-terminal and C-terminal residues. These differences 
likely affect the function of the final product.

A related gene containing one PTOV-domain, 
identified as PTOV2, was discovered on the same 
chromosome, 14 Kb upstream from the putative first exon 
of PTOV1 [1]. PTOV2 was later found to correspond to the 
subunit 25 of the Mediator complex, MED25, composed 
of up to thirty proteins, that is an essential component of 
the eukaryotic RNA polymerase II complex regulating 
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eukaryotic transcription [7–9]. The Mediator functions 
as a transcription coactivator in all eukaryotes. It is also 
referred as the vitamin D receptor interacting protein 
(DRIP) coactivator complex and the thyroid hormone 
receptor-associated proteins (TRAP) [10]. It is required 
for the transcription of most class II genes in yeasts 
and mammals and is essential for activator-dependent 
transcription. The Mediator acts as a bridge between the 
RNA polymerase II and the activator transcription factors 
[10]. MED25 was also identified as p78/Arc92/ACID1 [8, 
11]. In this review, we will refer to PTOV2 as MED25.

The orthologous PTOV1 gene in Drosophila 
melanogaster (acc. AC013074) shows a similar modular 
arrangement, but a lower degree of similarity between the 
two domains A and B (33% identity; 57% similarity) [1]. 

The orthologous MED25 gene, found on chromosome 
3R at 3Mb from PTOV1, was also predicted to encode a 
protein with a single PTOV block embedded within an 
863-amino acid protein.

The putative promoter region of PTOV1 reveals 
the presence of consensus sequences for transcription 
factors SP1 and AP2 and a putative Androgen Responder 
Element (ARE), similar to those observed in the PSA 
gene. In agreement with these observations, PTOV1 
expression is androgen-responsive [1]. This has been 
confirmed in vascular smooth muscle cells (VSMCs) 
where the gene was suggested to play a critical role 
in androgen related atherogenesis in the human aorta 
through the regulation of proliferation of neointimal 
VSMCs [12].

Figure 1: Gene and protein structure of PTOV1. A. The gene includes 12 coding exons and two untranslated regions (UTR). In the 
putative promoter region, the localization of regulatory sites for ARE (Androgen Responsive Element), SP1 (Specificity protein 1), and AP2 
(Activator protein 2) are shown (not in scale). B. Protein organization showing the A and B domains, the Nuclear Localization Sequences 
(NLS1 and NLS2) and the extended AT-hook (eAT-hook) motif (not in scale). The three-dimensional structure of the A and B domains based 
on the Swiss Model, is shown in color [13].
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THE PROTEIN STRUCTURE

PTOV1 is an adaptor, conserved in vertebrates 
(mammals and fish) and in arthropods (insects), although 
not in fungi (yeasts). The protein interacts with a number 
of factors both in the nucleus and the cytoplasm to regulate 
gene expression at transcription and posttranscriptional 
levels and to promote cancer cell proliferation and 
motility.

The predicted protein, 416 aminoacids long, 
reflects the structure of the gene and presents two highly 
homologous domains arranged in tandem, identified as 
A domain (146 amino acids) and B domain (143 amino 
acids), that show 66% identity and 79% similarity among 
each other [1, 13] (Figure 1B). The protein presents two 
putative nuclear localization signals (NLS), one in the A 
domain and the second in the B domain. Recent studies 
using NMR technology revealed the structure of the PTOV 
domain of MED25 [14–16]. This domain (391–543) 
exhibits high sequence identity with the A and B domains 
of human PTOV1 (81% and 73%, respectively). The 
secondary structure of MED25 forms a seven-stranded 
β-barrel framed by three α-helices of topology A(↑)B(↓)
D(↑)G(↓)F(↑)E(↓)C(↑) in which strands C, E, F and G 
are flanked by α-helices I and III, and helix II connects 
strand D and E at one end of the barrel [15, 16]. MED25 
also presents two different positively electrostatic charged 
regions that appear to be important for its binding to the 
trans activation domain (TAD) of the RNA Polymerase II.

The PTOV domain in MED25 shares structural 
similarity with the β-barrel domains of the Ku70/Ku80 
heterodimer and the Spen paralog and ortholog C-terminal 
(SPOC) domain of SMRT/HDAC1-associated repressor 
protein (SHARP) [14–16]. These proteins are involved 
in transcriptional activation, double-stranded DNA break 
repair, and transcriptional repression by interaction with 
histone deacetylase complexes. For instance, SHARP has 
been identified as a component of the Notch co-repressor 
complex [17]. The PTOV domain shares the central 
β-barrel and two flanking helices with the SPOC domain 
in SHARP, but differs from the SPOC domain by the 
absence of four helices that flank the barrel, the presence 
of a C-terminal helix α3 with a unique location and a 
long loop connecting β1 and β2 [16]. These observations 
suggest that the PTOV domain in MED25 and PTOV1 
might have a crucial function in chromatin remodeling and 
for connecting the activity of several transcription factors 
to the RNA Polymerase II complex. However, in contrast 
to MED25, PTOV1 did not interact with the Mediator 
complex [11].

Very recently, an extended (e)AT-hook motif 
comprising the first N-terminal 43 amino acids was 
identified in PTOV1, suggesting a function as nucleic acid 
binding protein (Figure 1B) [18]. Classical AT-hook motifs 
in proteins can bind nucleic acids at AT-rich sequences in 
the minor groove of the DNA, and have been described 

as characteristics of proteins associated with chromatin 
remodeling, histone modifications, chromatin insulator 
and proposed to anchor chromatin-modifying proteins 
[19, 20]. However, the (e)AT-hook discovered at the 
N-terminal of PTOV1 is a new functional AT-hook-like 
motif that differs in the basic amino acid patches from 
the canonical G-R-P (glycine-arginine-proline) core. This 
motif showed higher RNA binding affinity compared to 
DNA [18], and its deletion resulted in a stronger signal 
of the mutated protein in the nucleus. These apparently 
contrasting observations may be explained considering 
the following findings. We have previously shown that 
the nuclear localization of a GFP-PTOV1, where the first 
56 amino acids comprising the (e)AT-hook were replaced 
by GFP, did not significantly accumulate in the nucleus, 
suggesting that other features, such as two conserved NLS 
signals, might be responsible for the localization of the (e)
AT-hook deleted PTOV1 [21, 22]. In addition, we have 
also shown that PTOV1 enters the nucleus at the beginning 
of the S- phase of the cell cycle [21]. Furthermore, the 
higher affinity of the (e)AT-hook for RNA may suggest 
that PTOV1 can be found in ribonucleic-complexes that 
shuttle their carriers (mRNA) from the nucleus to the 
cytoplasm, in agreement with its interaction with RACK1 
in ribosomes. Thus, the accumulation of the (e)AT-hook 
deleted PTOV1 in the nucleus observed by Filarsky and 
collaborators [18], might be the result of the cell type 
used, the cycle phase at the time of observations, and/or 
the lack of ribonucleic complexes formation that would 
shuttle PTOV1 and its cargo to the cytoplasm.

