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ABSTRACT
Latent membrane protein 1 (LMP1), which is associated with the development of 

different types of Epstein-Barr virus (EBV) related lymphoma, has been suggested to be 
an important oncoprotein. In this study, a human anti-LMP1 IgG antibody (LMP1-IgG)  
was constructed and characterized by ELISA, western blotting (WB), affinity and 
immunohistochemistry (IHC) analyses. CCK-8, MTT, apoptosis assays, antibody-dependent  
cell-mediated cytotoxicity (ADCC) and CDC (complement-dependent cytotoxicity) 
assays were performed to evaluate the inhibitory effects of LMP1-IgG on extranodal 
nasal-type natural killer (NK)/T-cell lymphoma (ENKTL). Then, the influence of 
LMP1-IgG on the JAK/STAT signaling pathway was investigated. The results showed 
that the successfully constructed LMP1-IgG inhibited proliferation, induced apoptosis, 
and activated ADCC and CDC of ENKTL in a concentration- and time- dependent 
manner. Moreover, phosphorylation of JAK3 and STAT3 was inhibited by LMP1-IgG. 
Our data indicate that LMP1-IgG may provide a novel and promising therapeutic 
strategy for the treatment of LMP1-positive ENKTL.

INTRODUCTION

Extranodal nasal-type natural killer (NK)/T-cell 
lymphoma (ENKTL) is a subgroup of non-Hodgkin 
lymphomas (NHLs) characterized by progressive necrotic 
lesions in the nasal cavity and/or extranasal sites [1–3]. 
Epidemiologically, ENKTL accounts for 3–8% of 
malignant lymphomas in China and is more prevalent in 
Asian than in Western countries [4]. Clinically, ENKTL 

is highly aggressive and critically difficult to heal, with 
a median overall survival of less than 8 months [5].  
In ENKTL, recurrent drug resistance and immune suppression 
are common, and the prognosis of ENKTL patients for whom 
initial therapy fails is tremendously poor [6]. Currently, the 
lack of any established therapy protocols for ENKTL patients 
presents a major obstacle for ENKTL treatment [7]. There 
continues to be an urgent demand for innovative and effective 
therapeutic strategies to treat ENKTL. 
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The tumorigenesis of ENKTL is highly associated 
with Epstein-Barr virus (EBV) infection [8]. Latent 
membrane protein 1 (LMP1), a substantial oncoprotein 
encoded by EBV, has been suggested to have multiple 
malignant functions in the development and progression 
of EBV-related ENKTL [9, 10]. Identification of LMP1 
expression is drawing attention as a favorable target for 
ENKTL treatment [11, 12]. In our previous researches, we 
have reported the prognostic characteristics of LMP1 in 
lymphoma and have generated an anti-LMP1 Fab antibody 
(LMP1-Fab), exerting potential anti-tumor activity in 
nasopharyngeal carcinoma (NPC) [13–18]. Because of the 
remarkable relationships between LMP1 expression and 
ENKTL properties, an anti-LMP1 antibody should bring 
positive consequences in ENKTL treatment.

In this present study, we developed a human anti-
LMP1 IgG antibody (LMP1-IgG) based on the earlier 
LMP1-Fab antibody. Then, we tested the characteristics 
and the anti-cancer efficiency of LMP1-IgG in ENKTL. 
Moreover, we explored the potential mechanism by which 
LMP1-IgG inhibits ENKTL development.

RESULTS

Construction, expression and purification of 
LMP1-IgG

The LMP1-VH (360 bp) and LMP1-VK (321 bp) 
variable regions were successfully obtained from a previous 
LMP1-Fab clone (Figure 1A). Two eukaryotic expression 
vectors (pTH-VH and pTH-VK) were double digested 
and joined with LMP1-VH and LMP1-VK by IF-PCR 
separately (Figure 1B). Then, the two recombinant vectors 
(pTH-LMP1-VH and pTH-LMP1-VK) were transfected 
with a FreeStyle™ 293 Expression System, and the cell 
supernatant was harvested. Finally, LMP1-IgG was purified 
and confirmed with SDS-PAGE (Figure 1C and 1D).

