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ABSTRACT
Virally induced liver cancer usually evolves over long periods of time in the context 

of a strongly oxidative microenvironment, characterized by chronic liver inflammation 
and regeneration processes. They ultimately lead to oncogenic mutations in many 
cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, 
induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic 
transformation process in the liver. This review summarizes current knowledge on 
oxidative stress and oxidative stress responses induced by human hepatitis B and 
C viruses. It focuses on the molecular mechanisms by which these viruses activate 
cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) 
and control cellular redox homeostasis. The impact of an altered cellular redox 
homeostasis on the initiation and establishment of chronic viral infection, as well as 
on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed 
The review neither discusses reactive nitrogen species, although their metabolism is 
interferes with that of ROS, nor antioxidants as potential therapeutic remedies against 
viral infections, both subjects meriting an independent review.

INTRODUCTION

According to World Health Organization, non-
communicative diseases are responsible for almost 68% 
deaths worldwide, and various types of cancer comprise 
the second most significant group of diseases [1, 2]. The 
main contributors to human mortality are lung, stomach, 
colorectal, breast, and liver cancer. The GLOBOCAN 
data from International Agency for Research on Cancer 
(IARC) estimated 14.1 mln new cases of cancer and 8.2 
mln cancer-related deaths worldwide in 2012 [3, 4]. Death 
rates for all cancers combined among men and women 
of all major racial and ethnic groups and in most cancer 
sites are declining by 1.5% per year [5]. However, studies 
of the Centers for Disease Control and Prevention, the 
American Cancer Society, the National Cancer Institute, 

and the North American Association of Central Cancer 
Registries demonstrated that the incidence of liver cancer 
is increasing at a rapid rate of 2.3 percent per year (from 
2003 to 2012), and the rate of deaths due to liver cancer 
is growing faster than for any other type of cancer [5]. 
Liver cancer is the fifth most common cancer among men, 
the ninth most common among women, and the second 
most common cause of cancer death for men and women 
combined [3, 6]. In 2012 a number of new cases of liver 
cancer and deaths related to it were estimated as 782,500 
and 745,000, respectively [3, 4]. Hepatocellular carcinoma 
(HCC) is the most common (70-90%) histologic type of 
primary liver cancer [3]. The global age-standardized 
incident rate of hepatocellular carcinoma in men and 
women is 15.3 and 5.3 per 100,000, respectively thus 
forming a mean value of 10.1 per 100,000 general 
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population [7]. The age-standardized incidence of HCC is 
highest in East Asia and South Africa [7]. Indeed, almost 
half of hepatocellular carcinoma incidence and deaths are 
attributed to China [3, 4]. 

Various types of cancer are triggered by bacterial 
and viral infections. According to 2012 GLOBOCAN 
statistics, 2.2 mln out of 14.1 mln are attributable to 
infections [8]. Among them are chronic infections 
with hepatitis B and C viruses (HBV, HCV) that are 
well documented risk factors for HCC. Globally, both 
infections are reported to contribute to greater than ca. 
80% of HCC cases [5, 8, 9]. In developing countries they 
account for >90% of all HCC cases, whereas in developed 
countries - for 40% [7]. Comparing HCC incidence rates 
due to viral infections versus other etiologies revealed that 
an increase of HBV or HCV prevalence by 1% elevates by 
14% and 10%, respectively, the incidence of liver cancer 
[7]. HCC incidence has severely increased in Western 
Europe and Northern America, i.e. the regions that initially 
had low prevalence of this type of cancer. This increase is 
especially dramatic in the USA: between 1975 and 2011 
the population adjusted incidence rose more than three-
fold [3, 4]. In contrast, HCC incidence tends to decrease 
in regions with historically high rates such as China 
and Japan, probably due to reduction in HCV and HBV 
prevalence [3, 4]. The Global Burden of Disease Study 
2013 (GBD 2013) and HALE Collaborators described the 
input of liver cancer in life shortening and reduction of 
normal life as an index of disability-adjusted life-years 
(DALYs) [10]. DALYs were calculated as a sum of years 
of life lost due to premature mortality (YLLs) and years 
lived with disability (YLDs). DALYs for liver cancer 
increased by 9.2% from 2005 to 2013. Hepatitis B and C 
viruses accounted for 41% and 38% of all DALYs due to 
liver cancer. Moreover, DALYs due to HBV- and HCV-
induced liver cancer increased by 4.8% and 35.1% from 
2005 to 2013. These data depict the huge problem, which 
hepatitis B and C pose to our healthcare systems.

Both HBV and HCV establish chronic infection 
of the liver characterized by persistent inflammation 
that stimulates regenerative liver fibrosis and ultimately 
cirrhosis. At advanced stages of fibrosis, the risk of HCC 
incidence increases considerably. HCV RNA-positive 
patients have a higher risk of HCC and death from HCC 
than HCV RNA-negative patients [11-14]. Similarly, 
elevated HBV DNA levels, alanine aminotransferase 
(ALT) levels, and hepatitis B virus envelope antigen 
(HBeAg) status are among the most important 
determinants of risk of progression to cirrhosis, whereas 
HBV DNA levels (>2,000 IU/mL), HBeAg status, and 
cirrhosis are the key predictors of HCC incidence [15]. 
These facts suggest that chronic viral replication is a 
key element in hepatitis virus induced carcinogenicity. 
However, patients spontaneously clearing HCV infection 
remain at an elevated risk of developing HCC with a 
4.71-fold lower rate than chronic patients [11]. The latter 

indicates the carcinogenic potential of not only chronic, 
but also of a time-limited viral replication. With the 
arrival of direct acting antivirals for cure of hepatitis C, 
it is becoming clear that fibrosis and even cirrhosis are 
reversible. However, this is not the case in all patients, 
and raises the important question to what extent the pro-
carcinogenic actions induced by hepatitis viruses can 
persist upon viral elimination. Answers to these questions 
will be vital for the development of efficient treatment 
modalities and priorisation of patients for treatment access.