PTOV1 EXPRESSION IN NORMAL AND 
CANCER TISSUES

PTOV1, was suggested to be one of the genes most 
discerning between normal and carcinomatous prostate 
[23]. Most functions of PTOV1 have been surmised in 
pathological conditions, such as cancerous cells and 
tissues. However, its expression has also been detected 
in normal tissues (human brain, heart, skeletal muscle, 
kidney, liver, ovary, aorta and salivary gland), although 
little has been described about its function at those sites 
[1, 12, 24, 25]. The expression of PTOV1 in human 
abdominal aorta and VSMCs cells is androgen-responsive 
and may play a role in androgen related atherogenesis [12]. 
In normal epithelial cells from different tissues, PTOV1 is 
mostly undetectable or shows a weak staining [21, 26, 27]. 
However, few sporadic prostatic luminal cells in isolated 
glands display intense staining, mostly cytoplasmic and in 
some cases also nuclear. These PTOV1-positive cells also 
stain for chromogranin A, suggesting their neuroendocrine 
origin [21].

In pre-neoplastic lesions of High Grade Prostate 
Epithelial Neoplasia, HGPIN, associated with prostate 
carcinomas, PTOV1 expression is increased compared 
to the normal prostate epithelium [28, 29]. This higher 
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expression in HGPIN was found helpful to discriminate 
those premalignant lesions associated with cancer, 
suggesting the potential value of PTOV1 detection in the 
early diagnosis of PC [28]. Of interest, the proportions of 
Ki-67 positive nuclei and the levels of PTOV1 in HGPIN 
areas adjacent to cancer lesions are higher than those 
found in HGPIN areas away from the cancer, supporting 
the concept of field cancerization or field effect in prostatic 
carcinogenesis [29, 30]. More recently, the expression of 
PTOV1 in atypical adenomatous hyperplasia (AAH), a 
proliferative lesion of the transition zone of the prostate 
that morphologically resembles low grade carcinoma, has 
been associated with PC [31].

In prostate adenocarcinoma 71% of T2 and T3 
stages overexpressed PTOV1 [21]. This overexpression 
was limited to the cytoplasm in 59% of samples whereas 
a strong expression was detected both in the nucleus and 
the cytoplasm in the remaining samples, with a small 
proportion of tumors showing a strong nuclear staining 
and weak cytoplasmic staining. More recently, metastatic 
primary tumors and metastatic lesions were shown to 
express significantly higher levels of PTOV1 compared 
to non-metastatic tumors [32, 33]. This high expression 
of PTOV1 significantly associated to the Ki67 index 
suggesting its participation in an active proliferative status. 
Remarkably, this relationship was stronger in tumors with 
nuclear PTOV1 staining. These findings are supported by 
observations in vitro, where in quiescent PC cells, PTOV1 
localized in the cytoplasm but after serum stimulation it 
partially translocated to the nucleus at the beginning of 
the S phase [21]. The transfection of PTOV1 forced PC3 
cells to enter the S phase with a subsequently increase in 
the levels of cyclin D1, indicating that the overexpression 
of PTOV1 can directly increase the proliferation of PC 
cells. In addition, PTOV1 is required for the growth and 
full metastatic potential of PC cells in vivo [32, 33]. An 
important contribution to higher levels of PTOV1 in 
aggressive prostate tumors might be given by the high 
rate of PTOV1 amplifications, also found in other tumor 
types, as shown by analyses of publicly available genomic 
datasets (Figure 2A) [34, 35]. Significantly, the highest 
frequency of amplifications (above 18%) is found in 
metastatic lesions of adenocarcinomas and neuroendocrine 
prostate tumors (Figure 2A) [36]. Because very high 
expression of PTOV1 in sporadic luminal cells in prostate 
glands associated to cancer very likely correspond to 
neuroendocrine cells [21], altogether the above findings 
suggest that PTOV1 expression might be connected to the 
aggressive features of neural subtypes of PC defined by 
expression profiles [37, 38].

More recently, numerous reports have described the 
overexpression of PTOV1 in different types of tumors. 
These included tumors of the breast, pancreas, liver, colon, 
kidney, bladder, laryngeal, cerebral gliomas and ovary [25-
27, 39-43]. The association between its overexpression 
and high grade of malignancy was strong in primary 

hepato-cellular carcinoma, epithelial ovarian cancer, 
breast cancer and clear cell renal carcinomas, where 
PTOV1 expression was closely correlated with the clinic-
pathological characteristics and tumor aggressiveness. In 
addition, a significant association between high levels of 
PTOV1 and unfavorable prognosis and poor survival has 
been observed in several types of carcinomas. In breast 
cancer, 99.4% of the cancer samples analyzed expressed 
PTOV1, of which 49.1% showed high expression. The 
median survival of patients with high PTOV1 levels was 
78 months versus 115 months in patients with low PTOV1 
expression [27]. In laryngeal squamous cell carcinoma, 
PTOV1 expression correlates with advanced clinical stage 
and it was shown to be an independent predictor of overall 
survival and progression-free survival [41]. HPV-positive 
head and neck cancers have better prognosis than HPV-
negative cancers [43-45]. In this context, the levels of 
expression of PTOV1 in combination with the infection 
status with the human papillomavirus (HPV) could predict 
outcome in early-stage laryngeal squamous cell carcinoma 
[41]. Association to a better outcome was observed in 
HPV-positive/PTOV1-negative subgroup. In contrast, 
the HPV-negative/PTOV1-positive subgroup showed the 
worst outcome.