Characterization of LMP1-IgG

LMP1 expression in ENKTL cells (SNK6, SNT8 
and YT) was firstly detected. The information of Figure 2A 
confirmed positive LMP1 expression in SNK6 and SNT8 
cells. In comparison, negative LMP1 expression was 
observed in YT cells. ELISA was further performed to test 
the binding sensitivity of LMP1-IgG to LMP1. As shown 
in Figure 2B, LMP1-IgG recognized LMP1, which was 
expressed in SNK6 and SNT8 cells in -dependent manner, 
and the absorbance values of LMP1-IgG in LMP1-positive 
and -negative cells differed significantly. WB testing 
showed that LMP1-IgG (uncleaved) could recognize LMP1 
which expressed in SNK6 and SNT8 cells. In comparison, 
LMP1-IgG was cleaved by the papain enzyme and failed to 
recognize LMP1 (Figure 2C). An affinity assay suggested 

that the LMP1-IgG possessed a high affinity for LMP1. 
The equilibrium dissociation constant (Kd) for LMP1-IgG 
was 3.175 × 10–9M (Figure 2D).

IHC analysis

IHC was performed in ENKTL tissue samples to 
further confirm the ability of LMP1-IgG to detect LMP1 
expression in clinical samples. A commercial LMP1 
antibody (C-LMP1) was used as a positive control. 
As shown in Figure 3, LMP1 expression was observed 
in 16/26 (61.5%) cases in the LMP1-IgG group and 
18/26 (69.2%) cases in the C-LMP1 group. The LMP1 
expression was barely different between the LMP1-IgG 
and C-LMP1 groups, thus indicating the comparable 
ability of LMP1 to be recognized by LMP1-IgG and 
C-LMP1. 

LMP1-IgG decreases ENKTL cell viability and 
induces apoptosis

To determine the tumor inhibitory effect of LMP1-
IgG, we determined SNK6 and SNT8 cell proliferation by 
using CCK-8 and MTT assays, respectively. Cells were 
cultured in medium with 2.5, 5, 10 or 20 μg/ml of LMP1-
IgG for 12, 24, 36, or 48 h. In both CCK-8 and MTT 
assays, at 20 μg/ml LMP1-IgG after 48 h of incubation, 
the growth of SNK6 and SNT8 cells was significantly 
decreased compared with that of YT cells (Figure 4A1, 
A42, 4B1, 4B2), a result suggesting that LMP1-IgG 
suppresses ENKTL growth. The IC50 of LMP1-IgG in 
SNK6 and SNT8 cells was 7.421 μg/ml and 17.68 μg/ml,  
respectively. To determine whether LMP1-IgG could 
induce cell apoptosis in ENKTL cells, we performed 
an Annexin V/PI assay. The results showed significant 
increases in the apoptotic rates of SNK6 and SNT8 cells 
in a concentration- and time- dependent manner after 
treatment with LMP1-IgG. By contrast, the apoptotic rate 
in YT cells was low and scarcely changed after LMP1-IgG 
treatment (Figure 4C1–4C4).

LMP1-IgG activates ADCC and CDC

Compared with Fab antibodies, IgG antibodies 
are theoretically able to induce cell death via both 
ADCC and CDC mechanisms; hence, we investigated 
the ADCC and CDC effects of LMP1-IgG. As shown in 
Figure 5A and 5B, as the concentration increased, LMP1-
IgG triggered cell death via ADCC and CDC in SNK6 
and SNT8 cells, but not in YT cells. In comparison, an 
unrelated IgG did not produce ADCC and CDC effects.
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LMP1-IgG inhibits JAK3/STAT3 signaling in 
ENKL cells

Since the JAK/STAT signaling pathway is a key 
molecular factor of ENKTL, we further analyzed the 
effects of LMP1-IgG on the proliferative and survival 
signals of JAK/STAT in ENKTL. SNK6 cells were treated 
with LMP1-IgG at different concentrations and incubation 
times. As shown in Figure 6A, phosphorylation of STAT3 
was significantly inhibited after LMP1-IgG treatment 
in SNK6 cells in a concentration- and time-dependent 
manner. In comparison, phosphorylation of STAT5 was 
rarely changed. 

