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ABSTRACT
HCC represents the sixth most common cancer worldwide and the second 

leading cause of cancer-related death. Despite the high incidence, treatment options 
for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. 
Despite the major advances achieved in the diagnostic management of HCC, only one 
third of the newly diagnosed patients are presently eligible for curative treatments. 
Advances in technology and an increased understanding of HCC biology have led to 
the discovery of novel biomarkers. Improving our knowledge about serum and tissutal 
markers could ultimately lead to an early diagnosis and better and early treatment 
strategies for this deadly disease. Serum biomarkers are striking potential tools for 
surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and 
reproducible assessments they potentially enable. To date, many biomarkers have 
been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive 
malignancy, characterized by early lymph node involvement and distant metastasis, 
with 5-year survival rates of 5%-10%. The identification of new biomarkers with 
diagnostic, prognostic or predictive value is especially important as resection (by 
surgery or combined with a liver transplant) has shown promising results and novel 
therapies are emerging. However, the relatively low incidence of CCA, high frequency 
of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above 
all), and difficulties with obtaining adequate samples, despite advances in sampling 
techniques and in endoscopic visualization of the bile ducts, have complicated the 
search for accurate biomarkers. In this review, we attempt to analyze the existing 
literature on this argument.

HEPATOCELLULAR CARCINOMA

INTRODUCTION

Hepatocellular carcinoma (HCC) accounts as 
the sixth most common neoplasm on a global scale, 
and the third most lethal with >600,000 deaths per year 

worldwide [1, 2]. Despite the major advances achieved 
in the diagnostic workup of HCC, only one third of 
the newly diagnosed patients are presently eligible for 
curative treatments [3]. Even in the curative setting, 
5-year survival rates after resection for early-stage HCC 
ranges between 17% and 53%, and recurrence rates can 
be as high as 70% [4, 5]. In patients treated with liver 
transplantation, overall survival (OS) rates approach 75% 
at 4 years and recurrence occurs in 8% to 15% of all graft 
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recipients fulfilling the Milan criteria[6, 7]. In patients 
with unresectable disease, overall life expectancy is not 
homogeneously distributed and as this patient group is 
the current focus for clinical studies involving molecular 
targeted therapies, there is a need to predict prognosis 
before treatment [8, 9]. 

Major risk factors for HCC include HBV, HCV, 
diabetes, obesity, excess alcohol consumption and 
metabolic diseases. All these factors contribute to a 
perpetual state of inflammation and fibrogenesis, leading 
to fibrosis and cirrhosis, preneoplastic conditions 
promoting the development of HCC. In particular, most 
patients with chronic hepatitis will develop liver cirrhosis 
and eventually HCC in a progressive and dynamic process, 
thanks to an altered liver microenvironment characterized 
by the generation of highly reactive oxygen species and 
a constitutively active inflammatory milieu. Improving 
our knowledge about serum and tissue markers could 
ultimately lead to an early diagnosis and better and early 
treatment strategies for this deadly disease [10-12]. In this 
review, we attempt to analyze the existing literature on 
this argument.

TISSUE MARKERS

As classical pathological and phenotypical 
parameters are only partly able to predict clinical 
behavior of individual tumors, new molecular tests and 
methods will have to be added into the morphology-based 
diagnostic procedure. Formalin-fixed paraffin-embedded 
(FFPE) tissue is still the most widely used method for 

tissue preparation in the routine diagnostic setting. In the 
past, extracting nucleic acids or proteins for molecular 
analysis from FFPE tissue has been difficult to perform. 
Nowadays, if the tissue is timely preserved in 10% 
neutral buffered formalin (final concentration: 4%) and if 
standard processing procedures are met, DNA and RNA of 
sufficient good quality for molecular analyses can easily 
be acquired [13]. 

Diagnostic tissue markers

An International Consensus has recently been 
obtained on the classification of small (≤ 2 cm) 
hepatocellular nodules [14]. Nodular lesions found in 
chronic liver disease are classified into large regenerative 
nodule (LRN), low-grade dysplastic nodule (LGDN), 
high-grade dysplastic nodule (HGDN), and HCC. The 
most difficult differential diagnosis is with HGDN. 
Morphology alone is often not sufficient and requires 
additional techniques (Table 1).

Extensive neovascularization process and sinusoids 
capillarization could be detected by immunohistochemical 
staining with endothelial marker CD34 (Figure 1A-B) and 
the Actin Smooth Muscle antigen (SMA) for muscolarized 
unpaired arteries. Immunostaining for cytokeratins CK7/19 
depicts the ductular reaction, which takes place around 
nonmalignant nodules: absence of staining could help to 
identify stromal invasion of well-differentiated malignant 
hepatocytes into portal tracts. Finally, the overexpression 
of three specific immunomarkers (Glypican 3- GPC3; Heat 
Shock protein 70- HSP70; Glutamine synthetase – GS) has 

Figure 1: A. Well-differentiated hepatocellular carcinoma, showing a trabecular pattern (Hematoxylin & eosin). B. CD34 immunostaining 
highlights capillarization of sinusoids, with complete staining around vessel wall. C. CD10 immunostaining shows a peculiar canalicular 
pattern in HCC. D. Well-moderately differentiated cholangiocarcinoma growing in a trabecular pattern, similar to HCC (Hematoxylin & 
eosin). E. Strong and diffuse positivity for CK7. F. Strong and diffuse positivity for CK19.
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been recognized to selectively label small and early HCC 
as compared to non-malignant counterparts (Table 1) [15, 
16]. In the appropriate clinico-pathological context, the 
finding of 2 unequivocal positive immunomarker (out of 
3 among GPC3, HSP70, and GS) can detect early HCC 
with a sensitivity of 72% and a specificity of 100% [15]. 
Because of the wide spectrum of histologic appearance of 
HCC, the differential diagnosis between HCC and other 
tumors involving the liver can be challenging. Secondary 
carcinomas may be difficult to assign to their origin but 
an appropriate immunohistochemical panel (Hep Par 1, 
pCEA, AFP, CD10, CKs 7, 8/18, 19, 20) may be very 
helpful to distinguish between primary and metastatic 
tumors (Table 1) (Figures 1, 2 and 3)[15, 16, 17]

P21-activated kinase 5 (PAK5) represents the latest 
family member of P21-activated kinases (PAKs) with Ser/

Thr kinase activity. Expression of PAK5 gene in 25 out 30 
HCC tissues has been demonstrated to be highly elevated 
with respect to the surrounding paraneoplastic tissue, 
making this gene an interesting diagnostic/prognostic 
marker for HCC [18].

A recent meta-analysis identified HMGB1 (high 
mobility group box 1) as a potential biomarker for HCC 
diagnosis, as it is significantly overexpressed at mRNA 
and protein level in HCC tissue samples, when compared 
with normal liver[19].

In an attempt to use microRNAs (miRNAs) to 
create a molecular classification of HCC, Murakami 
et al analyzed miRNA expression profiles in 25 pairs 
of HCC and adjacent non-tumorous tissue [20]. They 
found that three miRNAs exhibited higher expression 
in the HCC samples, whereas five were down regulated 

Table 1a: List of the most important diagnostic biomarkers in HCC. An * has been added after the most useful diagnostic 
markers in clinical practice.

Biomarker Category Role Tissue Expression Notes Ref.

CD34, SMA
Endothelial marker (CD34), 
Smooth muscle marker 
(SMA)

Diagnostic* Overexpressed 
Highlights neovascularization 
(muscolarized unpaired arteries) and 
capillarization of sinusoids in HCC

[13, 15, 16, 
17]

CK 7/19 Low molecular weight 
cytokeratins Diagnostic Not expressed Positive staining in portal ductular of 

bening lesions
[13, 15, 16, 
17]

GPC3 Cell surface heparin 
sulphate proteoglycan Diagnostic*

Overexpressed 
(sensitivity =77%, 
specificity =96%)

It may also be seen in regenerating 
hepatocytes in a chronic hepatitis 
setting

[15, 16]

HSP70
Stress protein implicated 
in cell-cycle progression, 
apoptosis and tumorigenesis

Diagnostic*
Overexpressed 
(sensitivity =78%, 
specificity =95%)

- [15, 16]

GS
Catalyzes the synthesis of 
glutamine from glutamate 
and ammonia

Diagnostic Overexpressed (sensitivity 
=50%)

GS overexpression is able to mirror 
ß-catenin mutation [15, 16]

Hep Par 1
Monoclonal antibody 
against urea cycle enzyme 
located in mitochondria

Diagnostic * Expressed in hepatocytes Most sensitive and specific marker of 
hepatocellular differentiation [15, 16, 17]

pCEA
Glycoprotein present in the 
glycocalix of fetal epithelial 
cells and in small amounts 
in normal adults cells. 

Diagnostic
Bile canaliculi and ductal 
epithelium but not in 
hepatocytes

Diffuse cytoplasmic expression in 
most adenocarcinomas (>90%). 
In HCC, pCEA reveals a specific 
“chicken-wire fence” canalicular 
pattern

[15, 16, 17]

AFP
Oncofetal protein expressed 
mainly in fetal gut, liver and 
yolk sac. 

Diagnostic
HCC and germ cell 
tumors.
Normal livers do not 
express AFP. 

Staining is focal and sensitivity is 
about 30% [15, 16, 17]

CD10 zinc-dependent 
metallopeptidase Diagnostic

Expressed in several 
normal tissues, (ex. liver, 
small intestine, and brain)

Shows a canalicular pattern (Figure 
1C) similar to pCEA, with lower 
sensitivity (50%).