Similarly to prostate carcinomas, the subcellular 
distribution of PTOV1 in breast cancer and 
nasopharyngeal carcinomas was detected both in the 
nucleus and cytoplasm of carcinomatous cells [21, 27, 39]. 
In aggressive prostate tumors, PTOV1 stained intensely 
in the nucleus of local and distal (bones) metastatic cells 
[33]. In urothelial carcinoma (UC) nuclear staining was 
significantly more frequent compared to benign tissue and 
a reduced cytoplasmic expression significantly correlated 
with higher pathological stage and grade, suggesting a 
functional shift for PTOV1 from the cytoplasm to the 
nucleus in the progression of these tumors [42]. These 
observations are in line with previous reports showing 
that intense nuclear PTOV1 expression was able to 
distinguish in a significant manner high-grade urothelial 
carcinoma [40]. Thus, the nuclear presence of PTOV1 
might be critical for proliferation and tumor progression, 
suggesting that its transcription regulating abilities are 
relevant functions.

As mentioned above, gene amplifications for 
PTOV1 are frequent in prostate carcinomas, pancreas and 
present in other tumors (Figure 2A). In addition, mutations 
are also frequent in several tumors types. About 57% of 
the mutations are localized inside the A domain (Figure 
2B). The majority are missense mutations, more frequent 
in colorectal, stomach, lung squamous cell carcinoma, 
esophageal, and breast cancer. Most of the missense 
mutations have a predicted functional impact score neutral 
or low according to Mutation-Assessor [46]. However, the 
R117L/Q mutation found in LSCC and prostate cancer 
respectively, has a predicted functional impact score of 
medium, suggesting it might be a critical change for the 
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Figure 2: Mutational landscape of PTOV1 across human cancer. A. Histogram representing the amplifications, deletions 
and mutations of PTOV1 in different types of tumors according to cBioPortal data. Tumor tissue, sample size and datasets information 
employed for the analyses are listed below each bar. NEPC: neuroendocrine prostate cancer; ACC: Adrenocortical carcinoma; ccRCC: 
clear cell renal carcinoma B. Schematic picture of the protein organization showing the mutational profile (localization, type and frequency 
of each mutation) across human tumors. Filled circles represent the position of the mutation and color indicates the type of mutation. The 
description of the most frequent mutations and those tumors in which such mutation was found are specified. *: nonsense mutation; fs: 
frameshift mutation; LSCC: lung squamous cell carcinoma.
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function of PTOV1 in these tumors. A recurrent in frame 
mutation (K212del) is found in adenocortical carcinoma, 
colorectal, breast and stomach carcinoma.

PTOV1 TRANSCRIPTIONAL 
REGULATORY FUNCTIONS

Homology models of MED25 PTOV and human 
PTOV1 have shown that amino acid residues involved 
in TAD binding in MED25 are generally conserved in 
PTOV1, suggesting that both domains may serve as 
activator-binding modules [16]. However, in contrast 
to MED25, PTOV1 did not interact with the Mediator 
complex [11]. The differential biological activities of 
PTOV in MED25 and PTOV1 were suggested to be due 
to modulation of protein-protein interactions patterns by 
some amino acid residues which are differently grouped 
peripherally around the charged surface region [14, 15]. 
It was described that the retinoic acid (RA) activates 
the response of its receptor (RAR) using MED25 that, 
through its VWA domain, interacts with the Mediator and, 
through the PTOV domain, binds to the activators (histone 
acetyltransferase CBP) [47]. These observations suggest 
a role for the PTOV domain of MED25 in chromatin 
remodeling and pre-initiation complex assembly to recruit 
activators to the basal transcriptional machinery [11]. 
Additional evidences confirmed that the domain PTOV 
of MED25 is responsible for binding the TAD domain 
of several transcription factors, including ERM/ETV5, a 
PEA3 member of ETS-related transcription factors [48], 
the nuclear receptor Hepatocyte Nuclear Factor 4 alpha 
[49], the transcription factor ATF6 alpha [50], a master 
regulator of endoplasmic reticulum (ER) stress response 
genes, the retinoic acid receptor (RAR) [51], STAT6 and 
chromatin remodelers [52]. Because PTOV1, in contrast 
to MED25, did not interact with the Mediator complex 
[11], its action may plausibly modulate, or hamper, the 
MED25 PTOV module binding the activator in those 
cells where it is overexpressed, as described below for 
the Retinoic Acid Receptor (RAR). In agreement with the 
above observations, PTOV1 was recently identified as a 
regulator of transcription of several genes, including RAR, 
HES1, HEY1, and Dickkopf-1.

The retinoic acid receptor promoter

Retinoids are promising chemotherapeutics that 
inhibit cell growth by inducing apoptosis, senescence and 
differentiation of cancer cells [53, 54]. Unfortunately, 
intrinsic or acquired resistance to these agents frequently 
occurs after cancer therapy [55]. The formation of the 
complex MED25-RAR and RA, induced the stimulation 
of RAR promoter activity [47]. PTOV1 was shown to 
suppress the MED25-enhanced RAR activity by binding 
the activator CREB-binding protein (CBP) (Table 1 and 
Figure 3) [51]. Thus, the expression of PTOV1 prevented 

CBP binding to MED25 inducing a repression of the RAR 
promoter. CBP belongs to a family of large multifunctional 
transcriptional coactivators that through their acetyl 
transferase action modify histones and other proteins, 
regulating a large number of transcription activators 
and cellular functions (Table 1) [56]. Both PTOV1 and 
MED25 proteins interact with the acetyl transferase CBP 
through the PTOV domain [32, 51]. Chromatin IP (ChIP) 
assays showed that PTOV1 itself is not recruited to the 
RA-responsive RARβ2 promoter. Instead, the increased 
PTOV1 expression inhibited CBP chromatin binding by 
forming a chromatin-free PTOV1-CBP interaction that 
sequesters away CBP from MED25 [51]. In this context, 
in response to RA the LIM family member Zyxin was 
shown to interact and cooperate with PTOV1 in RAR 
repression, by forming a ternary complex with CBP and 
PTOV1 that antagonized MED25 for CBP binding [57]. 
These data suggest a potential molecular mechanism for 
PTOV1 in RA resistance.