HCV and HBV driven hepatocarcinogenesis is 
multifactorial, but a key factor underlying the oncogenic 
effects of HCV and HBV, as well as single viral proteins, 
is their capacity to induce oxidative stress [16, 17]. Liver 
regeneration / fibrosis in the context of an oxidative and 
inflammatory microenvironment is likely the driving 
force. Here, we comprehensively review the molecular 
mechanisms by which hepatitis B and C viruses induce 
oxidative stress and trigger ROS sensitive signaling 
cascades and inflammatory processes that predispose to 
cancer.

REACTIVE OXYGEN SPECIES, THEIR 
GENERATION AND NEUTRALIZATION

Reactive oxygen species (ROS) are highly reactive 
oxygen intermediates that can modify various biological 
molecules, thus posing a threat to the living cell. ROS 
comprise superoxide anion (O2

•−), hydroxyl radical (HO•), 
singlet oxygen (1O2), hydrogen peroxide (H2O2) and other 
types of compounds/intermediates [18, 19]. They are 
formed in the cell during many physiological processes, 
such as mitochondrial oxidative phosphorylation, protein 
folding in the endoplasmic reticulum (ER), catabolism of 
various classes of endogenous molecules, such as lipids, 
biogenic polyamines and amino acids, or exogenously 
introduced substances such as drugs (Figure 1). 
Superoxide anion is mainly produced as a result of electron 
escape from the mitochondrial electron transport chain, 
transmembrane NADPH oxidases (NOX), cytochromes 
P450 (CYP), etc. Hydrogen peroxide is mainly formed as 
a stoichiometric by-product in the catabolic reactions, as 
well as in the formation of disulfide bonds during protein 
folding. Hydroxyl radical is produced in the Fenton 
reaction of decomposition of hydrogen peroxide in the 
presence of divalent iron cations:

Fe2+ + H2O2 → Fe3+ + HO• + HO−

or the Haber-Weiss reaction:
O2

•-+H2O2 → HO• + O2 + HO−

Different types of ROS have different stabilities 
and display different oxidizing capacities towards other 
molecules. The most reactive ROS is the hydroxyl 
radical HO•, characterized by a half-life of app 10-9 s 
[18]. Unlike superoxide and hydrogen peroxide, it is not 
eliminated by the enzymatic reaction, but only scavenged 
by antioxidants. If not scavenged, it reacts directly at the 
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production site, oxidizing biological molecules in the 
immediate vicinity. HO• induces formation of single and 
more complex damage in cellular DNA such as tandem 
lesions, intra- and interstrand cross-links, and DNA-
protein cross-links resulting from one radical hit; disrupt 
disulfide bonds in proteins, such as fibrinogen, resulting 
in their unfolding and scrambled refolding into abnormal 
spatial configurations, and causes lipid peroxidation [20, 
21]. Superoxide itself has relatively low oxidizing capacity 
due to its charge that restricts interaction with electron-
rich moieties. However it could either react with NO to 

form peroxynitrite or be protonated, and the resulting 
perhydrohyl radical to act as a strong prooxidant [22]. 
Finally, another ROS, H2O2, in contrast to O2

•− and HO•, 
is relatively stable (cellular half-life ~1 ms, steady-state 
levels ~10-7 M) [23]. Due to a selective reactivity and 
long half-life, H2O2 is cell permeable and diffuses away 
from the sites of its production, in contrast to O2

•− and 
other short-lived ROS that are restricted to a sub-cellular 
volume surrounding the site of their generation [23, 24]. 
Noteworthy, it is able to trigger cell-signaling cascades 
[25].

Figure 1: Cellular sources of reactive oxygen species in HCV-infected cells. The predominant forms of reactive oxygen species 
(ROS) in the cell are superoxide anion (O2

•−) and hydrogen peroxide (H2O2), but other forms exist (see text for more details). Major sources 
for O2

•− are the electron transport chain in mitochondria, transmembrane NADPH oxidases (Nox) or cytochromes P450 (CYP). Dismutation 
of O2

•− leads to the formation of H2O2. Other major sources of H2O2 are catabolic reactions or formation of disulfide bonds during protein 
folding involving enzymes such as endoplasmic reticulum oxidoreductin-1alpha (Ero1alpha). Key events in the cell that are associated with 
increases in ROS production are e.g. the unfolded protein response (UPR) at the ER, triggered directly by several HCV proteins such as 
the glycoproteins E1 and E2 as well as non-structural protein NS4B. Furthermore, in response to stress signals, Ca2+ is released from the 
ER and taken up by mitochondria via the mitochondrial calcium uniporter (MCU). Ca2+ uptake by MCU can also occur in the context of 
mitochondria associated membranes, points of contact between ER and mitochondria structurally formed by inositol triphosphate repector 
(IP3R) and Voltage dependent anion channel protein (VDAC). In the mitochondria, Ca levels directly impact the functioning of the electron 
transport chain and can increase ROS production.
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Eukaryotic cells have developed a special 
antioxidant defense system that counteracts the hazardous 
effects of ROS. The system is comprised of the low 
molecular weight antioxidants (including glutathione, 
α-tocopherol, vitamin C, etc.) [26] and several types 
of ROS-scavenging enzymes referred to as phase II 
enzymes [27]. Neutralization of O2

•− is achieved by SOD 
which converts it into H2O2 and inhibits the formation 
of clastogenic factors [28]. Mammalian cells encode 
three isoforms of this enzyme. Cu/Zn-SOD (SOD1) is 
expressed mainly in the cytoplasm and MnSOD (SOD2) 
is found in the mitochondrial matrix, whereas EC-SOD 
(SOD3) represents an extracellular enzyme. H2O2 is 
neutralized by several families of enzymes, including 
catalase (CAT), peroxiredoxins (Prdx) 1-6 [29], and 
glutathione peroxidases (GPx) 1-8 [30], represented by 
specific isoforms with different cellular localizations. 
Of these enzymes, GPx4 is unique in its ability to 
scavenge lipid peroxides. Peroxiredoxins and glutathione 

peroxidases catalyze the scavenging reaction extremely 
efficiently [22]. Low molecular weight compounds termed 
antioxidants can under certain circumstances scavenge 
ROS; however, the kinetics of these reactions is generally 
very slow and not decisive for the actual levels of ROS 
in the cell [31]. Due to this, the actual levels of ROS are 
not uniform throughout the cell; instead, they strongly 
depend on the levels of ROS-producing enzymes and the 
existence of scavenging enzyme in close proximity to the 
site of ROS generation [32].