[15, 16, 17]

miR-18, 
p-miR-18, -224

MicroRNA, small 
noncoding RNAs that 
control gene expression at a 
post-transcriptional level

Diagnostic Higher expression levels 
in HCC samples - [20, 21]

miR-199a, 199a*, 
195, 200a,   125a MicroRNA Diagnostic Lower expression levels in 

HCC samples - [20, 21]

MiR- 92, 20, 18 MicroRNA Diagnostic
Expression levels 
were inversely related 
with HCC degree of 
differentiation

- [20, 21]

CK7, 8/18, 19, 20 Low molecular weight 
cytokeratins Diagnostic *

Normal and neoplastic 
hepatocytes express 
cytokeratins CK 8 and 18 
and about 70% of HCC are 
negative for CK7, CK19, 
and CK20

- [15, 16, 17]
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and others were inversely correlated with the degree of 
HCC differentiation (Table 2). Classification of samples 
as HCC or normal, based on these data, provided an 
overall prediction accuracy of 97.8%. More recently, 
Toffanin et al proposed a miRNA-based classification of 
three subclasses of HCC, displaying either activation of 
the Wnt pathway or enrichment of interferon response–
related genes or activation of insulin-like growth factor 
1-Receptor and Akt pathways [21].

Prognostic tissue markers

Tumor hypervascularity is a well-known pathologic 
feature of HCC, where sustained angiogenesis guides the 
tumor to obtain a predominantly arterial blood inflow. 
Immunohistochemical staining for endothelium-specific 
markers such as CD-31, CD-34, or von Willebrand Factor 
allows for a semiquantitative assessment of the so called 

microvessel density, with significative prognostic power 
(Table 1) [22-26]. High tissue expression of angiogenic 
factors (Vascular endothelial growth factor –VEGF-) and 
of their regulators (Hypoxia-inducible –Hif-) are related 
to reduced OS and recurrence free survival and to early 
recurrence after resection (Table 1) [27-30].

Epithelial–mesenchymal transition (EMT) is 
characterized by the loss of cell-to-cell adhesion and 
gaining of mesenchymal phenotypes and is governed by 
specific transcription factors such as Slug (SNAI2), Snail 
(SNAI1), vimentin and Twist through which transforming 
cells progressively lose key adhesion molecules including 
E-cadherin and acquire unrestrained cell motility and 
metastatic potential. In a study by Zhang et al, a significant 
correlation between the dual over-expression of HIF-1α 
and SNAI1 and the reduced disease-free survival and poor 
prognosis was demonstrated in a cohort of HCC patients 
[31]. Even more interestingly, EMT phenotype can be 

Table 1b: List of the most important prognostic biomarkers in HCC. 

Biomarker Category Role Tissue Expression Notes Ref.

CD31, CD34,  
VWF 

Endothelium-specific 
markers Prognostic

Vessels and 
endothelium allowing 
semiquantitative 
assessment of tumor 
neovascularization 
(microvessel density)

High CD34-positive microvessels count predicts 
intrahepatic recurrence, shortened disease-free, OS 
and is associated with invasion and metastasis

[22-26]

VEGF

vascular endothelium 
growth factor, regulates 
angiogenesis through 
a complex network of 
molecular interactions 
with 5 ligands (VEGF-A 
to VEGF-E) that 
bind VEGF receptors 
(VEGFRs)

Prognostic
High tissue expression 
is a negative prognostic 
factor

High tissue expression of VEGF as a predictor of 
early mortality (hazard ratio, 2.15; 95% confidence 
interval, 1.26-3.78) and recurrence (hazard ratio, 
1.69; 95% confidence interval, 1.23-2.33) following 
resection

[27, 28]

Hif

Hypoxia-inducible 
transcription factors 
reprograms gene 
expression to enhance 
the of proangiogenic 
mediators production in 
response to hypoxia.

Prognostic
High tissue expression 
is a negative prognostic 
factor

Hif-1a immunopositivity is predictor of worse 
disease-free and OS [29, 30]

MMP family

Matrix Metalloproteinase 
are a group of >20 zinc-
endopeptidases whose 
primary function is to 
degrade the extracellular 
matrix.

Prognostic
High tissue expression 
is a negative prognostic 
factor

Increased MMP-2 and MMP-9 expression 
correlates with recurrence and OS after liver 
transplantation[39] and resection

[39-44]

Cyclins 
and Cyclin 
Dependent 
Kinases

Differential activation 
of cyclins and cyclin 
dependent kinases (CDK) 
determine the transition 
between subsequent 
phases of the cell cycle.

Prognostic
High tissue expression 
is a negative prognostic 
factor

Tissue overexpression of cyclin A, D1 but not E[45] 
has been reported as an adverse prognostic factor 
after curative resection of HCC

[45, 46]

p16, p18, 27, 57 CDK inhibitors Prognostic
Loss of expression is 
a negative prognostic 
factor

- [46-50]

Mib-1 (Ki-67) 
and PCNA

Immuno-histochemical 
detection of nuclear 
antigens such as Ki-67 
and PCNA are validated 
to assess cell proliferation

Prognostic

Tumors with increased 
growth rate have 
an increased risk of 
recurrence and shorter 
survival times

- [46]

p53 Tumor suppressor gene/
protein Prognostic Contradicting results

p53 mutational status by sequence analysis 
identified that patients with p53 mutant tumors are 
characterized by poorer survival [54-57] whereas 
the quantification of p53 mRNA expression did not 
correlate with survival [58].

[51-58]
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Figure 2: A. Biopsy of a well-differentiated hepatocellular carcinoma, showing a trabecular pattern (Hematoxylin & eosin). B. Hep Par 
1 diffuse cytoplasmic granular staining. C. “Canalicular”pattern of pCEA immunostaining.D. Poorly differentiated HCC (surgical sample) 
with lipogenic differentiation. A portal tract is evident in the center. E. Hep Par 1 immunostaining is patchy, with areas showing strong and 
diffuse cytoplasmic reaction (top right) and areas with loss of staining (bottom). Normal hepatocytes (bottom right) are evident. Biliary 
epithelium and inflammatory cell in the portal tract are negative. F. pCEA immunostaining is cytoplasmic, uneven, and has lost the peculial 
canalicular pattern of C.

Figure 3: Simplified diagnostic algorithm in the pathologic evaluation of liver nodules.
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reversed by reoxygenation [31]. Snail, Twist, but not Slug 
have been shown to correlate with metastatic potential 
and poor prognosis in HCC [32, 33]. In keeping with the 
hypothesis that suppression of E-cadherin reduces cell-
cell adhesion and increases invasive potential, tumors 
displaying reduced expression of E-cadherin, tend to have 
a more aggressive clinical course [33-36]. Consistently, 
upregulation of the mesenchymal markers Vimentin and 
N-cadherin, 2 genes that are positively regulated during 
EMT, is also associated with poor outcome [37, 38]. 

Negative prognostic roles have been elucidated 
for matrix metalloproteinase (MMPs) MMP-1, MMP-2, 
MMP-7, MMP-9 and MMP-12[39-44]. 

Cell cycle progression is a tightly regulated process 
in which the differential activation of cyclins and cyclin 
dependent kinases (CDK) determines the transition 
between subsequent phases of the cell cycle. Tissue 

overexpression of cyclin A, D1 but not E [45-46] has been 
reported as an adverse prognostic factor after curative 
resection of HCC. A confirmation of the detrimental effect 
of p16 and p18 loss [46] and of p27 [47] and p57 [48-50] 
dysregulation on patient prognosis comes from studies 
analyzing their immunohistochemical expression (Table 
1). Immunohistochemical detection of nuclear antigens 
such as Mib-1 (Ki-67) and PCNA are validated and 
reliable methods of assessing cell proliferation. Despite 
some variation in the cut-offs used to categorize high 
proliferating versus low-proliferating tumors, more than 
15 independent studies have confirmed that tumors with 
increased growth rate have an increased risk of recurrence 
and shorter survival times [46]. p53 accumulates within 
the nucleus in response to DNA damage and activates 
transcriptional programs leading to cell cycle arrest 
and apoptosis. Inactivation of the p53 gene by loss of 

Table 2a: List of miRNAs with different roles in HCC

miRNAs Tumor 
associated Role Expression in tissue Notes Ref.

miR-18, p-miR-18, -224 HCC Diagnostic

Higher expression 
levels of these miRNAs 
in HCC samples 
compared with normal 
tissue

- [20, 21]

miR-199a,-199a*,-195, 
200a, -125a HCC Diagnostic

Lower expression 
levels of these miRNAs 
in HCC samples 
compared with normal 
tissue

- [20, 21]

miR- 92, -20, -18 HCC Diagnostic
Expression levels 
were inversely related 
with HCC degree of 
differentiation

[20, 21]

miR-99a, -124, -139, -145 
and -199b HCC Prognostic

Downregulation of these miRNAs was significantly 
associated with poor prognosis, shorter disease-free survival 
and features of metastatic tumors including venous invasion, 
microsatellite formation, absence of tumor encapsulation and 
reduced differentiation

[65]

miR-222, -135a, -155, 
-182, -10b, -17-5p,-221 
and -21

HCC Prognostic
Up-regulation of these miRNAs correlated with poor 
prognosis, such as increased risk of tumor recurrence and 
shorter overall survival