The HES1 and HEY1 promoters

Notch is an evolutionarily conserved signaling 
pathway that regulates cell fate, tissue homeostasis, cell 
differentiation, proliferation and growth [58]. Activation 
of the Notch receptor induces its entrance to the nucleus 
where it acts as a transcription factor for numerous 
targets, including HES1 and HEY1 genes, two well known 
downstream regulators of the pathway [59, 60]. In the 
absence of activated Notch a transcriptional repressor 
complex, that include SMRT/NCoR and HDAC1, is 
formed on target promoters [61].

Aberrant Notch signaling has been detected in 
different types of cancer to suppress or activate cancer 
progression depending on the cell context and tumor 
type [62–64]. In PC, its role in progression has been 
studied in vitro and in vivo with contradictory results 
[65–67]. We have shown that PTOV1 in metastatic 
prostate tumors is significantly overexpressed and 
represses the transcription of the downstream targets 
of Notch, the HES1 and HEY1 genes, by interacting 
with SMRT, RBP-Jκ, NCoR, HDAC1 and HDAC4 
(Figure 3) [32]. PTOV1 is bound to the chromatin of 
these promoters when Notch is inactive. Its repressive 
action was reverted by trichostatin A (TSA), an HDAC 
inhibitor, indicating the requirement for the activity of 
HDACs. Interestingly, the repression by PTOV1 was 
abolished by the overexpression of CBP, in agreement 
with previous reports showing that HES1 transcription 
was activated by CBP [68]. PTOV domains shares 
structural similarity with the SPOC domain of SHARP, 
a known component of the Notch repressor complex [17, 
69], and thus PTOV1 may be a facultative additional 
Notch co-repressor restricted to cancerous events. 
Additional in vivo evidence supports the role of PTOV1 
as a negative regulator of the Notch pathway [32]. In the 
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Table 1: PTOV1 interaction partners 

Interactor Experimental 
evidence Dataset Description

BECN1 Affinity capture-MS [122]

Beclin 1. Plays a key role in autophagy as a component of the 
phosphatidylinositol-3-kinase (PI3K) complex which mediates 

vesicle-trafficking processes in multiple cellular processes, 
including tumorigenesis, neurodegeneration and apoptosis 

[123, 124].

CBP
/CREBBP Co-IP [32, 47]

cAMP-response element binding protein (CREB) binding 
protein. It is involved in the transcriptional coactivation of many 
different transcription factors. It plays critical roles in embryonic 

development, control of growth, and homeostasis by coupling 
chromatin remodeling to transcription factor recognition. The 

protein encoded by this gene has intrinsic histone acetyltransferase 
activity and also acts as a scaffold to stabilize additional protein 
interactions with the transcription complex. Acetylated histones 
and non-histones proteins may act as a transcriptional activator 

[56, 125, 126].

CUL2 Affinity capture-MS [127]

Cullin2. Core component of multiple cullin-RING-based ECS 
(ElonginB/C-CUL2/5-SOCS-box protein) E3 ubiquitin-protein 

ligase complexes, which mediate the ubiquitination of target 
proteins [128].

DMTN
/EBP49 Two hybrid [129]

Dematin actin binding protein/erythrocyte membrane protein 
band 4.9. Cytoskeletal protein that bundles actin filaments in a 
phosphorylation-dependent manner. Dematin deletion has been 

reported in prostate tumors [130, 131].

FLOT1
Co-IP

Co-localization
Co-fractionation

[22]

Flotillin-1. It associates to lipid rafts and localizes to non-caveolar 
membranes. This protein plays a role in vesicle trafficking, cell 
morphology and signaling. Elevated expression of FLOT1 has 

been reported in different types of tumors. Its nuclear localization 
is associated to induction of proliferation. FLOT1 regulates the 
function of Aurora B kinase in metaphase cells [111, 113, 116]

HDAC1 Pull-down [32]

Histone deacetylase 1. It is a component of the histone deacetylase 
complex which plays a key role in regulation of eukaryotic 

gene expression. Together with metastasis-associated protein-2 
(MDM2), it deacetylates p53 and modulates its effect on cell 
growth and apoptosis. It is an element of the Notch repressor 

complex [32, 132].

HDAC4 Pull-down [32]

Histone deacetylase 4. It possesses histone deacetylase activity 
and represses transcription when tethered to a promoter. It is an 
element of the Notch repressor complex. Inhibitors of function 

increase cytotoxicity of docetaxel in gastric cancer cells [133, 134]

HDAC6 Protein-peptide [100]

Histone Deacetylase 6. Deacetylates lysine residues on the 
N-terminal part of the core histones. Histone deacetylation gives 
a tag for epigenetic repression alters chromosome structure and 

affects transcription factor access to DNA and plays an important 
role in transcriptional regulation, cell cycle progression and 

developmental events. The protein contains an internal duplication 
of two catalytic domains which appear to function independently 

of each other [100, 135].

(Continued )
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Interactor Experimental 
evidence Dataset Description

KLHDC2 Affinity capture-MS [136] Kelch domain containing 2. Represses CREB3-mediated 
transcription by interfering with CREB3-DNA binding [137]

NCoR Pull-down assay [32]

Nuclear receptor corepressor 1. Transcriptional repressor of 
thyroid-hormone and retinoic-acid receptors. It is part of a 

complex which also includes histone deacetylases and other 
transcriptional regulators [138]

PEX19 Affinity capture-MS [136] Peroxisomal biogenesis factor 19. Required for early peroxisomal 
biogenesis [139]

PIN1 Two hybrid [129]

Peptidylprolyl cis/trans isomerase, NIMA-interacting 1. It 
catalyzes the cis/trans isomerization of peptidyl-prolyl peptide 
bonds. This PPIase specifically binds to phosphorylated ser/

thr-pro motifs to catalytically regulate the post-phosphorylation 
conformation of its substrates. The conformational regulation 

catalyzed by this PPIase has a profound impact on key proteins 
involved in the regulation of cell growth, genotoxic and other 

stress responses, the immune response, induction and maintenance 
of pluripotency, germ cell development, neuronal differentiation, 

and survival [140–142].