Expression of a wide range of phase II enzymes, 
as well as of the enzymes involved in the biosynthesis 
of glutathione and its maintenance or recycling in a the 
reduced form, is controlled by NF-E2-related factor 2 
(Nrf2) [27]. The control is executed by Nrf2 binding to the 
common sequences within the promoters of the responsive 
genes, and the respective regions referred to as Antioxidant 
Response Elements (ARE) [27]. In the absence of 
the oxidative stress, Nrf2 is retained in the cytoplasm 

Figure 2: Key mechanisms driving fibrosis in chronic hepatitis C. The predominant sources of proinflammatory cytokines and 
chemokines in chronic viral hepatitis are generally infected hepatocytes, activated Kupffer cells or circulating leukocytes. These cells are 
stimulated by hepatitis viruses to produce cytokines in response to activation of cellular signaling cascades, virus-induced oxidative stress, 
apoptosis of infected cells or direct activation of innate and adaptive immunity. Amongst the predominant cytokines that are produced 
are tumor necrosis factor α (TNF-α), interleukines 1β (IL-1β), 6 (IL-6), 8 (IL-8), as well as lymphotoxin (LT). In addition to stimulation 
of inflammation, infected hepatocytes release several fibrogenic mediators including besides ROS, the phosphoprotein osteoponin and 
TGF-β1, all of which activate hepatic stellate cells or myofibroblasts, which in turn amplify cytokine secretion and start to produce and 
deposit extracellular matrix components. 
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by Keap1 protein. Elevation of ROS levels leads to 
phosphorylation of Nrf2, disruption of this interaction and 
subsequent translocation of the transcription factor to the 
nucleus.

Carcinogenesis is characterized by dysregulation of 
various ROS-producing and ROS-scavenging enzymes. 
Eventually all above mentioned ROS-producing 
enzymes were implicated in either direct promotion 
of tumor formation, or in activation of procarcinogens 
into carcinogens. It all may result in genomic instability 
and increased mutation rate. Activation of the defense 
pathways may lead to partial resistance towards cytotoxic 
effect of ROS thus allowing cells to survive the oxidative 
stress. Finally, Nrf2/ARE pathway may also contribute 
to metabolic adaptation of the transformed cell (such as 
glycolytic adaptation) and to anticancer drug resistance. 
Investigation of ROS production and ROS-scavenging 
processes in cells infected with HBV or HCV can shed 
light on actual mechanisms of carcinogenesis.

HEPATITIS C VIRUS

HCV biology

Worldwide, over 150 million people are chronic 
carriers of hepatitis C virus (HCV) [33]. In the majority 
(up to 80%) of acute hepatitis C cases, the virus cannot 
be cleared and develops into chronic hepatitis C (CHC), 
characterized by chronic liver inflammation and fibrosis 
[34] and an increased risk of the development of liver 
cirrhosis and hepatocellular carcinoma [35]. The disease 
is aggravated and accelerated by the metabolic alterations, 
such as insulin resistance, steatosis and iron overload [36]. 
Extrahepatic manifestations are also frequently observed 
in chronic HCV carriers including amongst others non-
Hodgkin lymphoma (NHL) (for example, see [11]) and in 
particular diffuse large cell NHL [37, 38] as well as mixed 
cryoglobulinemia [39, 40].

HCV belongs to the Flaviviridae family [35]. 
Its genome is constituted by a (+)-strand RNA of 
approximately 9.6 kb, with a single open reading frame 
flanked by 5’- and 3’-untranslated regions (UTRs). 
Translation of the genome and subsequent processing of 
the synthesized polypeptide chain results in the production 
of ten protein products. Three, nucleocapsid (core) and E1 
and E2 glycoproteins, are referred to as structural, and the 
rest - NS2 or p7 (forms ion channels), proteases NS2 and 
NS3, NS4A (protease cofactor), NS4B (transmembrane 
protein located in endoplasmic reticulum (ER)), NS5A 
(regulatory phosphoprotein) and NS5B (RNA-dependent 
RNA polymerase) - as nonstructural (NS). 

HCV is internalized by concordant action of a set 
of at least four cell receptors: CD81, SR-BI, claudin, 
and occludin. Internalization is followed by the clathrin-

dependent endocytosis [41]. Replication of the virus 
occurs on the ER outer membrane and ER-derived vesicles 
[35, 42]. Virions are produced as a result of genome 
encapsidation by core protein, with subsequent formation 
of the envelope from E1/E2 glycoproteins and lipids and 
lipoproteins of the host cell [43].