Phosphorylation of STAT3 can be induced by tyrosine 
kinases of the Janus family (JAKs); we subsequently 
treated SNK6 cells with LMP1-IgG to examine the 
activation (phosphorylation) levels of the relevant 

tyrosine kinases. As shown in Figure 6B, LMP1-IgG  
inhibited the phosphorylation of JAK3 in a dose- and time-
dependent manner, but it rarely influenced that of JAK1, 
JAK2 and TYK2. 

Moreover, we tried to knockdown the LMP1 
expression in SNK6 cells and the phosphorylation 
of JAK3 and STAT3 was retested. LMP1-siRNA2 
showed stronger inhibition of LMP1 expression and 
was chosen for use in subsequent experiments (Figure 
6C). Knockdown of LMP1 expression attenuated the 
inhibition of phosphorylation of JAK3 and STAT3 
(SNK6-LMP1Si), whereas substantial reduction of 
phosphorylation of JAK3 and STAT3 was still observed 
in the control siRNA group (SNK6-LMP1Scr) (Figure 
6D and 6E). The above results suggest that LMP1-IgG 
exerted tumor-inhibitory function by affecting JAK3/
STAT3 activity.

Figure 1: (A) LMP1-VH and LMP1-VK variable regions were gathered from a previous LMP1-Fab clone. M: Marker DL2000; 
Lane 1: LMP1-VH variable region (360 bp); Lane 2: LMP1-VK variable region (321 bp). (B) Two recombinant eukaryotic expression 
vectors (pTH-VH and pTH-VK) were double digested and joined with LMP1-VH and LMP1-VK by Infusion-PCR (IF-PCR). M1: NEB PCR 
Marker; M2: NEB 1 Kb DNA ladder; Lane 1: pTH-LMP1-VK; Lane 2: Linearized pTH-VK; Lane 3: LMP1-VK; Lane 4: pTH-LMP1-VH;  
Lane 5: Linearized pTH-VH; Lane 6: LMP1-VH. (C) UV curve of LMP1-IgG purification. (D) SDS-PAGE confirmed the purification of 
LMP1-IgG. M: Marker Fermentas SM0671; Lane 1: 293F Cell supernatant (transfected); Lane 2: Purified LMP1 IgG; Lane 3: 293F Cell 
supernatant (untransfected).
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DISCUSSION

Antibody-based therapy is one of the most important 
strategies for cancer treatment, and a number of antibody-
based drugs are undergoing clinical trials [19]. In our 
previous researches, we have identified several oncogenic 
biomarkers and produced related engineered antibodies 
through phage display technology [20, 21], including 
anti-LMP1 Fab [16, 17], anti-Trop2 Fab [22, 23], anti-
MAGE-A1 scFv [24] and anti-hWAPL scFv [25]. 
However, a significant disadvantage is that phage display 
technology can-not construct full-length antibodies [26], 
but only antibody fragments (including Fab and scFv) that 
must be further transformed into whole IgG molecules 
to perform functions. Several disadvantages of antibody 
fragments remains to be further studied and resolved, 
such as the low absolute tissue uptake of Fab and the high 
degradation of scFv by proteases [27, 28]. In comparison, 
full-length IgG antibodies provide substantial benefits, 
such as increasing half-life in the circulation system, 
stimulating the complement system and engaging Fc 
receptor-mediated effector functions [29].

In this present study, we first constructed an LMP1-IgG  
antibody, on the basis of the previous LMP1-Fab. Eukaryotic 

expression vectors were prepared, and LMP1-IgG  
expression vectors were subsequently produced by IF-PCR.  
Then we successfully transfected the recombinant vectors 
and purified the LMP1-IgG, which was confirmed by a 
series of characterization experiments. Moreover, we 
tested the efficacy of LMP1- IgG at labeling LMP1 in 
ENKTL by IHC analysis. Compared with C-LMP1, 
LMP1-IgG displayed an equivalent ability to identify 
positive LMP1 ENKTL cells, thus further verifying the 
characteristics of LMP-IgG. Similar protocols were used 
in our previous study to investigate the function of LMP1-
Fab in nasopharyngeal carcinoma (NPC) diagnosis [30]. 