GNB2L1/
RACK1

Two hybrid
Co-localization

Co-IP
[33]

Guanidine Nucleotide Binding protein (G protein), beta 
polypeptide 2-like 1. Interacts with PKC isoforms and ribosomes. 
It is involved in different cellular processes including apoptosis, 

cell spreading, cell proliferation, regulation of insulin receptor and 
resistance to drugs [94, 97]

RASSF6 Affinity capture-MS [143]
Ras association (RalGDS/AF-6) domain family (N-terminal) 

member 9. Involved in the induction of apoptosis. It may act as a 
Ras effector protein [144].

RBP-Jκ/CBF-1 Co-IP
Pull-down assay [32]

Recombination signal binding protein for immunoglobulin kappa 
J region. Is a transcriptional regulator in the Notch signaling 

pathway. It acts as a repressor when not bound to Notch proteins 
and an activator when bound to Notch proteins. It is thought to 

function by recruiting chromatin remodeling complexes containing 
histone deacetylase or histone acetylase proteins to Notch 

signaling pathway genes [32, 145].

RPS6
Co-IP

Co-localization
Co-fractionation

[33]

Ribosomal protein S6. It is a component of the 40S subunit. 
It is the major substrate of protein kinases in the ribosome. 

Phosphorylation is induced by a wide range of stimuli, including 
growth factors, tumor-promoting agents, and mitogens. 

Dephosphorylation occurs at growth arrest. The protein may 
contribute to the control of cell growth and proliferation 

through the selective translation of particular classes of mRNA. 
Overexpressed in esophageal squamous cell carcinoma, renal cell 

carcinoma metastases and hyperphosphorilated in lung cancer 
[146–148].

SFN/14-3-3 sigma Affinity capture-MS [149]

Stratifin. Adapter protein implicated in the regulation of numerous 
signaling pathways including cancer metabolic reprogramming. 

When bound to KRT17, regulates protein synthesis and epithelial 
cell growth by stimulating Akt/mTOR pathway. It is a p53-

regulated inhibitor of G2/M progression [150, 151].

(Continued )
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Interactor Experimental 
evidence Dataset Description

SPTAN1 Two hybrid [152]

Spectrin, alpha, non-erythrocytic 1. Filamentous cytoskeletal 
protein involves in the stabilization of the plasma membrane and 
organization of intracellular organelles. Also involved in DNA 
repair, cell cycle regulation, cell migration and its deletion is 

related to some encephalopaties [152, 153]

UBC Reconstituted 
complex [154]

Ubiquitin C. Polyubiquitin precursor. Provides extra ubiquitin 
during stress and it loss cannot be compensated by induction of the 

other Ub genes [155].

USP16 Protein-peptide [100]
Ubiquitin specific peptidase 16. Deubiquitinates histone H2A. 
Regulates kinetochore localization of Plk1 to promote proper 

chromosome alignment in mitosis [156].

YWHAH/14-3-3 
eta Affinity capture-MS [157]

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, eta. Adapter protein implicated in the regulation 

of numerous signaling pathways. Role in mitotic progression, 
potentially a therapeutic target for cancers [158, 159].

The table summarizes the interactors reported for PTOV1 based on STRING [120] and BIOGRID [121]. It describes the 
experimental evidences for each interaction and includes a brief explanation on the role reported for the interacting partner. 
IP: immunoprecipitation; MS: mass spectrometry.

Figure 3: Functional interaction network of PTOV1. Proteins interacting with PTOV1 are clustered according to their proposed 
cellular functions.



Oncotarget12460www.impactjournals.com/oncotarget

Drosophila melanogaster wing model, the expression of 
the human PTOV1 exacerbated Notch deletion mutant 
phenotypes and suppressed the effects of constitutively 
active Notch. In human tissues, the normal prostate 
epithelium revealed high levels of expression of 
HES1 and HEY1 proteins, supporting activated Notch 
signaling, whereas metastatic samples expressed 
significantly lower levels of these proteins, suggesting 
a Notch repressed state [32]. In contrast, the expression 
of PTOV1 in the normal prostate epithelium was mostly 
absent, but the protein was significantly overexpressed 
in metastatic samples. In human PC cell lines, the 
downregulation of PTOV1 induced an upregulation of 
the endogenous HEY1 and HES1 genes, and reciprocally, 
the ectopic expression of PTOV1 in PC cells and HaCaT 
keratinocytes, where Notch acts as tumor suppressor, 
caused the inhibition of expression of HEY1 and HES1 
genes [70, 71]. All together, these observations support 
a pro-oncogenic role for PTOV1 as a negative regulator 
of Notch signaling in PC progression. They also support 
a tumor-suppressor function of Notch in PC, similarly to 
previous reports in skin, myeloid leukemia, and cervical 
carcinoma cells [62, 70, 72].

The dickkopf-1 promoter

Aberrant activation of Wnt/β-catenin signaling 
was reported in breast cancer and strong evidence point 
to a possible epigenetic silencing of negative regulators 
of Wnt, although the regulatory mechanisms underlying 
these epigenetic changes are poorly understood 
[73]. Very recently, PTOV1 expression was shown 
to activate Wnt/β-catenin signaling in breast cancer 
[74]. In the canonical Wnt pathway, binding of Wnt 
ligand to frizzled receptors and lipoprotein receptor-
related protein-5 or 6 (LRP5/6) co-receptors initiates 
a cascade, which results in β-catenin activation, its 
nuclear translocation and transcription of target genes 
[75]. Dickkopf-1 (DKK1) is negative regulator of Wnt 
signaling. Silencing its expression was tightly associated 
with DNA hypermethylation and histone deacetylation 
[76, 77]. DKK1 methylation has been reported in 27% 
of breast cancer cell lines and 19% of breast cancer 
patients [78].