Oxidative stress in HCV-infected patients

It has been clearly established that hepatitis C is 
associated with strong oxidative stress. This was revealed 
in liver tissues and in blood serum/plasma samples of 
CHC patients using a variety of techniques, including 
direct measurement of ROS, quantification of DNA, lipid 
and protein oxidation products, as well as by assessing the 
total oxidant/antioxidant status or the levels of individual 
antioxidants. Screening of the liver biopsies of chronic 
HCV carriers revealed a two to five log elevation of the 
levels of oxygen radicals [44, 45], and stress markers 
such as 7,8-dihydro-8-oxoguanine (8-oxoG) [46], 
malondialdehyde (MDA) [47, 48] and 4-hydroxynonenal- 
(HNE)- and other protein adducts [49, 50]. Serum/plasma 
of such patients is characterized by the increased levels 
of a wide array of oxidative stress markers such as MDA 
[51-59], lipid peroxides [57], protein carbonyl content 
[51], oxysterols [60], and thioredoxin [61, 62]. A similar 
increase in 8-oxoG and lipid peroxidation products was 
observed in their peripheral blood mononuclear cells 
(PBMCs) [55, 63, 64], and of some markers, such as 
8-isoprostane, even in the urine [65]. Sera of CHC patients 
also exhibit an increased level of clastogenic factors 
[53, 54]. Due to this, DNA of leukocytes from chronic 
hepatitis C virus carriers contains up to 20 times more 
apurine/apyrimidine sites than DNA of healthy individuals 
[66]. Cells of CHC patients are also characterized by a 
decrease in the ratio between mitochondrial and nuclear 
DNA, which indicates an increased ROS production in 
mitochondria [67]. In most (though not all [68]), cases the 
levels of oxidative stress markers in patient sera/plasma 
strongly correlate with their hepatic levels and with the 
general redox status [47]. Furthermore, there is mounting 
evidence that HCV can also deregulate the damage 
response to single- and double-stranded DNA lesions [69]. 
Interestingly, an increase in the levels of single-stranded 
DNA damage has been observed by Higgs et al. in mice 
transgenic for the entire complement of HCV proteins 
[70]. The latter implies that DNA damage does not require 
viral replication/propagation, but can also be induced by 
the (cumulative) activity of viral proteins. 

Another feature of the oxidative stress in CHC 
patients is a decreased antioxidant capacity in liver and 
blood. Indeed, CHC patients often exhibit reduced total 
glutathione levels and an increased ratio between its 
oxidized (GSSG) and reduced (GSH) forms in liver [48] 
and blood or sera [64, 65], decreased levels of vitamins 
C and E [65], and total antioxidant status [50, 57, 64, 65, 
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71, 72]. These changes are more pronounced in genotype 
1b than in genotypes 2a, b and especially 3a [48], and can 
even be identified in the background of HIV-1 coinfection, 
which also induces a profound oxidative stress [59].

Markers of oxidative stress are typical to all forms 
of viral hepatitis C, acute, chronic, and as well as occult 
[66, 73]. Changes in ROS production and glutathione 
content are actually much stronger in the acute stage than 
in the chronic infection [73], while the redox dysregulation 
in the occult hepatitis C is milder than in “classical” CHC 
[66]. 

Sources of ROS in infected cells

At present, six viral proteins are known to induce 
and/or augment the production of ROS, namely HCV 
core [74-80], E1 [74], E2 [74, 81], NS3 [79, 82], NS4B 
[74, 83], and NS5A [74, 80, 84] (Figure 1). HCV core 
is believed to have the highest prooxidant capacity [74]. 
However, oxidative stress in response to HCV core is 
observed later than in response to NS5A protein, at least 
in the settings of protein overexpression in eukaryotic cells 
[80].

HCV triggers oxidative stress by simultaneous 
induction of several ROS-producing pathways and 
enzymes. They include Ca2+-mediated mitochondrial 
dysfunction, NOX1, 2 and 4, as well as cytochrome 
P450 2E1 (CYP2E1) and ER oxidoreductin 1α (Ero1α). 
These pathways are not fully independent; some are 
interregulated or have common mediators. The best 
studied mechanisms of ROS production induced by HCV 
involve mitochondrial dysfunctions triggered by HCV 
core and presumably also by several other viral proteins. A 
general trigger for the dysfunction is localization of HCV 
core on the mitochondrial outer membrane [85], or matrix 
binding to heat shock protein 60 (Hsp60) [86], which 
induces a release of calcium ions from their storage in the 
ER and their subsequent accumulation in mitochondria 
[76, 87]. Influx of Ca2+ into mitochondria occurs through 
calcium uniporter (MCU) [76], a transporter localized at 
the inner membrane of mitochondria [88, 89]. A detailed 
analysis shows that HCV core is localized at the surface 
of mitochondria, ER or lipid droplets [90], and also 
concentrated on the mitochondria-associated membranes 
(MAM) [91], which constitute the contact sites between 
mitochondria and ER [92]. MAMs are the sites where 
calcium ions can be directly translocated from ER to 
mitochondria [89]. They are formed through interaction 
of inositol 1,4,5-triphosphate receptor (IP3R) on the ER 
membrane with voltage-dependent anion channel (VDAC) 
on the outer membrane of mitochondria. The process is 
controlled by Ero1α, which binds to IP3R [93]. Ero1α-
dependent ER calcium leakage to mitochondria through 
MAMs is a critical event in the procaspase-mediated cell 
death; Ero1α silencing inhibits both calcium release from 
ER and cell death [94]. It was intriguing to find that HCV 

core can trigger a marked increase in the expression of 
Ero1α, whereas the inhibition of Ero1α induction was able 
to significantly abrogate the mitochondrial production of 
superoxide [95], defining the direct relation between the 
expression of HCV core and induction of apoptosis of the 
expressing cell.