Because LMP1-Fab has exhibited tumor-inhibitory 
potentiality in NPC [16, 17] and LMP1 plays important 
roles in ENKTL progression [9, 14, 15], whole LMP1-IgG  
is theoretically supposed to exert more significant anti-
tumor effectiveness in ENKTL. Bearing this in mind, we 
performed a series of experiments to detect the tumor-
inhibitory role of LMP1-IgG in vitro. The results of 
CCK-8 and MTT assays demonstrated that LMP1-IgG 
was able to inhibit the proliferation of SNK6 and SNT8 
cells in a dose- and time-dependent manner. Moreover, 
the data of Annexin V/PI showed that with an increase 
of concentration and duration of LMP1-IgG in ENKTL 

Figure 2: (A) WB test confirmed positive LMP1 expression (SNK6 and SNT8 cells) and negative LMP1 expression  
(YT cells) in three ENKTL cell lines. (B) SNK6, SNT8 and YT cells were incubated with LMP1-IgG. SNK6 and SNT8 cells were 
LMP1-positive; YT cells were LMP1-negative. Unrelated-IgG was used as a negative control. LMP1-IgG specifically reacts with SNK6 
and SNT8 cells in a concentration-dependent manner, but not with YT cells. *Indicates significant difference. p < 0.05. (C) WB test showed 
LMP1-IgG (uncleaved) recognized LMP1 expressed in SNK6 and SNT8 cells. In comparison, LMP1-IgG was cleaved by papain enzyme 
and did not recognize LMP1. For LMP1 detection, the primary antibody was LMP1-IgG, and the secondary antibody was anti-human Fc-
HRP IgG; for β-actin detection as a control group, the primary antibody was mouse anti-human β-actin IgG and the secondary antibody 
was HRP-conjugated anti-mouse Fab (Figure 2B). (D) An affinity assay demonstrated that LMP1-IgG possessed high affinity for LMP1.
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cells, the apoptosis rate of SNK6 and SNT8 cells also 
elevated. LMP1 is widely acknowledged to act as an 
important oncoprotein that modulates several signaling 
pathways, including the nuclear factor kappa B (NF-κB), 
c-Jun N-terminal kinase (JNK), and phosphatidylinositol 
3-kinase(PI3K) signaling pathways, thus promoting cell 
growth and suppressing apoptosis [31, 32]. In NPC for 
example, LMP1 preserves the cancer stemness of NPC 
cells by activating the PI3K/AKT pathway [33]; LMP1 
critically mediates transformation of nasopharyngeal 
epithelial cells and facilitates FGF2/FGFR1 signaling 
activation in the EBV-driven pathogenesis of NPC [34]. In 
lymphoma, LMP1 protects lymphoma cells from cell death 
through the collagen-mediated activation of a receptor 
tyrosine kinase and makes an important contribution to 
promote the oncogenic effects of EBV [35]; LMP1 has also 
been reported to aggravate malignant cell function, induce 
surviving expression and inhibit cell apoptosis through NF-

κB and PI3K/Akt signaling pathways [9, 36]. All the above 
data support that LMP1-IgG demonstrates dramatic ability 
to inhibit cell growth and accelerate cell apoptosis.

For therapeutic antibodies, ADCC and CDC have 
been proven to be important modes of action [37]. Recent 
studies have reported that IgG can activate component 
C1 through hexamers and lead to target cell killing by 
CDC via membrane attack complexes [38]. IgG amino 
acid residues that modulate FcγR binding can be modified 
to promote ADCC [39]. It is rational to hypothesize that 
ADCC and CDC may also play imperative roles in the 
tumor-inhibitory effectiveness of LMP1-IgG in ENKTL. 
The following data validated our presumption that LMP1-
IgG would successfully activates ADCC and CDC in 
SNK6 and SNT8 cells, although the levels of ADCC and 
CDC varied in the two ENKTL cell lines. Several recent 
studies have described similar functions of antibody drugs 
in cancer therapy [40, 41].