[65]

miR-122 HCC
Predictive of 
response to 
therapy

-

Restoration of miR-122 in HCC cells makes them sensitive 
to adriamycin and vincristine through down-regulation of 
Multidrug resistance (MDR)- related genes, the antiapoptotic 
gene Bcl-w and cyclin B1; it is also able to sensitize HCC 
cells to sorafenib

[76]

miR-122, -199a-3p HCC
Predictive of 
response to 
therapy

These miRNAs affect sensitivity of HCC cells to doxorubicin [76]

miR-21/anti-miR-21 HCC
Predictive of 
response to 
therapy

HCC cells transfected with pre–miR-21 were resistant to 
interferon-a (IFN-a)/5-FU, while cells expressing anti–miR-
21 became sensitive to IFN-a/5- FU. Moreover, miR-21 
expression in surgical HCC specimens was associated with 
the clinical response to the IFN-a/5-FU combination therapy 
and survival rate

[76]

miR-146a HCC
Predictive of 
response to 
therapy

Induces resistance to interferon treatment through its ability 
to down-regulate SMAD4 [76]

miR-26 HCC
Predictive of 
response to 
therapy

Its low expression increases patients’ response to interferon 
therapy [76]

miR-1274a HCC
Predictive of 
response to 
therapy

Sorafenib was found to alter the expression of 14 miRNAs; 
among these miRNAs is miR-1274a, which is up-regulated 
by sorafenib resulting in repression of ADAM9, a protease 
involved in sorafenib targeted therapy

[76]
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heterozygosity or point mutation is a molecular event 
involving up to 60% of the HCCs [51]. Contradicting 
results are present with the association between p53 
nuclear immunolabeling and decreased OS and DFS 
shown by some studies but refuted by others [52-58]. At 
least 50% of the HCCs display an aberrant activation of 
the mammalian target of rapamycin (mTOR) pathway, a 
master regulator of proliferation and survival programs 
currently under intense scrutiny in HCC for its prognostic 
[59] and therapeutic implications [60]. Epithelial 
growth factor (EGF) is one of the best characterized 
mitogens in epithelial cancer cells, acting on a family of 
receptors, which include the EGF receptor (EGF-R or 
c-erbB-1), Her-2 (c-erbB-2), Her-3 (c-erbB-3), and Her-4 

(c-erbB-4). A comprehensive analysis of erbB receptors 
family expression in 100 surgical samples showed that 
EGF-R, Her-3, and Her-4 were expressed in more than 
half of the analyzed specimens, whereas Her-2 expression 
was present in only 21% [61]. At a transcriptional 
level, EGF-R but not EGF mRNA levels were related 
to the progression and recurrence of HCC [62, 63]. 
The prognostic role of Her-2 overexpression remains 
uncertain as only fluorescence in situ hybridization, but 
not immunohistochemical-based analysis has been found 
to correlate with tumor relapse and postoperative survival 
time [64].

The differential expression of miRNAs in HCC cells 
indicates the potential value of miRNA detection in the 

Table 2b: List of miRNAs with different roles in CCA

miRNAs Tumor 
associated Role Expression in tissue Notes Ref.

miR-22, -125a, -127, 
-199a, -214, -376a, -424 CCA Diagnostic

These miRNAs are down-
regulated in intrahepatic 
cholangiocarcinoma 
(ICC) cells 

These miRNAs could be served as potential diagnostic 
biomarkers for ICC [194]

miR-21, -142-3p, -25, 
-15a, -193, -17-5p, -374, 
-106a, -224, -130b, -19a, 
-331, -324-5p, -20, 17-3p, 
-223, -15b, -103

CCA Diagnostic
These miRNAs are up-
regulated  in ICC when 
compared with normal 
cholangiocytes

- [195]

miR-98, -204, -338, -198, 
-302d, -328, -337, -302b, 
-184, -320, -371, -185, 
-222, -214, -373, -145, 
-200c, let-7a, let-7b, -197

CCA Diagnostic
These miRNAs are down-
regulated  in ICC when 
compared with normal 
cholangiocytes

- [195]

miR-21, -135b, -122, -27a, 
-29a, -429, -24, -203, 
-106b, -29b, -20a/-20b, 
-93, -30e, -30b, -151-3p, 
-10a, -181a, -96, -663b, 
-103, -221, -22, -107, 
-424, -340 

CCA Diagnostic
These miRNAs are up-
regulated  in CCA when 
compared with normal 
cholangiocytes

- [196]

miR-451, -145, -99a, 
-125b, -630, let-7c, -144, 
-100, -127-3p, -139-5p, 
-337-3p, -1, -126, -376c, 
-517c+-519a, -520e

CCA Diagnostic
These miRNAs are down-
regulated  in CCA when 
compared with normal 
cholangiocytes

[196]

miR-30c, -96, -30b, -100, 
-145, -125b, -127-3p CCA Diagnostic

miR-30c, -96, -30b, are 
up-regulated in CCA 
compared with pancreatic 
adenocarcinoma (PC); 
miR-100, -145, -125b, 
-127-3p are down-
regulated in CCA 
compared (PC)

These specific miRNAs could be of aid in the differential 
diagnosis between these two neoplasms [196]

miR-192, -675-5p, -652-
3p, -338-3p, -126, -21 CCA Prognostic Decreased OS has been significantly associated with up-

regulation of these  miRNAs [197-201]

miR-151-3p, -373 CCA Prognostic Decreased OS has been significantly associated with 
down-regulation of these  miRNAs [197-201]

miR-192, -21,-214 CCA Prognostic Nodal metastases have been found more frequently in 
patients with up-regulation of these miRNAs

[197, 200, 
201]

Let-7g and miR-181b CCA
Predictive 
of response 
to therapy

These miRNAs can alter the response to 5-fluorouracil-
based antimetabolite S-1 and miRNAs of the Let-7 family 
can induce radio-sensibility

[219]

miR-21 and miR-200b CCA
Predictive 
of response 
to therapy

These miRNAs can increase chemo-resistance to 
gemcitabine by interacting PTEN and PTPN12 
respectively in CCA cell lines

[220]

miR-29b,-205, -221 CCA
Predictive 
of response 
to therapy

Downregulation of these miRNAs also present chemo-
resistance to gemcitabine in CCA. Furthermore, PIK3R1 
is identified as the common target of miR-29b and miR-
221

[221]
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Table 3: Serum markers in HCC

Marker Function Specificity Sensitivity Correlations Notes

Alpha-fetoprotein 
(AFP)

Glycoprotein, synthetized during the 
early stages of fetal liver development. 
The biological function of AFP is still 
not well identified. 

76%–94% 39-65%
Hepatocyte 
regeneration, during 
hepatocarcinogenesis and 
embryonic carcinomas

AFP sensitivity and specificity 
depend on the cut-off value 
chosen and on population 
characteristics

Lens culinaris 
Agglutinin  (LCA) 
fraction of AFP 

AFP glycoform, characterized by an 
elevated affinity to lectins such as Lens 
culinaris agglutinin 

>95% 51%
Aggressiveness, poor 
differentiation, ki-67, 
distant metastasis

Sensitivity strictly depends on 
HCC diameter

Des-γ-carboxy 
prothrombin (DCP)

Abnormal prothrombin derived 
by an acquired defect in the post-
translational carboxylation of the 
prothrombin precursor in HCC cells

48-62% 81-98%

Poor prognosis,  portal 
vein invasion, intrahepatic 
metastasis, hepatic vein 
thrombosis, and capsular 
infiltration

A moderate diagnostic accuracy 
in HCC has been showed

Glypican-3 (GPC-3)
Heparan-sulphate proteoglycans. In 
HCC tissue, it promotes cell growth 
by stimulating Wnt signaling

87%-90% 53%-59%
GPC3 would serve also 
as a target for therapeutic 
intervention in HCC

P-aPKC-i
Serine-threonine kinases (PKC), 
important for apico-basal maintenance 
and cellular junction formation

Pathological 
differentiation, tumor size, 
invasion, and metastasis

Studied as tissutal marker more 
than serum marker

E-Cadherin
Transmembrane glycoprotein 
associated with inhibition of the 
formation of  tight junctions among 
tumoral cells

Development of 
metastasis; poor tumoral 
differentiation

Studied as tissutal marker more 
than serum marker

b-Catenin Cytoskeleton protein Invasiveness and tendency 
to metastatization

Studied as tissutal marker more 
than serum marker

Human Carbonyl 
Reductase 2

Cytosolic enzyme involved in  
detoxification of the compounds 
derived from oxidative stress

Studied as tissutal marker more 
than serum marker

Vascular Endothelial 
Growth Factor

Role in angiogenesis, stimulating 
the proliferation and migration of 
endothelial cells and increasing 
vascular permeability

85% 65%

Portal vein emboli, poorly 
encapsulated tumors, 
microscopic vein invasion, 
and recurrence in HCC 
patients.  Predictor of 
tumor aggressiveness, 
DFS, and OS in patients 
who underwent HCC 
resection

Associated with poor outcomes 
in patients treated with 
sorafenib, indicating that VEGF 
could be used as an indicator of 
clinical efficacy 

Squamous Cell 
Carcinoma Antigen 
(SCCA)

Serin protease inhibitors 48.9% 84.2% Tumor size

a-l-fucosidase (AFU) Lysosomal enzyme involved in  
degradation of fuco-glycoconjugates

PFS, OS, macrovascular 
invasion

Transforming Growth 
Factor b1 

Protein involved in inhibition of cell 
proliferation and triggering apoptosis

Hepatocarcinogenesis 
and tumor angiogenesis,  
tumor size,  postoperative 
DFS and OS

Embryonic Liver 
Fodrin (ELF)

Adaptor protein involved in  TGF-β1 
signaling pathway

HBsAg, tumor size, 
TNM and recurrence, 
postoperative DFS and OS

Golgi protein-73 Golgi glycoprotein expressed in 
epithelial human cells 75% 69%

GP73  accuracy was higher than 
AFP, even if  is less suitable for 
discriminating between primary 
malignant and benign tumors of 
the liver

Serum Anti-p53 Antibody directed against p53 91.52% 84.63% AFP, tumor size, MELD 
and Child-Pugh score

P53 mutations are correlated 
with poorly differentiated cancer 
and shorter survival of patients 
with HCC

Chromogranin A (CgA)
Acidic glycoprotein contained in 
secretory granules of neuroendocrine 
cells

Degree of neuroendocrine 
differentiation of HCC

Hepatocyte Growth 
Factor

Cytokine with wide ranges of effects; 
it stimulates hepatocyte proliferation 
including HCC cells through 
expression of its receptor, the c-met 
receptor

Poor survival

Nervous Growth Factor
Cytokine involved in cancer growth, 
invasion and metastatization, in 
addition to its role in differentiation 
and survival of neuronal cells

The mechanism of NGF 
involvement in liver tissue 
remodeling processes and HCC 
remains unclear
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prediction of HCC prognosis (Table 2) [65]. 