Accumulation of calcium ions in mitochondria is 
believed to alter normal functioning of the respiratory 
chain. HCV core-expressing Huh7 cells and hepatocytes 
of mice transgenic for HCV core demonstrate a 
pronounced decrease in the activity of complex I [75, 
87]. This activity is completely restored in the presence 
of the inhibitors of IP3R and MCU, thus supporting the 
role of calcium ions in HCV core-induced oxidative stress. 
Additional effects could arise from the binding of HCV 
core to prohibitin [96], a chaperone that has multiple 
functions in mitochondria and can bind to complex IV and 
complex I [97]. The mechanism by which calcium ions 
can trigger ROS production in HCV-infected cells has 
not been deciphered. To our knowledge, it has not been 
shown that Ca2+ can directly bind to and inhibit complex 
I activity. Jekabstone et al. reported that complex I can 
be inhibited only by a combination of Ca2+ and NO that 
leads to generation of peroxynitrite [98]. We cannot rule 
out that HCV and its core protein exploit this mechanism 
to inhibit complex I activity since they are known 
to induce NO synthase with concomitant production 
of NO, at least in non-liver cells [99]. Nevertheless, 
other calcium-dependent ROS-producing enzymes in 
mitochondria should be considered such as α-ketoglutarate 
dehydrogenase (α-KGDH) and pyruvate dehydrogenase 
(PHD) that are located in mitochondrial matrix [100, 101]. 
These enzymes are known to produce hydrogen peroxide 
as well as superoxide. In case of PHD ROS production 
is associated with dihydrolipoamide dehydrogenase that 
is the key subunit of the complex [102]. Both PDH and 
α-KGDH are known to be stimulated by calcium ions at 
micromolar concentrations [103, 104]. However, these 
enzymes have never been evaluated as possible HCV-
induced sources of ROS. 

The primary event that might trigger both calcium 
efflux from the ER and subsequent oxidative stress is ER 
stress and subsequent unfolded protein response (UPR). 
HCV core [105], as well as E1/E2 glycoproteins [106] and 
NS4B protein [83, 107], induce UPR and calcium efflux 
from the ER. UPR is a cellular program that mediates 
induction of components of the protein-folding machinery, 
activation of ER-associated protein degradation (ERAD), 
and, if stress is not resolved, proapoptotic events [108, 
109]. The latter are induced by GADD153/CHOP protein 
that accumulates during UPR. In this context, it is 
noteworthy that the CHOP arm of the UPR enhances both 
Ero1α expression and IP3R activity [110].

There is considerable uncertainty about the 
interrelation of the altered calcium homeostasis and ROS 
production in the presence of NS5A protein. On one hand, 



Oncotarget3901www.impactjournals.com/oncotarget

a study by Gong et al. suggested that oxidative stress is 
induced by this protein through the efflux of calcium ions 
from ER causing mitochondrial dysfunction [84]. This 
efflux is due to passive leakage of the ions [111]. On the 
other hand, an independent study revealed that calcium 
alterations are not a cause but rather a consequence of the 
NS5A-induced oxidative stress [112]. In our hands [113] 
no decrease in ROS production was observed in NS5A-
expressing cells treated with the cell permeable calcium 
chelator BAPTA-AM or with an MCU inhibitor, drugs 
that stop the influx and prevent (according to Gong et. 
al. [84]) the mitochondrial dysfunction. This suggests an 
independence of the NS5A-associated ROS production of 
calcium ion influx which supports the findings of Dionisio 
et al. [112].

A second important mechanism of HCV-induced 
ROS production involves the induction of NADPH 
oxidases 1 and 4. This was demonstrated in patients with 
chronic viral hepatitis C, in vitro in cells productively 
replicating HCV or expressing genomic or subgenomic 
HCV replicons, or individual viral proteins such as 
HCV core [95, 114, 115]. Our recent data show that both 
HCV core and NS5A proteins induce the expression of 
NOX1 and NOX4 [95, 113]. Induction of these enzymes 
is due to accumulation of transforming growth factor β1 
(TGF-β1), which controls the transcription of both genes. 
In 2011, it was elegantly shown that the proinflammatory 
stimuli can lead to the induction of both NOX isoforms 
via the cascade TGFβ1→NOX1→COX2→NOX4, where 
COX2 is cyclooxygenase 2, an enzyme involved in the 
biosynthesis of prostaglandin E2 [116]. We have presented 
evidence of this regulation in cells expressing NS5A [113]. 
However, in HCV core-expressing cells, TGF-β1 induces 
an independent accumulation of NOX1 and NOX4 [74], 
which puts the cascade TGF-β1→NOX1→COX2→NOX4 
under question. Another counter-argument against is a 
difference in the kinetics of accumulation of NOX1 and 
NOX4 in HCV-infected cells: NOX1 is accumulated 
shortly after the infection, whereas a pronounced increase 
in the expression of NOX4 occurs only after two weeks 
[115].

NOX4 is localized to multiple organelles in the 
cell, including the ER and nucleus [115, 117]. In fact, 
in HCV-infected cells, the most pronounced increase in 
the levels of NOX4 is observed in the nucleus, which 
results in the production of ROS in a close proximity to 
the genomic DNA [115]. Its main product, unlike those 
of the other NOX/DUOX enzymes, is hydrogen peroxide 
[118]. However, we and others have clearly observed that 
inhibition of the HCV/HCV core-triggered induction of 
NOX4 results in a marked reduction of superoxide levels 
[95, 114, 115]. Furthermore, NOX4 was shown to be the 
primary NADPH-dependent superoxide producing enzyme 
in the hepatic nuclei and ER [117]. This discrepancy 
can be explained by different settings of the above 
experiments, namely, a different ratio between peroxide 

and superoxide produced by NOX4 in vitro when taken 
as a recombinant protein versus NOX4 in the context of 
the living cell. Hence, so far, the actual contribution of 
NOX4 into the production of various types of ROS in 
HCV-infected cells is unclear. 

The data on the ability of NS3 protein to trigger 
oxidative bursts are also scarce [79, 82]. In monocytes, 
cells that do not support HCV infection, NS3 causes 
elevation of calcium levels in the cytoplasm, leading to the 
activation of the phagocytic NADPH oxidase (NOX2) and 
massive production of superoxide anions [82]. The role of 
NS3 in triggering ROS production in hepatocytes remains 
controversial: elevation of ROS levels was observed by 
Pal et al. [79], whereas in our hands, NS3-expressing 
Huh7 cells demonstrated no signs of oxidative stress [74].