Figure 3: Immunohistochemistry (IHC) analysis in clinical ENKTL samples. A1 and A2. Low expression of LMP1 when 
using a commercial LMP1-antibody as the primary antibody in IHC analysis. B1 and B2. Low expression of LMP1 when using LMP1-IgG  
as the primary antibody in IHC analysis. C1 and C2. High expression of LMP1 when using a commercial LMP1-antibody as the primary 
antibody in IHC analysis. D1 and D2. High expression of LMP1 when using LMP1-IgG as the primary antibody in IHC analysis. E1 and E2. 
Negative expression of LMP1 when using phosphate-buffered saline (PBS) in IHC analysis as a negative control. F1 and F2. Hematoxylin-
eosin (HE) staining of ENKTL samples. Original magnification: × 200 in A1, B1, C1, D1, E1 and F1; ×400 in A2, B2, C2, D2, E2 and F2.
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Figure 4: LMP1-IgG inhibits proliferation and induces apoptosis of ENKTL cells. (A1, A2, B1 and B2) CCK8 and MTT 
assays exhibited the concentration- and time-dependent inhibitory effects of LMP1-IgG (2.5–20 μg/ml or 12–48 h treatment) on the 
proliferation of SNK6 and SNT8 cells, whereas the inhibitory effect on YT cells was low and insignificant. * Significant difference in 
SNK6 and SNT8 cells with LMP1-IgG (20 μg/ml or 48 h treatment) compared with PBS treatment. p < 0.05. (C1 and C2) Apoptotic rates 
in ENKTL cells treated with LMP1-IgG (2.5–20 μg/ml or 12–48 h treatment). *Significant differences in apoptotic rate in SNK6 and SNT8 
cells with LMP1-IgG (20 μg/ml or 48 h treatment) compared with PBS treatment. p < 0.05. (C3) Representative images of cell apoptosis, 
detected with flow cytometry by Annexin V/PI double staining after treatment with LMP1-IgG (20 μg/ml). (C4) Representative images of 
cell apoptosis, detected with flow cytometry by Annexin V/PI double staining after treatment with LMP1-IgG (48 h treatment). The red 
frame illustrates the significantly increased apoptotic rate of SNK6 and SNT8 cells treated with LMP1-IgG.
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The JAK/STAT pathway is crucial in signaling 
by cytokine receptors, blood formation and the immune 
response [42]. Consequently, it is well acknowledged 
that the JAK/STAT pathway plays tremendous roles 
in oncogenesis, including lymphomagenesis [43, 44]. 
Bouchekioua et al. have reported that activation of the 
JAK3/STAT3 pathway exerts major activity in ENKTL 
cell growth and survival; whereas tumor growth could be 
significantly suppressed by a JAK inhibitor [45]. Similarly, 
Coppo et al. have described that STAT3 activation is 
constitutively triggered and that the oncogenic STAT3 
protein has important functions in the oncogenic process 
of ENKTL [46]. Because LMP1 has been stated to directly 
activate the JAK/STAT pathway, which is critical for 
ENKTL development [47, 48], we inevitably assumed 
that LMP1-IgG might display ENKTL-inhibitory 
characteristics by interfering with the JAK/STAT pathway. 
Therefore, we tested the effect of LMP1-IgG on the JAK/
STAT pathway in ENKTL. The results showed that LMP1-
IgG significantly inhibited phosphorylation of STAT3 
but barely influenced the phosphorylation of STAT5. In 
comparison, the expression levels of STAT3 and STAT5 
were stable after LMP1-IgG treatment. Subsequently, we 
continued to evaluate the effect of LMP1-IgG on signaling 
upstream of STAT. The data revealed that LMP1-IgG 
further blocked the phosphorylation of JAK3 but had no 
effect on the phosphorylation of JAK1, JAK2 or TYK2. 
Then, we explored whether LMP1-IgG influences the 
JAK/STAT pathway through recognizing LMP1. We 
employed siRNA to decrease LMP1 expression in SNK6 
cells. The results manifested that the inhibition of JAK3 

and STAT3 phosphorylation was significantly reduced 
in the LMP1Si group (SNK6-LMP1Si). In comparison, 
the inhibition of JAK3 and STAT3 phosphorylation was 
witnessed in the LMP1Scr group (SNK6-LMP1Scr). The 
above data implied that disruption of the JAK3/STAT3 
pathway might be one of the potential mechanisms for 
LMP1-IgG’s ENKTL-inhibitory ability. Several studies’ 
conclusions lend further support to our results and have 
suggested that targeting the JAK/STAT pathway may be a 
promising strategy for ENKTL therapy [49–51]. 