Predictive tissue markers

Selective inhibition of the VEGF pathway has been 
at the focus of intense research in the area of molecularly 
targeted therapy of HCC, particularly after sorafenib, a 
dual Raf/Map kinase inhibitor with concurrent inhibitory 
power on VEGF-R2, 3 and platelet-derived growth factor 
receptor, has become the standard of care in the treatment 
of advanced HCC[1, 66]. Because sorafenib is the only 
approved drug for advanced HCC in many countries, 
but exhibits a relatively modest activity, biomarkers 
to predict sorafenib efficacy could assist in identifying 
the minority of patients who are likely to benefit from 
the treatment [66]. Despite this clinical need, a lack of 
progress in this field occurred due to the scarcity of HCC 
tissues, particularly those obtained at advanced stages and 
before sorafenib treatment. In a recent analysis, MET (the 
receptor tyrosine kinase encoded by the homonymous 
MNNG-HOS transforming gene) showed a significantly 
higher expression after than before sorafenib treatment 
[27]. This is in line with literature suggesting that high 
MET expression correlates with hypoxia, resistance to 
anti-angiogenic therapies, and poor prognosis in HCC, and 
further supports the prognostic role of MET. In addition, 
tumor MET was found to be predictive of outcome in 
tivantinib-treated patients suggesting that tivantinib offsets 
the negative impact of MET, making survival of the MET-
High treated patients similar to the MET-Low population 
[27]. 

Several studies have examined the downstream 
signaling molecules of Raf, such as ERK, in relation 
to response to sorafenib therapy. In a phase II study of 
sorafenib for advanced HCC, Abou-Alfa et al showed 
that patients with tumors expressing high phospho-(p-) 
ERK had a longer TTP [67]. However, recent studies 
have reported conflicting results [68, 69]; Arao et al [70] 
were the first to identify FGF3/FGF4 amplification in a 
patient with metastatic HCC who dramatically responded 
to sorafenib. Located at 11q13, the FGF3/FGF4 site is 
beside FGF19 and CCND1, 2 genes frequently reported 
to exert amplifications in HCC tissues [71-75]. According 
to the literature, FGF3/FGF4 amplification can be 
detected in 0% to 7% of HCC patients [73-75]. Among 
10 other sorafenib responders, 3 patients also exhibited 
FGF3/FGF4 amplification. By contrast, no FGF3/FGF4 
amplification was found in 38 patients who exhibited 
stable or progressive disease [73-75]. However, no 
validation studies have been performed and how FGF3/
FGF4 amplification is associated with sorafenib efficacy 
remains unclear. Works performed in many types of 
cancer, including HCC, have shown that miRNAs can 
influence the sensitivity of tumors to therapy and that their 
expression can be altered by treatment (Table 2) [76].

SERUM MARKERS

Serum biomarkers are striking potential tools for 
surveillance and early diagnosis of HCC thanks to the 
non-invasive, objective, and reproducible assessments 
they potentially enable [77]. Alpha-fetoprotein (AFP) 
testing and Ultrasonography (US) are the most widely 
used methods of HCC surveillance [78-82], representing 
the most cost-effective strategy. Data have indicated that 
AFP testing and US every 6 mo. affect disease-specific 
mortality compared to no intervention [odds ratio: 0.57, 
95% confidence interval (CI): 0.37-0.89] [83]. However, 
there is increasing debate regarding the utility of AFP as 
a surveillance test [84-86]. Advances in technology and 
an increased understanding of HCC biology have led to 
the discovery of novel biomarkers (Table 3). To date, 
many biomarkers have been proposed as a complement 
or substitute for AFP in the diagnosis of HCC [77]. In 
particular, while a single marker alone could be poorly 
specific to predict this disease, using more than one marker 
at a time should greatly reduce the chance of errors from 
false-negative results.

Alpha-fetoprotein (AFP)

Alpha-fetoprotein is a glycoprotein (MW 70 kDa), 
physiologically synthetized during the early stages of 
fetal liver development by the endodermal cells of the 
visceral yolk sac. The AFP expression by hepatocytes and 
endodermal cells of the yolk sac reduces after birth. The 
elevation of AFP can occur in hepatocyte regeneration, 
during hepatocarcinogenesis, and embryonic carcinomas 
[87]. The biological function of AFP is still not well 
identified. Since AFP is similar to albumin, it is possible 
that AFP function as a carrier for several ligands such as 
bilirubin, fatty acids, steroids, heavy metals, flavonoids, 
phytoestrogens, dioxin, and various drugs [88]. AFP 
evaluation is useful: a) for screening and diagnosis of 
HCC in patients at risk of developing HCC, in association 
to hepatic ultrasonography; (b) during staging within CLIP 
(Cancer of the liver Italian program) staging system; (c) 
as a marker for detecting tumor progression in patients 
with AFP-producing HCC. Analysis of recent studies 
has indicated that AFP testing lacks adequate sensitivity 
and specificity for effective surveillance [89-91]. AFP 
levels are normal in up to 40% of patients with HCC, 
particularly during the early stage of the disease (low 
sensitivity) [92-94]. Elevated AFP levels may be seen 
in patients with cirrhosis or exacerbation of chronic 
hepatitis or cholangiocarcinoma (low specificity) [95, 
96]. In addition, some studies have indicated that AFP 
has substantially limited diagnostic accuracy in detecting 
small HCC [97]. The increase of AFP levels > 500 ng/ml 
is correlated with the tumor size: 80% of small HCC show 
no increase of AFP concentration. Furthermore, sensitivity 
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of AFP decreases from 52% to 25% when tumor diameter 
is >3 cm and <3 cm, respectively [98]. Some patients with 
cirrhosis and/or hepatic inflammation can have an elevated 
AFP without the presence of tumor. The measurement of 
AFP serum concentration during the follow-up of patients 
after treatment is a helpful test in conjunction with 
computed tomography or magnetic resonance imaging 
[99]. A decrease of AFP levels less than 10 ng/ml within 
30 days after treatment, indicates a favorable response 
to treatment [100]. However, the evaluation of serum 
AFP concentration is clinically significant when AFP is 
elevated before the therapy. 

Lens Culinaris Agglutinin Reactive AFP

There are several AFP glycoforms that differ in 
the binding affinity to lectins such as Lens culinaris 
agglutinin (LCA). Lens culinaris agglutinin reactive 
AFP (AFPL3%) or Lens culinaris agglutinin reactive 
fraction of AFP, is characterized by an elevated affinity 
to LCA and has been described as a more specific marker 
for HCC, because of its exclusive origin from cancer 
cells[101, 102]. Actually, the clinical utility of AFP-L3% 
and the ratio of AFP-L3% to total AFP remain unclear. 
The cut-off for AFP-L3% is set up >10% of total serum 
AFP. AFP-L3% measurement for HCC has a specificity 
>95% and a sensitivity of approximately 51% [103, 104]. 
In particular, its sensitivity ranges from 35–45% for small 
HCC (diameter<2 cm) to 80–90%, for HCC >5 cm [104]. 
The clinical utility of highly sensitive AFP-L3 in early 
prediction of HCC developing in patients with chronic 
HBV or HCV infection was recently evaluated in a large 
Japanese study, and results indicated that elevated AFP-L3 
was an early predictor of HCC development even if AFP 
levels were low and suspicious US findings were absent. 
Elevated AFP-L3 was noted in 34.3% of patients 1 year 
prior to diagnosis of HCC [105]. Since AFP-L3%-positive 
patients develop early vascular invasion and intrahepatic 
metastasis, AFP-L3% is considered as a marker for the 
aggressiveness of HCC. In fact, AFP-L3% expression is 
related to progression from moderately differentiated to 
poorly differentiated tumors and seems to be connected 
with increased nuclear expression of Ki67 and with 
decreased expression of a-catenin, which is associated 
with distant metastasis [106, 107]. Beyond its utility as a 
prognostic factor, it could be used for patients’ follow-up 
after initial treatment. In particular, AFP-L3% expression 
after therapy is related to a shorter survival [108-110].