Data on the possible role of other ROS-producing 
enzymes in mediating HCV-induced oxidative stress 
are scarce and mostly restricted to CYP2E1. This 
enzyme is localized on the ER and, to some extent, on 
the mitochondrial membranes, where it participates 
in catabolism of both endogenous and exogenous 
compounds, with the concomitant production of both 
superoxide and hydrogen peroxide [119-121]. CYP2E1 
mediates a minor pathway of ethanol catabolism in healthy 
individuals; however, its expression is enhanced in patients 
with heavy alcohol consumption, in whom this pathway 
turns into the major route of ethanol detoxification, 
significantly contributing to the liver pathology [121]. 
Importantly, CYP2E1 expression is markedly enhanced 
in CHC patients with mild fibrosis [122]. In vitro, in 
Huh7 cells the co-overexpression of CYP2E1 and HCV 
core results in much stronger ROS production than in 
the cells overexpressing only one of these proteins [123]. 
Furthermore, we have shown that induction of CYP2E1 
expression by HCV core and NS5A proteins results in a 
significant elevation of the levels of ROS [95, 113].

Additional input into ROS production during HCV 
infection can come from the unfolded protein response 
induced by the virus. In biopsies from CHC patients the 
areas which exhibited strong induction of oxidative stress 
also demonstrated signs of a pronounced UPR [124]. As 
discussed above, several HCV proteins activate UPR, 
resulting in an increased expression of the components of 
the protein-folding machinery. One of them is Ero1α, an 
enzyme that produces H2O2 [125, 126]. We have revealed 
that HCV core, but not NS5A, induces Ero1α expression, 
whereas the down-regulation of Ero1α expression using 
siRNAs leads to a decrease in hydrogen peroxide levels 
[95, 113]. Current concepts in the redox field claim that 
all peroxide in the ER lumen is effectively scavenged by 
peroxiredoxin 4 and glutathione peroxidases 7 and 8 [127, 
128], and the effects of Ero1α reflect a dysregulation of 
calcium signaling. However, the ROS decrease due to 
Ero1α knock down may also reflect a direct suppression 
of H2O2 production by this enzyme. Certain mutations 
in Ero1α were shown to influence H2O2 production, ER 
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oxidation, and cell toxicity [129], allowing to speculate 
that there may be other factors, like protein-protein 
interactions capable of blocking the process of Ero1α-
directed H2O2 production/detoxification, which may be 
triggered by HCV proteins.

Different genotypes of HCV exhibit different 
abilities to induce oxidative stress [130]. Pro-oxidant 
activity decreases in the following sequence: 1a/b>4>2a/
c>2b>3a. Considering the strong input of viral proteins 
into the oxidative stress per se, it is tempting to interpret 
this sequence as a reflection of the difference in (total) 
ROS induction in response to the combined activities of 
individual genotype-specific viral proteins. 

HCV and antioxidant defense pathways

HCV infection induces oxidative stress and 
simultaneously activates the antioxidant defense system. 
The oxidative stress response system is comprised of 
various enzymes capable of direct scavenging of ROS 
(phase II enzymes) and of the enzymes that are responsible 
for the biosynthesis and recycling of oxidized glutathione 
and other antioxidants. A considerable number of genes 
encoding these enzymes are controlled by the transcription 
factor Nrf2 [27]. Multiple evidence demonstrates that 
HCV strongly modifies the status and regulation along the 
Nrf2/ARE axis. A study by Carvajal-Yepes et al. reported 
suppression of this pathway by the full-length HCV or by 
a combination of the nonstructural proteins together with 
HCV core [131]. This block of the defense pathway was 
due tNS3-mediated sequestration of small Maf protein, 
which normally forms a heterodimer with Nrf2, and thus 
retains the latter outside the nucleus. However, other 
groups presented evidence for activation of the Nrf2/
ARE pathway using the productively replicating in vitro 
HCVcc system, and CHC patient liver biopsies [132, 
133]. Our group has shown that this activation is exerted 
by five viral proteins: core, NS5A, NS4B, E1, and E2 
[74]. Amongst these three latter reports which observed 
an activation of the Nrf2/ARE axis by HCV, the only 
discrepancies relate to the protein kinase(s) responsible 
for the activation of Nrf2/ARE pathway: Burdette et al. 
assigned Nrf2 phosphorylation to mitogen-activated 
protein kinases [132], whereas our study showed that Nrf2 
is phosphorylated by protein kinase C (PKC) in response 
to ROS, and by casein kinase 2 and phosphoinositide-3-
kinase (PI3K) in a ROS-independent manner [74]. Jiang 
et al. specified that Nrf2/ARE activation was promoted by 
an inhibitory phosphorylation of glycogen synthase kinase 
3β (GSK3β) [133]

Discrepant data on the status of the Nrf2/ARE 
pathway in HCV infection cannot be resolved by a sole 
consideration of the levels of proteins encoded by the 
Nrf2-dependent genes. For example, data were presented 
on the elevated levels of heme oxygenase 1 (HO-1) both in 
the infected cells and in the livers of chronic HCV carriers 

[134-137]. Three other groups presented a contradictory 
set of data showing an efficient down-regulation of HO-1 
expression in the liver biopsies of CHC patients, cells 
expressing HCV proteins or harboring its subgenomic 
replicon [138-142]. A large set of transcriptomic and 
proteomic data based on HCV infected cells and liver 
tissues has been published but still does not clarify the 
issue. On one hand, human hepatocytes overexpressing 
the HCV polypeptide exhibit higher levels of expression 
of several Nrf2-dependent genes such as microsomal 
glutathione-S-transferase 3 (MGST3) or metallothionein 
1F [143]. We also observed the transcriptional and 
translational up-regulation of the expression of HO-1 and 
NAD(P)H:quinoneoxidoreductase 1 (Nqo1) in Huh7 cells 
overexpressing HCV core and NS5A proteins as well as 
their truncated variants [144]. Similarly, it has been shown 
that HCV infection leads to an enhanced expression of 
two classical Nrf2 target genes [27]: glutathione reductase 
(in vitro) and glutathione synthase (in vivo) [145]. On 
the other hand, for the acute infection in a cell culture 
system Blackam et al. as well as Walters et al. reported 
a down-regulation of a wide spectrum of antioxidant 
defense proteins such as catalase, Nqo1, and glutathione-
metabolizing enzymes [146, 147].