Interestingly, a previous study has shown that 
LMP1 can activate JAK3, as well as the downstream 
targets include STAT5 [52]. However, we did not detect 
an activity of LMP1-IgG in phosphorylation of STAT5 
or expression of STAT5. The inconsistent data may be a 
result of the differences in tumor types, antigen epitopes 
or antibodies used. Future research is required to confirm 
our findings.

In addition, one major disadvantage of this present 
study is that we were unable to produce in vivo results. We 
encountered several problems in xenograft construction 
in BALB/c nude mice as a model for ENKTL, and new  
in vivo experiments on NSG mice are ongoing. We intend 
to draft a new paper specifically concerning the in vivo 
effectiveness of LMP1-IgG in ENKTL with the latest 
updated data.

To sum up, this study herein illustrates that a novel 
neutralized human LMP1-IgG exerts potent antitumor 
ability in ENKTL by interfering with the JAK/STAT 
pathway. Our findings may provide a novel and promising 
strategy for targeted therapy in ENKTL.

Figure 5: LMP1-IgG activates ADCC and CDC. LMP1-IgG (20 μg/ml) induced cell death via ADCC (A) and CDC (B) in SNK6 
and SNT8 cells, but not in YT cells. In comparison, unrelated-IgG barely initiates ADCC and CDC effects. *Significant differences in 
ADCC and CDC in SNK6 and SNT8 cells with LMP1-IgG (20 μg/ml) compared with unrelated-IgG treatment. p < 0.05.
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MATERIALS AND METHODS

Cell lines and reagents

A human LMP1-Fab was generated and preserved in 
our lab [16]. Three ENTKL cell lines SNK6, SNT8 and YT 
were also preserved in our lab and enrolled in the present 
study [53, 54]. SNK6 and SNT8 are LMP1-positive, 
whereas YT is LMP1-negative [10, 55]. Anti-β-actin was 
purchased from Boster Co., Ltd. (Boster, Wuhan, China). 
All other antibodies were purchased from Abcam (Abcam, 
Cambridge, UK). The 293Free style cells and 293F 
expression culture medium were purchased from Invitrogen 
(Invitrogen, Carlsbad, CA, USA). Two eukaryotic 
expression vectors (pTH-VH and pTH-VK) were purchased 
from Invitrogen Co., Ltd. (San Diego, CA, USA). An In-
FusionR HD Cloning Kit was purchased from Clontech 
(Clontech Japan, Tokyo, Japan). Fresh human serum 
and peripheral blood mononuclear cells (PBMCs) were 
donated of Dr. Yuan Mao. All study protocols followed 
the guidelines and were approved by the Human Research 
Ethics Committees of Nanjing Medical University.

ENKTL patients and tissue samples

Tissue samples from 26 ENKTL patients for 
immunohistochemistry (IHC) analysis were enrolled as 
previously described [56]. 

Construction, expression and purification of 
LMP1-IgG

LMP1-IgG variable regions of the heavy (VH) and 
light chains (VK) were first amplified by PCR using an 
LMP1-Fab clone as the template [17]. The primers for 
VH and VK of LMP1-IgG were designed according to the 
protocol of Infusion-PCR (IF-PCR) and the primers were 
as follows: VH forward: 5′-GGT GTC CAC TCG CTA 
CAG GTG CAG CTG GTG-3′ and VH reverse: 5′-GCC 
CTT GGT GGA TGC TGA GGA GAC GGT GAC-3′;  
VK forward: 5′-ACA GAT GCC AGA TGC GAC ATC 
CAG ATG ACC-3′ and VK reverse: 5′-TGC AGC CAC 
CGT ACG TTT GAT CTC CAG CTT-3′ (Table 1). Two 
eukaryotic expression vectors (pTH-VH and pTH-VK) 
were then digested [57] and VH and VK were separately 