Des-γ -Carboxy Prothrombin

Des-γ-carboxy prothrombin (DCP) or prothrombin 
induced by vitamin K absence (PIVKA) is an abnormal 
prothrombin derived by an acquired defect in the post-
translational carboxylation of the prothrombin precursor 

in HCC cells [111]. DCP measurement for HCC has a 
sensitivity of 48–62% and a specificity of 81–98% [112]. 
DCP is a more specific HCC marker than AFP because it 
seems not to increase in other liver diseases. The accuracy 
of DCP is decreased in prolonged obstructive jaundice, 
intrahepatic cholestasis with vitamin k deficiency, and 
intake of warfarin. Higher DCP levels in HCC patients are 
associated with a poorer prognosis [113]. DCP is involved 
in tumoral angiogenesis, increasing genic expression of 
angiogenic factors such as EGF-R, VEGF, and MMP-
2 and helping the proliferation and migration of human 
vascular endothelial cells [114]. DCP-positive patients 
frequently develop portal vein invasion, intrahepatic 
metastasis, hepatic vein thrombosis, and capsular 
infiltration [115-117]. In a recent article, Hakado et al. 
suggested that the elevation of AFP and DCP levels at 24 
wk after the completion of IFN and ribavirin therapy were 
strongly associated with the incidence of HCC irrespective 
of virological response among Japanese patients with 
cirrhosis [118]. Recently, a meta-analysis indicated that 
DCP had moderate diagnostic accuracy in HCC. Further 
studies with rigorous design, large sample size and 
multiregional cooperation are needed in the future [119].

Glypican-3

Glypican-3 (GPC3) is one of the members of 
heparan-sulphate proteoglycans [120]. Thanks to 
its binding to the cell membrane through the glyco-
phosphatidylinositol anchors, it interacts with several 
growth factors, such as HGF and VEGF, contributing to 
the development of hepatic cancer [121]. Recent studies 
have shown that GPC3 levels are increased in HCC 
patients. GPC3 is able to differentiate between malignant 
and benign hepatic lesions; in fact, GPC3 levels are 
undetectable in healthy subjects and in benign hepatic 
disease patients (such as dysplastic or cirrhotic nodules) 
[122, 123]. In addition to its role of useful molecular 
marker for HCC diagnosis, GPC3 would serve also as a 
target for therapeutic intervention in HCC. Indeed, some 
immunotherapy protocols targeting GPC3 are under 
investigations; those include humanized anti-GPC3 
cytotoxic antibody, peptide vaccine and immunotoxin 
therapies [124]. One of these is a phase II trial of 
codrituzumab (humanized monoclonal antibody against 
GPC3) in previously treated patients with advanced 
hepatocellular carcinoma. Unlucky, in this clinical trial, 
codrituzumab was not found be effective against liver 
cancer. It was suggested though that a higher dose of 
codrituzumab or selecting patients with high level of 
glypican-3 or its mediator CD16 might improve outcome 
[125].
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P-aPKC-i, E-Cadherin, b-Catenin

P-aPKC-i, E-cadherin, and b-catenin play an 
important role in tight-junctions formation among tumor 
cells. P-aPKC-i is a member of the family of serine-
threonine kinases (PKC) that play an important role in 
cellular proliferation and differentiation [126]. P-aPKC-i 
is very important for apicobasal maintenance and 
cellular junction formation [127]. In normal liver tissue, 
it is localized at the apical membrane, while in HCC it 
is localized at the basal membrane and in cytoplasm. 
Probably, the high expression of aPKc-i causes the loss 
of cell polarity and cellular junction, leading to metastasis 
[128]. E-cadherin is a transmembrane glycoprotein, 
connected with its intracellular domain, through b-catenin 
and other catenins, to the acting cytoskeleton. The reduced 
expression of E-cadherin is associated with inhibition of 
the formation of a tight junction among tumoral cells, 
and is correlated to development of metastasis and a poor 
tumoral differentiation. B-catenin overexpression in HCC 
tissues seems to be involved in activation of the WNT 
signaling pathway and in expression of c-myc, cyclin D, 
VEGF, and other genes related to cell proliferation [129, 
130].

Human Carbonyl Reductase 2

Human carbonyl reductase 2 (HCR2) gene encodes 
a cytosolic enzyme that is expressed in the human liver 
and kidney and is involved in detoxification of the 
compounds derived from oxidative stress. Different 
studies showed that a decreased expression of HCR2 
in HCC tissues contributes to cancer growth because it 
increases the cellular damage induced by ROS and other 
carcinogens [131].

Vascular Endothelial Growth Factor

The development of solid tumors is strictly 
correlated with angiogenesis. Vascular endothelial growth 
factor (VEGF) plays an important role in angiogenesis, 
stimulating the proliferation and migration of endothelial 
cells and increasing vascular permeability. VEGF levels 
are higher in HCC patients than in chronic hepatic disease 
patients, and in advanced HCC compared to early HCC 
[132, 133]. Vascular damage and invasion by cancer cells 
are fundamental for distant metastasis. Platelets, activated 
by vascular invasion of HCC cells, release VEGF. VEGF 
is considered a possible tumor marker for HCC metastasis. 
High serum VEGF is associated with portal vein emboli, 
poorly encapsulated tumors, microscopic vein invasion, 
and recurrence in HCC patients. VEGF is a predictor of 
tumor aggressiveness, disease-free survival, and overall 
survival in patients who underwent HCC resection [134, 

135]. There are studies showing that single nucleotide 
polymorphisms (SNPs) in VEGF are a predictive factor of 
survival in patients with HCC resection [136]. Based on 
these studies, it is speculated that SNPs in genes related 
to angiogenesis, including VEGF, may affect tumor 
progression and recurrence of the disease in patients after 
transplantation [137]. The presence of elevated serum 
VEGF levels and recurrence of HCC in patients after liver 
transplantation seems to be closely associated with poor 
prognosis [138]. High level of VEGF is associated with 
poor outcomes in HCC patients treated with sorafenib, 
indicating that VEGF could be used as an indicator of 
clinical efficacy in patients with HCC. However, better 
designed studies are needed to strengthen our findings 
[139]. An interesting work has shown that VEGF-siRNA 
enhanced the chemosensitivity of doxorubicin in Hep3B 
cells at least in part by suppressing the expression of anti-
apoptotic genes. Therefore, the downregulation of VEGF 
by siRNA combined with doxorubicin treatment has been 
shown to yield promising results for eradicating HCC 
cells [140]. Moreover, another article has described that 
serum VEGF level in liver cancer patients can be used as 
a prognostic indicator for evaluating the efficacy of RFA 
treatments [141].

Squamous Cell Carcinoma Antigen (SCCA)

Squamous Cell Carcinoma Antigen (SCCA) belongs 
to family of serpins, serin protease inhibitors [142]. 
SCCA expression, as well as AFP production, could be 
the consequence of the dedifferentiation often observed in 
HCC. HCC patients show higher SCCA serum levels than 
cirrhotic patients do. There is no clear correlation between 
SCCA expression in tissues and SCCA serological levels. 
SCCA may be used for HCC diagnosis, since it shows a 
sensitivity of 84.2% and a specificity of 48.9%. Given that 
SCCA is inversely correlated with tumor size, it is helpful 
for early HCC diagnosis and in screening of chronic 
hepatic disease patients [143]. A recent meta-analysis 
indicated that SCCA and SCCA-IgM exhibit moderate 
diagnostic accuracy as novel tumor makers of HCC, 
although the value of the combination of SCCA/SCCA-
IgM and AFP requires further investigation [144].

a-l-Fucosidase

a-l-fucosidase (AFU) is a lysosomal enzyme 
found in all mammalian cells, whose role consists in the 
degradation of fuco-glycoconjugates [145]. Its activity is 
higher in HCC patients than in healthy individuals and 
in chronic hepatic disease patients. AFU measurement is 
useful in association with AFP in the early diagnosis of 
HCC. Moreover, here is a positive correlation between 
AFU levels and tumor size in HCC patients [145-
149]. A large-scale, long-term study, using a cut-off of 
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preoperative AFU>35 U/l, showed that preoperative AFU 
was an independent prognostic factor of overall survival 
(OS) (P=0.008; hazard ratio: 2.333; 95% confidence 
interval: 1.249–4.369). Patients with a preoperative 
AFU>35 U/L had a lower recurrence-free survival rate 
and an OS rate than those with AFU⩽35 U/L, and they 
have a higher tendency to form macrovascular invasion. 
Furthermore, the prognostic significance of AFU>35 U/L 
could also be applied to patients with alpha-fetoprotein 
levels of ⩽400 ng/ml [150].

Transforming Growth Factor b1 and Embryonic 
Liver Fodrin (ELF)

Transforming growth factor b1 (TGF-b1) arrests 
the cell cycle in the G1 phase, inducing inhibition of cell 
proliferation and triggering apoptosis. In normal liver 
tissues, TGF-b1 is produced only by nonparenchymal 
cells (Kupffer cells, storing cells, and endothelial cells). 
Recent studies showed that TGF-b1 serum levels are 
increased in HCC patients and are correlated with 
hepatocarcinogenesis and tumor angiogenesis [151-153]. 
The levels of TGF-b1 mRNA are higher in larger tumors. 
HCC cells show resistance to TGF-b1 growth inhibition 
because in tumoral cells there is an overexpression of 
cyclin D1 correlated with the dysregulation of the cell 
cycle and tumor progression [154-156]. TGF-β1 signaling 
pathway requires an adaptor protein, Embryonic Liver 
Fodrin (ELF). The prognostic significance of ELF for 
hepatocellular carcinoma (HCC) has not been clarified. 
While the expression of TGF-β1 in HCC tissues was 
significantly higher than that in normal liver tissues, the 
expression of ELF in HCC tissues declined markedly. 
ELF protein was correlated with HBsAg, tumor size, 
tumor number, TNM and recurrence. Data also indicated a 
significant negative correlation between ELF and TGF-β1. 
Patients with high TGF-β1 expression or/and low ELF 
expression appeared to have a poor postoperative disease-
free survival and overall survival compared with those 
with low TGF-β1 expression or/and high ELF expression. 
Furthermore, the predictive range of ELF combined with 
TGF-β1 was more sensitive than that of either one alone 
[157].