The exact mechanisms underlying these 
discrepancies remain to be elucidated, but it is tempting 
to speculate that the activation status of the Nrf2/ARE 
pathway during HCV infection may depend on the level 
of active TGF-β1 in the particular patient or system. 
Indeed, recent data have shown that exogenous TGF-β1 
prevents activation of Nrf2 [133]. Chronic hepatitis C is 
accompanied by elevation of the levels of this cytokine 
in blood (serum) of the patients [148, 149]. The highest 
TGF-β1 levels are detected in patients with cirrhosis 
[150]. At the same time, standard therapy with interferon 
and ribavirin, as well as treatment with anti-fibrotic drugs, 
lead to a significant decrease in the TGF-β1 levels [151, 
152]. Given the interdependence of the activation status 
of Nrf2/ARE pathway on the level of active TGF-β1, 
the huge variability of TGF-β1 levels in the patient 
cohorts involved in the above-mentioned studies may 
explain the contradictory observations regarding Nrf2/
ARE-signaling. Another more mechanistic explanation 
is that the level of oxidative stress is bi-phasic: at low/
moderate concentrations, ROS act as second messengers 
and trigger intracellular signaling cascades to switch on 
the antioxidant defense. When the level of ROS exceeds 
the capacity of the defense mechanisms, ROS start to 
irreversibly damage biomolecules and consequently 
inhibit the expression of antioxidant genes, activity of 
the phase II enzymes, etc., thus ultimately triggering cell 
death. Differential Nrf2/ARE-signaling would then result 
from differences in the intensity and duration of oxidative 
stress in the described cohorts.

The antioxidant defense system also comprises 
glutathione peroxidases, peroxiredoxins, superoxide 
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dismutases, catalase and other proteins. The nonstructural 
proteins of HCV down-regulate expression of SOD1 and 
SOD2 and induce catalase, whereas HCV core enhances 
the expression of SOD2 [153]. Increased levels of sod2 
mRNA are also observed in the HCVcc system [145], 
although no significant changes were reported in the 
catalase or dismutases levels in CHC patient livers [138]. 
HCV infection also increases the expression levels of 
GPx1 and GPx4 [145], implicated in protection against 
lipid peroxides. In addition, HCV NS3/4A protease was 
recently shown to cleave GPx8 [154]. This enzyme 
scavenges hydrogen peroxide produced in the ER by 
Ero1α (see above) [95, 128]). Interestingly, NS3/4A 
cleaves a small cytoplasmic tip of GPx8 molecule, 
however, this appears not to affect its enzymatic activity 
[154].

Roles of ROS in the HCV life cycle

Reactive oxygen species influence various stages of 
the virus life cycle. Exogenous hydrogen peroxide inhibits 
HCV replication, and this effect is calcium dependent 
[155, 156]. The exact mechanisms of this effect remain 
unknown but it is already clear that they are not related 
to the stability of HCV genomic RNA. A similar calcium-
mediated effect was recently observed for endogenous 
production of ROS as a result of the ER overload response 
in the HCV-infected cells [157]. Knock-down of GPx1 
and GPx8, as well as of SOD1 or SOD2, in the infected 
cells had no significant impact on HCV replication [145, 
154]. Another effect that ROS appear to have on HCV is 
an increase in HCV genome heterogeneity, which may 
contribute to the evolutional survival of the virus by 
ensuring viral escape from the immune system (during 
establishment of infection as well as during treatment) 
[158, 159]. Indeed, patients with a null genotype of 
glutathione-S-transferases, namely gstt1 and gstm1, 
are characterized by decreased rates of the spontaneous 
resolution of acute HCV infection [160]. 

There may possibly be a direct link between 
the HCV core-induced oxidative stress and virion 
production. Formation and release of viral particles 
depend on the accumulation of lipid droplet (LDs). Core 
protein is known to localize to the surface of LDs and 
to induce morphological changes to LDs. HCV is also 
known to alter cell metabolism towards increased lipid 
biosynthesis and trafficking, decreased lipolysis and 
stabilization of LDs [161]. Attachment of HCV core to 
a phospholipid layer template depends on the presence 
of the hydrophobic domain at aa 117-169, which directs 
the formation/reconstitution of the nucleocapsid particles 
(while HCV core aa 1-117 is soluble and monodispersed) 
[162]. Studies of the C-terminally truncated HCV core 
variants demonstrated that variants lacking 39 to 42 
C-terminal amino acids can neither associate to lipids/
lipoproteins/LDs, nor form multimers, and cannot be 

secreted into the cell culture medium [162-164]. At the 
same time, structural studies in cells expressing core 
variant-GFP chimeras demonstrated that the core domain 
dubbed D2, when fused to GFP, is sufficient to induce the 
accumulation of large LDs containing the chimeric core 
proteins [165]. It is hardly surprising that the productive 
infection by HCV, i.e. the release of viral particles, is 
exquisitely predetermined by the presence of the D2 core 
domain [166]. At the same time, HCV core C-terminus 
carries the motive responsible for the protein association 
with mitochondria. Interaction of this domain of HCV core 
with mitochondria increases Ca2+ entry and subsequently 
elevates generation of ROS by mitochondrial electron 
transport complex I [167]. These two motives/domains 
appear to overlap; a sub-domain of D2 at aa 144-165 is 
involved in both the formation of LDs and mitochondrial 
association. In this context, it is important to mention that 
both the disruption of mitochondria and oxidative stress 
significantly augment lipogenesis and LD formation [168, 
169]. Thus, one and the same domain of HCV core appears 
to mediate the induction of oxidative stress via binding 
to mitochondria, and the stimulation of lipid biosynthesis 
via enhancement of oxidative stress. The accumulation 
of lipids into the lipid droplets is vitally important, as 
it favors HCV assembly. Thus, HCV appears to exploit 
oxidative stress and mitochondrial injury to ensure its own 
propagation.