In human breast carcinoma, high levels of PTOV1 
expression correlated with high levels of nuclear β-catenin 
and low levels of DKK1 [74]. The overexpression of 
PTOV1 in breast cancer cell lines induced the nuclear 
translocation of β-catenin and increased β-catenin/
TCF transcriptional activity. PTOV1 overexpression 
repressed DKK1 transcription via the recruitment of 
HDACs to the promoter and a concomitant decrease of 
histone acetylation [74]. Treatment with TSA reverted 
the repression of DKK1. These findings suggest a role 
for PTOV1 as a novel epigenetic regulator of the Wnt/β-
catenin pathway in breast tumorigenesis.

ROLE OF PTOV1 IN CANCER STEM 
CELLS

Extensive research over many years have posited a 
cancer stem cell (CSC) model for tumorigenesis in which 
a small proportion of cells, possibly originated from 
normal stem cells, reside inside tumors and may be subject 
of additional genetic changes or epigenetic transitions 
that can drive tumor initiation, progression to metastasis 
and drug resistance [79, 80]. These cells, identified and 
isolated in a number of solid cancers models, including 
prostate cancer, have self-renewing and differentiation 
abilities and are capable of recapitulating the 
characteristics of the original tumor from which they were 
isolated [81]. As the normal stem cells, CSCs possess the 
ability to grow in vitro as self-renewing spheres. However, 
the mechanisms implicated in CSCs self-renewal and 
differentiation, critical to understand CSCs biology and 
their role in tumorigenesis, are still under investigation. 
In the prostate, recent studies have shown that CSCs can 
also be isolated from cancer cell lines, and the analysis of 
their transcriptome shows expression profiles that support 
CSCs identity [82].

Recently, it was shown that PTOV1 promotes the 
in vitro formation of spheres in HaCaT transformed 
keratinocytes and PC3 prostate cancer cells, and 
promoted tumor growth in vivo [32, 33]. In addition, 
in breast cancer cells PTOV1 was shown to enhance 
tumor growth, increase the number of mammospheres, 
the proportion of the side population (SP), and of CD24-/
CD44+ cells [74]. These findings reveal the ability of the 
protein PTOV1 to promote CSCs-like properties in cells 
from different tumor types. Significantly, the associated 
overexpression of the protein in more aggressive 
tumors with poor prognosis provides support for a role 
of PTOV1 in favoring CSCs self-renewal and tumor 
progression.

ROLE OF PTOV1 IN PC RESISTANCE TO 
CHEMOTHERAPY

Because of the high resistance of metastasis to 
conventional androgen-depletion-therapy (ADT) and 
chemotherapy, metastatic PC is virtually incurable 
[83]. The numerous evidences that PTOV1 is expressed 
significantly more in aggressive tumors and metastatic 
lesions and its implication in the mechanisms leading 
to cancer progression, suggested a potential action of 
this protein in recurrence. Indeed, PTOV1 is expressed 
at higher levels in cells resistant to chemotherapy with 
docetaxel compared to parental sensitive cells (Cánovas 
et al., submitted 2016). The ectopic overexpression of 
PTOV1 in docetaxel sensitive PC cells resulted in a 
significant increase in the number of prostatospheres and 
a significantly greater capacity of the cells to survive to 
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docetaxel treatment (Cánovas et al., submitted 2016). 
These effects are associated to a significant increase 
in the levels of genes associated with the resistance to 
docetaxel (ABCB1, CCNG2, TUBB4A, TUBB2B) and 
with the stemness phenotype (LIN28A, ALDH1A1, 
MYC, NANOG). In turn, the knockdown of PTOV1 very 
significantly inhibited self-renewal and proliferation 
in all cell models. In addition, cells knockdowns for 
PTOV1 showed a striking cell cycle arrest at the G2/M 
phase that was associated to a significant increase in 
apoptosis. Docetaxel resistant cells knockdown for 
PTOV1 showed more extreme phenotypes. These 
findings identify PTOV1 as a promoter of docetaxel 
resistance and a survival factor for CRPC cells and give 
support to potential anticancer therapies directed to 
eliminate the action of this protein in future therapeutic 
interventions.

SEARCH FOR PTOV1 INTERACTING 
PROTEINS TO UNVEIL ITS FUNCTIONS

Discovering new proteins interactions can be 
helpful in defining the functions in which a protein 
of interest is involved. PTOV1 has been detected 
at different subcellular locations, including sub-
membrane sites, lipid rafts, cytoplasm especially the 
perinuclear region, and the nucleus. These locations 
are likely associated with different interacting 
proteins. A summary of the proteins interacting 
with PTOV1 is given in Table 1. These proteins are 
involved in several cellular processes, although it is 
not clear how each interaction contributes to a role of 
dysregulated PTOV1 expression in cancer progression. 
Figure 3 summarizes the interactions of PTOV1 with 
other proteins in relationship with their described 
functions. Groups including transcriptional regulation 
and DNA replication, cell cycle regulation-mitotic 
functions contain numerous interactors. Similarly, 
groups including protein synthesis, ubiquitination and 
membrane trafficking functions contain each three 
interactors. Together, these observations indicate that 
PTOV1 participates in different cellular events at 
different subcellular locations. Interactions described 
by high-throughput capture affinity assays that lack 
further functional analyses will not be reviewed here. 
Those interactions studied more in detail, where some 
functional aspects are revealed, are reviewed below.

Receptor of activated protein C kinase, RACK1

We have described the interaction of PTOV1 with 
RACK1, also known as guanine nucleotide binding 
protein beta polypeptide 2-like 1, GNB2L1 [33]. 
RACK1 contains seven repeats of a short Trp-Asp [W-D] 
dipeptide, highly conserved in eukaryotes, and although 
was first described to interact with Protein Kinase C 

(PKC) isoforms [84, 85], it is now known to interact 
with numerous proteins and is involved in a diverse 
array of cellular processes. These include apoptosis 
regulation of insulin receptor and IGF-1R signaling, 
cell spreading, cell proliferation, STAT3 activation, and 
UV radiation [86–88]. In 2004, an interesting report 
described RACK1 as part of the 40S small ribosomal 
subunit, and localized the protein at the head of the 40S 
subunit close to the mRNA exit channel [89], suggesting 
that it may function as a molecular link connecting cell 
signaling with the protein translation machinery. Later, 
RACK1 was described to recruit active PKCβII on 
ribosomes to phosphorylate eukaryotic initiation factor 
6 (eIF6) that allows the assembly of the 80S ribosome 
on the pre-initiation mRNA complex [90, 91]. RACK1 
has been described as an adaptor required for the PKC-
mediated phosphorylation of Ser129 of JNK [92]. More 
recently, the recruitment of JNK by RACK1 has been 
identified as part of a mechanism underlying the quality 
control of newly synthesized proteins under stress 
conditions [93]. After stress induction, RACK1 recruits 
activated JNK to 40S on actively translating ribosomes 
to phosphorylates the elongation factor eEF1A2, which 
in turn promotes the ubiquitination and degradation of 
damaged newly synthesized polypeptides [93].