Golgi protein-73

Golgi protein-73 (GP73) is a Golgi glycoprotein 
expressed in epithelial human cells [158]. Physiologically, 
GP73 is expressed in biliary epithelial cells but not 
in hepatocytes. In liver disease, GP73 expression is 
increased in hepatic cells [159]. GP73 values are higher 
in early HCC patients than in cirrhotic patients. GP73 is 
considered a possible marker for HCC; in fact, it shows 
a specificity of 75% and a sensitivity of 69%. There are 

several isoforms of GP73 correlated with different levels 
of glycosylation [160]. Therefore, some isoforms are more 
specific for HCC. Further studies are needed to confirm 
the role of GP73 in HCC diagnosis. An interesting meta-
analysis showed that in HCC diagnosis, the accuracy of 
GP73 was higher than that of AFP, and that GP73 + AFP 
exhibited significantly higher diagnostic accuracy than did 
GP73 or AFP alone[161]. Although the literature suggests 
that GP73 is a valuable serum marker in patients with 
HCC, the serum concentration may also be increased in 
patients with solid benign liver tumors. Therefore, a GP73 
assay is less suitable for discriminating between primary 
malignant and benign tumors of the liver [162].

Serum Anti-p53

The p53 gene is an onco-suppressor gene encoding a 
nuclear phosphoprotein (p53 protein) that inhibits cellular 
proliferation and transformation [163]. Mutations of the 
p53 gene have been reported in several human cancers. 
P53 alterations are not an early event in HCC, but occur at 
the late stages of hepatocarcinogenesis and are detected in 
30–50% of HCC patients. P53 abnormalities are connected 
with the prognosis and survival of HCC patients. P53 
mutations are correlated with poorly differentiated cancer 
and shorter survival of patients with HCC [164-166]. 
An interesting study reported that sensitivity, specificity, 
PPV, NPV and accuracy test of anti P53 antibody positive 
patients are 91.52%, 84.63%, 90.34%, 80.2% and 74.8% 
respectively[167]. It correlates positively with AFP, tumor 
size and staging, MELD score and Child-Pugh score. 
Non-B non-C HCC showed high serum prevalence of 
anti-p53 as viral-associated HCC suggesting an evidence 
of high onchogenecity. It appears of much benefit in 
diagnosis, follow up and differentiation from cirrhosis in 
presence of low levels of alpha-fetoprotein [167].

Chromogranin A

Chromogranin A (CgA) is an acidic glycoprotein 
contained in secretory granules of neuroendocrine 
cells [168]. Different studies show high serum Cg-A 
concentrations in patients with HCC, suggesting that CgA 
might represent a useful marker in monitoring cirrhosis 
patients for the early detection of HCC. Moreover, Cg-A 
levels seems to be linked to the degree of neuroendocrine 
differentiation of HCC [169, 170]. Since CA levels 
increase in both HCC patients and in cirrhotic patients, it 
shows a low diagnostic specificity. Patients with a higher 
CgA serum concentration show a poorer outcome than 
those with lower CgA levels [171]. Additionally, CgA can 
be utilized in monitoring the efficacy of HCC treatment.



Oncotarget14204www.impactjournals.com/oncotarget

Hepatocyte Growth Factor

Hepatocyte growth factor (HGF) is a cytokine 
having a wide range of effects, from embryonic 
development and liver regeneration to protection and/
or repair of various organs, including kidney, lung, 
and cardiovascular system [172, 173]. HGF stimulates 
hepatocyte proliferation including HCC cells through 
expression of its receptor, the c-met receptor. HGF can 
be detected in the serum of hepatic chronic disease 
patients. The increase of HGF serum levels in cirrhotic 
patients is an indicator of HCC development [174, 175]. 
HGF serum levels higher than or equal to 1.0 ng/ml 
have been correlated with poor survival. Therefore, pre-
operative high HGF levels are related to development of 
post-operative complications, such as liver failure [176]. 
HGF can be helpful in assessing hepatic function before 
surgery and for predicting a patient’s prognosis. Moreover, 
elevated HGF serum levels, after surgery, is able to predict 
early tumor recurrence and metastasis [177].

Nervous Growth Factor

Nervous growth factor (NGF) is involved in cancer 
growth, invasion and metastatization, in addition to its 
role in differentiation and survival of neuronal cells 
[178]. Various studies show that NGF is over-expressed 
in approximately 60% of human HCC tissues compared 
to the surrounding liver tissue with cirrhosis and chronic 
hepatitis, suggesting a role in HCC progression [179-181]. 
In fact, hepatic stellate cells express neurotrophins and 
their receptors are increased during hepatic regeneration 
[182, 183]. NGF and its related receptors play an important 
role in modulating the physiopathology of the intrahepatic 
biliary epithelium in the course of liver tissue remodeling 
processes and HCC progression. The mechanism of NGF 
involvement in liver tissue remodeling processes and HCC 
remains unclear.

CHOLANGIOCARCINOMA

INTRODUCTION

Cholangiocarcinoma (CCA) arises from the 
neoplastic proliferation of cholangiocytes, the epithelial 
cells in the biliary tree. It is an aggressive malignancy, 
characterized by early lymph node involvement and 
distant metastasis, with 5-year survival rates of 5%-
10% [184]. The identification of new biomarkers with 
diagnostic, prognostic or predictive value is especially 
important as resection (by surgery or combined with a 
liver transplant) has shown promising results and novel 
therapies are emerging [185]. However, the relatively 
low incidence of CCA, high frequency of co-existing 

cholestasis or cholangitis (primary sclerosing cholangitis 
–PSC- above all), and difficulties with obtaining adequate 
samples, despite advances in sampling techniques 
and in endoscopic visualization of the bile ducts, have 
complicated the search for accurate biomarkers. As the 
clinical presentation of CCA can mimic benign dominant 
biliary strictures, the major challenge lies in identifying 
potential biomarkers that detect early dysplasia and CCA.

The goal of theranostic markers is to predict the 
response to a specific therapy. Current standardized 
regimens available for medical therapy in CCA have 
limited effectiveness and considerable side effects. 
Therefore, there is a crucial need for development 
of targeted therapies that interfere with growth and 
progression of cancer cells, sparing normal cells. 

TISSUE MARKERS

Diagnostic tissue markers

Microscopically, some CCA grow in a cord-like 
pattern reminiscent of the trabeculae of HCC. The cords 
are always separated by a connective tissue stroma 
rather than by sinusoids; canaliculi and bile are also 
absent (Figure 1D). Immunohistochemistry could be of 
aid in the differential diagnosis, as almost all CCA are 
diffusely positive for cytokeratin 7 and 19 (Figure 1E and 
1F, respectively), whereas only a few cases of HCC are 
positive. The hepatocyte antigen (Hep Par 1) is expressed 
by HCC but not by CCA.

As up to a quarter of patients undergo unnecessary 
surgical resection for suspected CCA-related strictures, 
which turn out have benign etiology[186], it is crucial 
to identify a highly sensitive test (beyond cytology or 
histology) that may reduce the number of unrequired 
surgeries. Assessment of polysomy by Fluorescent In Situ 
Hybridization (FISH) has shown the greatest accuracy in 
brush cytology specimens: some studies have found that 
the inclusion of the 9p21/p16 deletion in FISH analysis of 
indeterminate strictures increased the sensitivity of FISH-
polysomy for pancreatobiliary tract cancers from 58% to 
89% and from 70% to 76% [187-190]. The importance of 
sampling the biliary tree at multiple locations, regardless 
of the location of the dominant stricture, was demonstrated 
in a recent study that found that multifocal polysomy 
analysed from multiple sites carried a greater risk of CCA 
diagnosis than polysomy detected at a single location 
[191]. 

Kirsten rat sarcoma viral oncogene homolog (Kras) 
is a GTPase downstream of the EGFR receptor that 
activates proteins involved in cell growth and proliferation. 
The high specificity of Kras mutational analysis in biliary 
strictures can be useful, but the low sensitivity precludes it 
from diagnostic use as a unique biomarker. When used in 



Oncotarget14205www.impactjournals.com/oncotarget

combination with cytology, sensitivity increased to 100% 
[191].

Recently, the methylation status of 13 candidate 
genes was investigated in tissue samples and biliary brush 
samples of CCA and normal controls using quantitative 
methylation-specific PCR (polymerase chain reaction)
[192]. The Authors have defined a novel biomarker panel 
(CDO1, CNRIP1, SEPT9, and VIM) that accurately 
identifies malignancy in biliary brush and tissue samples 
from CCA patients. The cancer specificity was also 
retained among PSC cases, which are characterized by the 
presence of inflammatory biliary epithelium. Combining 
the biomarker panel with conventional brush cytology/ 
biopsies increased the sensitivity for CCA detection [191]. 
This promising biomarker panel, if validated in larger 
series, could be employed for the development of a routine 
molecular test for monitoring PSC patients at high risk for 
CCA development.

miRNAs expression profiles, detected by qRT-PCR 
(quantitative real time polymerase chain reaction) and/or 
ISH (In Situ Hybridization), might be valuable tools for 
the diagnosis of biliary tree carcinomas (Table 2) [193-
195].