Figure 6: The influence of LMP1-IgG on the JAK/STAT pathway in ENKTL. (A) Phosphorylation of STAT3 was substantially 
inhibited after LMP1-IgG treatment in SNK6 cells in a concentration- and time-dependent manner. In contrast, phosphorylation of STAT5 
was rarely changed. (B) Detection of activation (phosphorylation) levels of the relevant tyrosine kinases in the Janus family (JAKs). 
LMP1-IgG inhibited the phosphorylation of JAK3 in a dose- and time-dependent manner, but rarely influenced that of JAK1, JAK2 and 
TYK2. (C) Two LMP1-siRNAs and a control-scrambled siRNA were constructed, and LMP1 expression in SNK6 cells was successfully 
inhibited. LMP1-siRNA2 showed better inhibitory effectiveness for LMP1 expression and was chosen for subsequent experiments. (D) and  
(E)  LMP1 expression knockdown attenuated the inhibition of phosphorylation of JAK3 and STAT3 (SNK6-LMP1Si). In comparison, 
significant inhibition of phosphorylation of JAK3 and STAT3 was apparent in the control siRNA group (SNK6-LMP1Scr).
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cloned into linearized pTH-VH and pTH-VK vectors 
by IF-PCR with In-FusionR HD Cloning Kit. Then, the 
recombinant vectors were transfected into FreeStyle™ 
293-F Cells (293F) with a FreeStyle™ 293 Expression 
System (Invitrogen). After transient transfection for 120 h, 
the cell supernatant was harvested and purified with a 
Hitrap protein A column (AKTA Purifier 100, GE, USA) 
as previously described [57]. 

Characterization of LMP1-IgG

ELISA, western blotting (WB), and affinity assays 
(BiaCoreX100) for investigating the characteristics of 
LMP1-IgG were performed as previously described [22, 57].

IHC analysis

IHC analysis was further performed to verify the 
function of LMP1-IgG to identify ENKTL samples. The 
protocol of IHC analysis was as described previously 
[58–65].

Cell viability and apoptosis assays

Cell viability was tested by using CCK-8 (Dojindo 
Laboratories, Japan) and MTT assays following 
the manufacturer’s instructions. Cell apoptosis was 
investigated by Annexin V/PI as previously described 
[22, 66]. An unrelated-IgG was employed as a control 
antibody.

ADCC and CDC assays

For the ADCC assay, ENKTL cells (target cells) 
were incubated with LMP1-IgG. An unrelated IgG was 
used as the control. PBMCs were used (effector cells) 
and incubated with ENKTL cells at a fixed effector/target 
ratio of 25:1. After a 4-hour incubation at 37°C, the cell 
supernatants were added to a 96-well plate to evaluate 

LDH release by LDH Cytotoxicity Assay Kit (Beyotime, 
Shanghai, China). For the CDC assay, ENKTL cells were 
incubated with LMP1-IgG, and this was followed by the 
addition of 20% human serum or heat-inactivated human 
serum. Then, the cell supernatants were added to a 96-well 
plate to evaluate LDH release with a LDH Cytotoxicity 
Assay Kit (Beyotime). Both assays were performed 
according to the manufacturer’s instructions [67].

Small interfering RNA (siRNA) transfection

Two LMP1-siRNAs and a control-scrambled siRNA 
were chemically synthesized by Sigma Chemical Co., 
Ltd. (St. Louis, MO, USA). The sequences of the 
control-siRNA and LMP1-siRNAs were as follows: 
control siRNA forward 5′-UUC UCC GAA CGU GUC 
ACG UTT-3′, reverse 5′-ACG UGA CAC GUUCGG AGA 
ATT-3′; LMP1-siRNA1 forward 5′-GGA AUU UGC ACG 
GAC AGG CTT-3′, reverse 5′-GCC UGU CCG UGC 
AAA UUC CTT-3′; LMP1-siRNA2 forward 5′-GCU CUC 
UAU CUA CAA A-3′, reverse 5′-UUU GUU GUA GAU 
AGA GAG C-3′ (Table 1).

The influence of LMP1-IgG on the JAK/STAT 
signaling pathway

WB analyses of the JAK/STAT signaling pathway 
were performed as previously described [22]. The JAK/
STAT signaling pathway was investigated in SNK6 cells 
with LMP1-siRNA transfection (SNK6-LMP1siRNA) and 
scrambled LMP1-siRNA transfection (SNK6-LMP1scr) 
after treatment with LMP1-IgG.
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