RACK1 overexpression has been reported in 
different tumors and it was found to be a differential 
diagnostic biomarker and predictor for poor clinical 
outcome in breast and pulmonary carcinomas [94–96]. 
In hepatocellular carcinoma it promotes chemoresistance 
and tumor growth by localization on ribosomes and 
phosphorylation of eukaryotic initiation factor 4E 
(eIF4E), preferential translation of cyclin D1, Myc, 
survivin and Bcl-2 [97]. PC3 cells stimulated with 
IGF-1 or phorbol esthers, show PTOV1 and RACK1 
colocalized at membrane ruffles [33]. RACK1 interacted 
with full-length PTOV1 and with the B domain, but not 
with the A domain, suggesting un-equivalent functions 
between the two PTOV1 domains. The PTOV1-RACK 
interaction was localized on 40S ribosomes by polysome 
profiling experiments in PC3 cells. Significantly, PTOV1 
failed to co-sediment with the 40S ribosomal subunit 
in RACK1 knockdown cells, indicating that RACK1 is 
necessary for the association of PTOV1 with ribosomes 
[33]. In addition, PTOV1 co-immunoprecipitated and 
colocalized with the ribosomal protein S6 (RPS6) 
corroborating its interaction with ribosomes. Of 
notice, PTOV1 was not detected in gradient fractions 
corresponding to polysomes, suggesting that its action is 
directed to translation initiation rather than elongation. 
In addition, the overexpression of PTOV1 caused 
a significant stimulation of bulk protein synthesis, 
including of c-Jun. In turn, increased levels of PTOV1 
and c-Jun induced SNAI1 transcription, promoted 
an epithelial-mesenchymal-transition (EMT) and a 
significant increase of cell invasiveness in vitro and 
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tumor growth and metastasis in vivo [33]. These findings 
indicate that the increased expression of PTOV1 in 
cancer and its ability to bind to RACK1 on ribosomes 
and to increase protein synthesis is one efficient way for 
this protein to promote cancer progression.

The identification of the N-terminal (e)AT-hook 
motif in PTOV1 and the observed direct interaction of this 
motif with RNA chains [18], the structural resemblance 
of PTOV domains with SPOC domains often present in 
proteins containing RNA binding motifs [16], and the 
ability of the protein to bind to 40S ribosomes and regulate 
the rate of mRNA translation, point to a role for PTOV1 
both in the nucleus, regulating gene transcription and in 
the cytoplasm, conceivably as part of ribonucleoprotein 
(RNP) complexes that may be critical in regulating 
translation initiation of at least a set of mRNAs, such as 
c-Jun (Figure 4).

BUZ/Znf-Ubp domains of the histone deacetylase 
HDAC6

The BUZ (binder of ubiquitin zinc finger) domain, 
also known as the Znf-UBP (zinc finger-ubiquitin-
specific processing protease domain), is present in a 
subfamily of ubiquitin-specific processing proteases 
(USPs), the E3 ubiquitin ligase BRCA1-associated 
protein 2 (BRAP2) and in the histone deacetylase 6 
(HDAC6) [98, 99]. The BUZ domain is a sequence-
specific protein-binding module that recognizes the free 
C-termini of proteins. Through its C-terminal sequence 
(RGMGG), PTOV1 interacts with the BUZ domain of 
HDAC6 with a low KD value that required the Gly-
Gly motif present at the C-terminal of HDAC6 [100]. 
HDAC6 although it has been detected in the nucleus, 
it is mostly a cytoplasmic deacetylase that catalyzes 
the cleavage of the acetyl group of ε-amino groups 
of lysines and can regulate growth factor-induced 
chemotaxis by association with the cytoskeleton [101].

The role of HDAC6 in tumor progression is 
controversial. Some evidences suggest an oncogenic 
role: its overexpression is associated to mutated K-ras, 
and correlated with more aggressive tumors and lower 
survival rate in several tumor types [102–106]. In 
contrast, several reports suggest a tumor-suppressor-
like function, where its reduced nuclear localization 
was associated with distant metastasis, worse overall 
survival, and poor prognosis [107, 108]. Because 
PTOV1 is a promoter of motility and invasion, the above 
observations would be in line with a role for the PTOV1-
HDAC6 interaction in the cytoplasm in promoting the 
pro-oncogenic role of PTOV1. We speculate that, by 
interacting with HDAC6, PTOV1 might have a more 
direct access to the cytoskeleton and act in promoting 
cell motility. Further investigation would be required to 
ascertain the contribution of HDAC6 to the oncogenic 
capacities of PTOV1.

Flotillin-1

PTOV1 was shown to interact with the lipid-raft-
associated protein Flotillin-1 [22] a protein that belongs 
to the Reggie/Flotillin family. Lipid rafts play a central 
role in membrane trafficking and signaling [109]. 
Flotillin-1, localized to non-caveolar lipid-rafts [110], 
has been involved in neuronal regeneration [111], and 
in insulin signaling in adipocytes, where it generates 
a signal crucial in the regulation of glucose uptake in 
adipocytes [112].