Prognostic tissue markers

Although conventional clinicopathologic features 
including histologic grade, pathologic stage, clinical 
stage and lymph node metastasis have become prognostic 
factors for predicting the clinical outcome of cancer 
patients, they have proven to be frequently inadequate 
to predict either the progression or the biological 
behavior of cancers accurately. Hence, new prognostic 
biomarkers, including miRNAs [196-200], that could 
reflect the biological behavior of CCA are currently under 
investigation (Table 2). 

EGFR and KRAS mutations are not uncommon 
in biliary tract neoplasms. EGFR mutation detected 
on FFPE tissue samples of resected specimens for 
CCA was an independent prognostic parameter on 
multivariate analysis, along with tumor stage [201]. 
EGFR immunohistochemical overexpression on 
tumor tissue samples was significantly related to many 
clinicopathological features of CCA (macroscopic type, 
nodal metastases, lymphatic vessel invasion, perineural 
invasion and tumor stage) and was an independent 
prognostic factor related to decreased survival [202].

‘Cadherin switch’, a process in which cells shift to 
express different isoforms of the cadherin transmembrane 
protein and usually refers to a switch from the expression 
of E-cadherin to N-cadherin, is one aspect of EMT and 
can have a profound effect on tumour invasion/metastasis. 
Nitta et al. demonstrated that the expression of E-cadherin, 
N-cadherin and S100A4 was each an independent 
and a significant prognostic factor in extrahepatic 
cholangiocarcinoma (ECC) [203]. “Cadherin switch” 

also was independently associated with poor prognosis in 
patients with ECC [203].

Predictive tissue markers

Several growth factor tyrosine kinases are implicated 
in carcinogenesis and progression of CCAs. These include 
the ERBB family of receptor tyrosine kinases, fibroblast 
growth factor receptor (FGFR), and the hepatocyte growth 
factor (HGF) receptor, MET.

The ERBB family of receptor tyrosine kinases 
is comprised of four different receptors, ERBB1 or 
EGFR, ERBB2 or HER-2/neu, and ERBB3 and 4[204]. 
The EGFR activation leads to downstream activation of 
mitogen-activated protein kinase (MAPK), a well-known 
oncogenic signaling pathway. Over-expression of ERBB2, 
an EGFR family member, has been linked to biliary 
epithelial tumor formation in mice 43 and humans, with 
a reported prevalence of 3% [205]. Erlotinib, an EGFR 
inhibitor, has had limited success in human CCA clinical 
trials [206]: this may partly be due to an insufficient 
understanding of EGFR signaling in the molecular 
pathogenesis of CCA, and failure to select a patient 
population overexpressing EGFR. Indeed, the reported 
prevalence of EGFR mutations and amplification is only 
15% and 5%, respectively [206]. A recent molecular 
and genomic characterization of 104 surgically resected 
CCAs demonstrated significant upregulation of HER2 
signaling in tumors with the most malignant phenotype. 
The HER2 upregulation was associated with poor 
prognosis and frequent coactivation of ERBB3 and EGF 
[207]. Lapatinib, a dual inhibitor of EGFR and HER2, 
was significantly more effective in inhibition of CCA 
cell lines than trastuzumab, which selectively inhibits 
HER2 [207]. MET tyrosine kinase plays an integral 
role in carcinogenesis by promoting tumor invasion, 
protection from apoptosis, and angiogenesis; binding 
to HGF or scatter factor activates MET. HGF and MET 
expression is enhanced in CCAs, and is associated with 
activation of ERBB family members, especially ERBB2. 
An integrative genomic analysis of ICC identified 
a proliferation class of ICC that is characterized by 
activation of oncogenic signaling pathways such as 
MET [208]. MET amplification has been described in 
malignancies including gastric, esophageal, ovarian, and 
non-small cell lung cancer, and is associated with a poor 
clinical outcome [206]. MET amplification is also linked 
to resistance to EGFR and ERBB2 inhibitors and may 
predict sensitivity to MET inhibitors [206]. FGFR is a 
receptor tyrosine kinase involved in a myriad of biological 
processes including cell transformation, angiogenesis, 
and tissue repair [209]. Fusions of the FGFR gene have 
been reported in solid cancers. Recently, FGFR2- BICC1 
gene fusion was described in two cases of CCA by Wu 
et al [210]. A high prevalence (13.6%) of FGFR2 gene 
fusions was reported in a cohort of 102 CCA cases [209]. 
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In addition to detecting several cases with FGFR2-BICC1 
fusions, a single case of a novel FGFR gene fusion, 
FGFR2-AHCYL1, was also identified in this cohort. 
Overexpression of FGFR2-BICC1 is associated with 
enhanced cell proliferation and altered cell morphology. 
Based on mechanistic studies, Wu et al proposed that 
FGFR fusion partners mediate oligomerizations, which 
initiates activation of the respective FGFR kinase in 
tumors harboring these mutations [210]. Only cells 
harboring the FGFR gene fusions were sensitive to FGFR 
inhibitors [209, 210], indicating a role for targeted FGFR 
kinase inhibition in patients with tumors containing these 
gene fusions.

Binding of growth factors, such as HGF and FGF, 
to their respective receptor tyrosine kinases leads to 
activation of the PI3K cell-signaling pathway. Subsequent 
AKT activation leads to phosphorylation and activation 
of the mTOR pathway [211]. Deregulation of the PI3K-
AKT-mTOR pathway fosters tumor development, 
cell proliferation and survival, tumor invasion, and 
angiogenesis. PIK3CA mutations were identified in 5 of 94 
resected CCA specimens using MassARRAY technology 
[211]. Exome sequencing of 32 CCAs detected somatic 
mutations in several members of the PI3K pathway [212]. 
Various PI3K pathway inhibitors are under investigation 
in multiple clinical trials of human cancer [206]. A phase 
I trial of everolimus, an mTOR inhibitor, in combination 
with gemcitabine and cisplatin demonstrated promising 
clinical activity in patients with treatment refractory 
solid tumors, including CCA [206]. Mutations in KRAS 
have been frequently described in CCA, along with other 
mutations in NRAS, BRAF, and downstream MAPK 
effector pathways. The proliferation subclass reported by 
Sia et al was notable for MAPK pathway activation [207]. 
Strategies to therapeutically target tumors with KRAS 
mutations have focused on targeting downstream effector 
pathways of KRAS such as Raf/MEK/ERK and PI3K/
AKT. 

A gain-of-function mutation in isocitrate 
dehydrogenase 1 (IDH1), leading to inhibition of 
α-ketoglutarate, has been seen in 23% of ICC cases 
and a minority (0%-7%) of ECC tumors [213-215]. 
In-vivo studies have suggested that drugs mimicking 
α-ketoglutarate alone or in combination with inhibitors 
of mutant IDH1 can reverse the increased histone 
methylation [215]. Additionally, IDH enzymes are stable 
therapeutic targets because the mutation appears early in 
oncogenesis and is maintained throughout progression to 
high-grade lesions [214].

ICC and ECC display differences in growth patterns, 
symptoms, treatment response, and survival and may 
therefore benefit from different therapeutic strategies. 
Wiggers et al performed a systematic review of the 
literature and meta-analysis including 4458 CCA patients, 
to analyze differences in the immunohistochemical profile 
of these distinct tumors [216]. 18 markers showed a 

statistically significant difference in expression between 
ICC and ECC and among these, 3 biomarkers included 
potential targets of therapy: EGFR, c-erbB-2 and VEGF-A 
(vascular endothelial growth factor-A) [216].

Although surgical resection with post-surgical 
adjuvant therapy such as chemotherapy and radiation 
therapy are used in treatment of biliary tract carcinomas, 
including CCA, the current 5-year overall survival for 
patients only attain 15% or less [217]. MiRNAs could 
act as either oncogenes or tumor-suppressor genes to 
participate in the regulation of multiple cancer cells 
functions by means of altering the expression of target 
genes. Thus, miRNAs can be considered theranostic 
markers as well as new potential therapeutic agents for 
cancers [218-220]. 

SERUM MARKERS

Acquisition of tumor tissue for histology or 
biomarker testing can be difficult and requires more 
invasive procedures. A recent review by Viterbo et al well 
describe the actual scenario of diagnostic, prognostic and 
theranostic markers in CCA [221]. Table 4 summarizes the 
most important serum markers evaluated in CCA.

Diagnostic markers

The most frequently used serologic markers of 
CCA are CA19-9 and CEA. Sensitivity/specificity of 
CEA and CA 19-9 are 33%-84%/50%-87.8% and 38%-
93%/67%-98%, respectively [222-226]. Although CA 19-9 
may have a role in the diagnostic algorithm, especially 
in patients with primary sclerosing cholangitis (PSC) in 
the absence of concurrent cholangitis or pancreatitis, the 
low accuracy of the test limits its role in screening and 
early diagnosis. Thus, novel biomarkers with potential 
diagnostic utility are needed. In malignant epithelial cells, 
activated proteases release cytokeratin-19 fragments 
(CYFRA 21-1) into the bloodstream [227]. Several studies 
have shown elevated CYFRA 21-1 expression in CCA, 
but sensitivity varied depending on the cut-off value [222, 
227, 228]. The elevation of CYFRA 21-1 and matrix 
metalloproteinase-7 (MMP-7) in various malignancies 
reduce their specificity; preclude their use in clinical 
practice as diagnostic biomarkers. Thus, the solution can 
be represented by combinations of more serum markers 
to improve sensitivity without reducing specificity. 
Using CYFRA 21-1 and MMP-7 with CEA and CA19-
9 demonstrated the highest diagnostic accuracy of 93.9% 
[228]. Interleukin-6 (IL-6), a growth factor for bile duct 
epithelium [229], has a sensitivity as high as 100% in 
diagnosing CCA [230], but a low specificity, considering 
its elevated levels in hepatocellular carcinoma, benign 
biliary disease, and metastatic lesions, limiting its 
specificity [231]. Spermspecific protein 411 (SSP411) 
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is one such protein which is elevated in the bile of CCA 
patients and recently found to successfully distinguish 
CCA from choledocholithiasis as a single serum-based 
biomarker [232]. Several recent studies have evaluated the 
role of miRNAs in CCA. When miRNAs are dysregulated 
in cancers, they can be detected in blood in free form and 
can be used as potential diagnostic markers [233]. The 
utility of miRNAs lies in their tissue-specific patterns of 
expression. In particular, CCA-specific miRNA expression 
profiles has been identified (miR-125a, -31, and -95 are 
downregulated, while multiple miRNAs are upregulated 
as compared to nonmalignant cholangiocytes) [234, 235]. 
The most commonly overexpressed miRNA in CCA is 
miR-21[236-238], but its low specificity suggests that the 
most effective use of miRNAs is likely as multimarker 
panels specific for CCA. As for other cancers, CTCs in 
CCA were found to be prognostic of poor overall survival. 
Using a cut-off of 2 CTCs/7.5 mL of peripheral blood, 

the sensitivity of CTCs for CCA diagnosis is only 17%-
23% [239, 240]. Despite their poor diagnostic utility, 
CTCs are potentially useful in detection and monitoring 
treatment of metastatic spread in clinical practice. In 
a recent study, Janvilisri et al attempt to identify serum 
tumor markers for CCA that can effectively distinguish 
CCA from benign biliary tract diseases (BBTDs), using 
a proteomic approach. In addition to identifying several 
proteins previously known to be differentially expressed 
in CCA and BBTDs, they also discovered a number of 
molecules that were previously not associated with CCA, 
such as FAM19A5, MAGED4B, KIAA0321, RBAK, and 
UPF3B[241]. Further validation of these proteins has the 
potential to provide a biomarker for differentiating CCA 
from BBTDs.

Table 4: Serum markers in CCA

Markers Specificity Sensitivity Notes

Diagnostic markers

CA19-9 67%-98% 38%-93%

CEA 50%-87.8% 33%-84%

Interleukin-6 low 100%

CYFRA 21-1 and MMP-7 low Variable, depending 
on the cut-off value

Using CYFRA 21-1 and MMP-7 with CEA and CA19-9 
demonstrated the highest diagnostic accuracy of 93.9%[

SSP411
Elevated in the bile of CCA patients and recently found to 
successfully distinguish CCA from choledoco-lithiasis as a 
single serum-based biomarker

miRNA

CCA-specific miRNA expression profiles has been identified: 
miR-125a, -31, and -95 are downregulated, while multiple 
miRNAs are upregulated as compared to nonmalignant 
cholangiocytes. Low specificity of single mi-RNA 
suggests that the most effective use of miRNAs is likely as 
multimarker panels specific for CCA

CTC
17%-23%
(Using a cut-off of 
2 CTCs/7.5 mL of 
peripheral blood) 

More useful as  prognostic markers, correlating with poor 
overall survival

Prognostic markers

miRNA multi-marker 
panels

Correlation with overall survival and rate of metastasis

EGFR Over-expression of EGFR is prognostic of decreased overall 
survival

CYFRA 21-1 values above 2.7-3 ng/mL is prognostic of decreased overall 
survival

Theranostic markers

EGFR mutations 
In a phase II study of single agent erlotinib in patients with 
advanced biliary cancer, stable disease was reached in 17% 
of patients

Upregulation of vascular 
endothelial growth factor 
(VEGF) 

It is associated with an EGFR inhibitor-resistant phenotype. 
Vandetanib, a dual inhibitor of VEGF and EGFR, has shown 
prolonged time to metastasis in CCA tumors that harbor both 
mutations

KRas/BRAF mutations
Several studies suggest the potential application for targeted 
therapy with vemurafenib in this population, but not with 
EGFR-inhibitor

HER2 overexpression This 4%-5% of CCA may benefit from targeted anti-HER2 
therapy

Expression of miRNAs

The increased expression of miRNAs predicts a favorable 
response to gemcitabine treatment. Moreover, treatment of 
cholangiocytes with miR-494, which is down-regulated in 
CCA, induced cell-cycle arrest in tumor cells while sparing 
normal cells
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Prognostic markers

Recent studies have been successful in establishing 
miRNA signatures that can discriminate between CCA and 
normal tissue as well as provide prognostic clues [234, 
242]. As various miRNA expression patterns correlate with 
overall survival and rate of metastasis, the identification of 
accurate and predictive multi-marker panels can identify 
patients in need of more aggressive management earlier 
[221]. Over-expression of EGFR and CYFRA 21-1 values 
above 2.7-3 ng/mL [222, 228] were each prognostic of 
decreased overall survival [243, 244].

Theranostic markers

The term “theranostic” was coined to define ongoing 
efforts in clinics to develop more specific, individualized 
therapies for various diseases, and to combine diagnostic 
and therapeutic capabilities into a single marker. EGFR 
mutations can be unique to CCA [245] or identical to those 
in non-small cell lung cancer [246]. A phase II study of 
single agent erlotinib in patients with advanced biliary 
cancer, stable disease was reached in 17% of patients 
[247]. Upregulation of vascular endothelial growth factor 
(VEGF) is associated with an EGFR inhibitor-resistant 
phenotype [248, 249]. Vandetanib, a dual inhibitor of 
VEGF and EGFR, has shown prolonged time to metastasis 
in CCA tumors that harbor both mutations [250]. Kras is 
one of the most frequently mutated genes in CCA, while 
BRAF mutations have been identified in up to 22% of 
CCAs [251, 252]. Several studies suggest the potential 
application for targeted therapy with vemurafenib in this 
population, but not with EGFR-inhibitors [251, 253]. 
An on-going phase II “basket” study of vemurafenib in 
non-melanoma solid tumors harboring BRAF mutations 
demonstrated stable disease at 8 wk in 4/7 CCA patients, 
partial response in 2/7 at 24 wk and the remaining 1/7 with 
disease progression (clinical trial # NCT01524978). The 
small minority (4%-5%) of CCA cases that overexpress 
erythroblastosis oncogene B2 (ErbB2 or HER2) [254] 
may benefit from targeted anti-HER2 therapy [255]. 
The increased expression of some miRNAs predicts a 
favorable response to gemcitabine treatment [234, 256]. 
The potential of miRNAs lies not only in their theranostic 
utility, but also as therapeutic agents. Treatment of 
cholangiocytes with miR-494, which is down-regulated 
in CCA, induced cell-cycle arrest in tumor cells while 
sparing normal cells [257, 258]. 

CONCLUSIONS

Our review focused on CCA-specific tissue and 
serum biomarkers that may help in the early diagnosis 
of cancer or guide therapeutic decisions in the case of 
inoperable malignancy. A non-invasive serologic screening 

test with a high sensitivity or multi-marker panels could 
be very advantageous for patients and very useful in 
clinical practice. Despite the more invasive nature of 
tissue markers, high-risk patients would benefit from their 
high specificity. Further validations of novel biomarkers 
in degenerative/cancer liver disease [259] and multicenter 
international studies are needed.

Core Tip

HCC represents the sixth most common cancer 
worldwide and the second leading cause of cancer-related 
death. Despite the high incidence, treatment options 
for advanced HCC remain limited and unsuccessful, 
resulting in a poor prognosis. Despite the major advances 
achieved in the diagnosis of HCC, only one third of 
the newly diagnosed patients are presently eligible for 
curative treatments. Cholangiocarcinoma (CCA) is an 
aggressive malignancy, characterized by a poor prognosis. 
The identification of new biomarkers with diagnostic, 
prognostic or predictive value is especially important as 
resection (by surgery or combined with a liver transplant) 
has shown promising results and novel therapies are 
emerging. Improving our knowledge about serum and 
tissutal markers could ultimately lead to an early diagnosis 
and better and early treatment strategies for this deadly 
disease. In this review, we attempt to analyze the existing 
literature on this argument.
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cholangiocarcinoma; PSC - primary sclerosing 
cholangitis; FISH - fluorescent in situ hybridization; qRT-
PCR - quantitative real time polymerase chain reaction; 
FGF - fibroblast growth factor; HGF=hepatocyte growth 
factor; MAPK - mitogen-activated protein kinase; IDH1 
- isocitrate dehydrogenase 1; AFP - Alpha-fetoprotein; 
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AFU - a-l-fucosidase; BBTDs - benign biliary tract 
diseases; CA 19-9 - carbohydrate antigen 19-9; CEA - 
carcinoembryonic antigen; CgA - Chromogranin A; CLIP 
- Cancer of the liver Italian program; CTC - circulating 
tumoral cells; CYFRA 21-1 - cytokeratin-19 fragments; 
DCP - Des-γ-carboxy prothrombin; EGFR - Epidermal 
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