In PC cells, Flotillin-1 interacts with the B domain 
of PTOV1, as expected the two proteins colocalized in 
lipid rafts and, surprisingly, in the nucleus [22]. After 
a mitogenic stimulus, Flotillin-1 entered the nucleus 
concomitantly with PTOV1 shortly before the beginning 
of the S phase. The overexpression of Flotillin-1 caused 
a significant increase in cell proliferation, and both 
PTOV1 and Flotillin-1 are required for PC proliferation. 
However, while the presence of PTOV1 and an intact 
carboxy terminus of Flotillin-1 are required for its nuclear 
entry, the depletion of Flotillin-1 did not affect the nuclear 
localization of PTOV1 [22]. In additional work, we have 
shown that Flotillin-1 is required for the stability and 
function of the Aurora B kinase in mitosis [113]. These 
data suggest that PTOV1 may drive PC progression in 
part through the regulation of expression and nuclear 
localization of Flotillin-1 necessary to support Aurora B 
kinase mitotic function.

Additional recent reports confirmed the pro-
oncogenic effects of increased Flotillin-1 levels in 
tumors [114–116] and its action in promoting invasion 
and metastasis through EMT, activation of NF-kB, 
Wnt/β-catenin and TGF-β pathways [114, 115]. 
Flotillin-1 is an important regulator of H-ras activation 
and invasion in triple-negative breast cancer and its 
expression inversely correlates with patient disease-
free survival rates [116]. In gastric cancer, Flotillin-1 
overexpression was shown to be the result of miR-485-
5p downregulation that correlated with poor prognosis 
[117]. These findings suggest that the interaction of 
PTOV1 with Flotillin-1 might amplify their action in 
tumor progression.

DISCUSSION: A MODEL FOR PTOV1 
ACTIONS

The hitherto little known oncogenic PTOV1 
protein has gained recent attention as a regulator of 
multiple cellular functions and pathways that tend to 
enhance cell growth and self-renewal in multiple cell 
types. Here, we propose a mechanistic model that 
collects the most recently described actions of PTOV1 
(Figure 4). PTOV1 shows dual functions in the regulation 
of gene expression at transcriptional and translational 
levels. For the role as transcription factor, PTOV1 is 
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Figure 4: A mechanistic model for PTOV1 actions in cancer progression. PTOV1 can shuttle from the cytoplasm to the 
nucleus during the progression of the cell cycle. In the cytoplasm, PTOV1 is found at perinuclear and submembranes regions associated 
to Flotillin-1 and also RACK1 and ribosomes. The latter, likely occur in RNA-protein complexes (RNP) that modulate mRNA translation, 
including the synthesis of the oncogene c-Jun. In the nucleus, PTOV1 can regulate the expression of a number of genes related to cell 
proliferation, survival, EMT, and chemoresistance, by direct or indirect (genes shown in parenthesis) association to specific promoters to 
activate or repress transcription. In turn, c-Jun/AP1 may be directly or indirectly contributing to the action of PTOV1 as a transcription 
factor. PTOV1 is a repressor for the regulation of HES1, HEY1 and DKK1. These effects result in the negative regulation of Notch signaling 
in PC and the activation of Wnt/β-catenin signaling in breast cancer. In both tumors, these effects culminate with increased tumor growth, 
invasion, metastasis, and chemoresistance. PTOV1 as a transcriptional repressor requires the presence of HDACs, suggesting that it is an 
epigenetic regulator. An additional mechanism for transcriptional repression was suggested for the RAR promoter, where PTOV1 sequesters 
the activator CBP from MED25, and results in suppression of transcription of RAR targets. The action of PTOV1 of sequestering activators 
from MED25 might be associated to inhibition of other MED25 targets. The recent identification of the nucleic acid-binding motif (e)AT-
hook, at the N-terminal region of PTOV1 gives support to its role in regulation of gene expression by direct DNA or RNA binding.
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found associated with the regulatory regions of at least 
three genes where it recruits deacetylases and other 
DNA modifying enzymes to modulate transcription. The 
association with transcriptional repressor complexes, 
including several HDACs and NCoR, has been reported 
for the repression of a few genes (HES1, HEY1, and 
DKK1). Transcriptional repression by PTOV1 might also 
occur through association with activators, such as CBP 
in the RARβ2 gene. In this case, the complex PTOV1-
CBP is not bound to chromatin, but the protein competes 
with MED25 for binding and sequestering the activator 
away from the Polymerase II complex. Conceivably, 
the association CBP-PTOV1 could also act promoting 
transcription in different genes.

Additionally, PTOV1 was discovered to regulate 
protein synthesis by direct association with RACK1 and 
40S ribosomes in translation pre-initiation complexes. 
In PTOV1 overexpressing cells significantly more c-Jun 
mRNA levels were loaded on polysomes compared to 
actin, but PTOV1 is not found in polysomal fractions, 
suggesting that its action is directed to translation 
initiation, possibly mediating the recruitment of specific 
mRNA-protein complexes to ribosomes.

Significant for these dual functions described 
for PTOV1 is the very recent identification of the 
N-terminal (e)AT-hook motif that, allowing the protein 
to bind directly to nucleic acids, gives support to the 
roles in gene expression regulation by direct DNA or 
RNA binding. Nucleic acids binding through the (e)AT-
hook would feasibly allow simultaneous interactions 
of PTOV1 with different factors binding the A and B 
domains. For example, protein complexes associated 
to promoters, or ribonucleoprotein complexes charged 
with specific mRNAs to be translated. Interestingly, 
the subcellular localization of the specific interactions 
mediated by the A domain with HDAC1 and RBP-jκ, 
are coupled to actions in the regulation of transcription 
[32]. In contrast, the interactions with cytoplasmic 
RACK1 and Flotillin-1 exclusively engaging the B 
domain are linked to activities more closely related 
to protein synthesis. All together these evidences 
suggest that PTOV1 might be a new moonlighting 
protein able to perform different activities in the cell 
[118], and may utilize separate protein surfaces for 
its multiple actions [119]. The overexpression of a 
single protein with multiple actions that converge in 
activation of proliferation, survival and drug-resistance 
is energetically convenient for a tumor cell, and might 
contribute to the acquisition of stemness features. Many 
questions remain to be solved to understand what is the 
biological role of PTOV1 in normal tissues, or how does 
the protein promote tumor progression. The evidences 
so far suggest that the potential therapeutic effects of its 
specific targeting in aggressive cancer cells is worthy of 
being studied.
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