At the same time, an excessive oxidative stress may 
hamper viral viability. Down-regulation of GPx4 [145], 
an enzyme that offers protection from the accumulation of 
lipid peroxides, induces a moderate suppression of HCV 
replication and strong suppression of virion infectivity 
[170]. Similarly, the down-regulation of GPx8 by RNA 
interference impairs virus particle assembly [154]. 
Moreover, a SEC14L2 protein, also known as tocopherol-
binding protein 1, was recently identified as the cellular 
factor crucial for pan-genotype HCV replication in the 
hepatocytes [171]. Its effect was attributed to enhanced 
uptake and activity of vitamin E [171], one of two 
bona fide antioxidants [26] that, like GPx4, protect 
lipids from the peroxidation. Saeed et al. showed that 
SEC14L2 ensured protection of HCV replication from 
lipid peroxidation, since the effect of the protein was 
observed even in cells harboring subgenomic replicons of 
the virus [171]. In our previous review we hypothesized 
that oxidative stress leads to the accumulation of lipid 
peroxides that might be incorporated into virus particles 
and prevent the effective binding of “oxidized” virions to 
low density lipoprotein receptors, which would hamper 
the initial state of HCV entry [17]. Indeed, we have lately 
shown that HCV virus particles produced from cells 
with suppressed GPx4 levels have lower infectivity and 
fusion activity, and that both effects could be prevented by 
tocopherol [145]. Thus, lipid peroxides inhibit two steps of 
the HCV life cycle: replication and production of infective 
virions.
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Reactive oxygen species may also promote the 
translation of the HCV genome [172, 173]. This effect 
is mediated through the induction of UPR, particularly 
the activation of its PERK branch [172]. PERK 
phosphorylates eukaryotic initiation factor 2α (eIF2α), 
leading to the suppression of cap-dependent translation 
and often switching ribosomes to cap-independent 
translation, which might account for the observed effects 
[108, 174]. However, contrary observations have also been 
reported [156].

Finally, ROS may suppress HCV replication 
through modulation of the Nrf2/ARE pathway. A recent 
study of Yu et al. revealed that induction a classical Nrf2-
dependent gene, HO-1, down-regulated HCV replication 
through induction of interferon α and inhibition of NS3 
protease activity by bilirubin, HO-1 product [142].

Roles of ROS in HCV-associated pathology

Markers of oxidative stress during chronic hepatitis C 
correlate with liver damage

Hepatitis C virus-induced oxidative stress 
contributes to the development of various virus-associated 
pathologies. This is supported by correlations between 
the stress markers and the incidence and/or severity 
of HCV-related (co)morbidities. Levels of oxygen 
radicals, as quantified by EPR, correlate with histological 
disease activity [45]. For example, serum MDA or urine 
8-isoprostane levels correlate with the stage of fibrosis 
[53, 54, 65]. Various oxidative stress markers positively 
correlate with the levels of alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST), indicative of 
liver damage [47]. Moreover, an increase in these markers 
in patients with persistently normal aminotransferases 
predicts a subsequent increase in ALT and AST activities. 
Positive correlations were revealed between the dROM 
index (i.e. total prooxidant activity) of the sera and the 
fibrosis score [71]. Oxidative DNA modifications also 
serve as markers for liver necroinflammatory activity and 
tissue damage [46, 53, 54, 63]. Accordingly, an inverse 
correlation exists between the liver damage and the extent 
of intrahepatic Nrf2 activation [133]. Recently a study 
of Huang et al. showed that a co-infection with HIV 
enhances liver abnormalities visualized by ultrasonic study 
[59]. Interestingly, in these co-infected patients ALS/AST 
levels correlated with such marker of oxidative stress as 
the level of GSSG.
Production of proinflammatory cytokines during HCV 
infection is triggered by ROS

Chronic hepatitis C is characterized by persistent 
liver inflammation [34]. This is manifested by the 
enhanced production of proinflammatory cytokines 
and chemokines, including tumor necrosis factor α 
(TNF-α), interleukins 1β (IL-1β), 6 (IL-6), 8 (IL-8), as 
well as lymphotoxin (LT) (Figure 2). Their production 

is attributed to liver Kuppfer cells and to circulating 
leukocytes [175], triggered by the apoptotic death of 
infected hepatocytes [176]. HCV can also facilitate IL-1b 
production in macrophages through production of ROS by 
NADPH oxidases [177]. Production of these cytokines can 
also occur in infected hepatocytes. Indeed, HCV-infected 
Huh7.5 cells demonstrated markedly enhanced levels of 
LT-α and -β, TNF-α and IL-8 [178]. The expression of 
TNF-α and IL-8 can be directly attributed to the effect of 
ROS, as their genes are controlled by the ROS-sensitive 
NF-κB pathway [179]. This is in line with observations 
that show activation of NF-κB and STAT3 by HCV 
core, NS4B and NS5A proteins through enhanced ROS 
production and altered Ca2+ homeostasis [84, 157, 180]. 
Accordingly, levels of the antioxidants in the liver are 
higher in patients with mild compared to moderate-to-
severe inflammation and fibrosis [56].
ROS promote liver fibrosis

Liver fibrosis is another pathology strongly 
associated with chronic hepatitis C. Fibrosis represents 
an excessive production of the extracellular matrix 
(proteoglycans, collagen, etc.) by myofibroblasts [181]. 
Its mechanisms have been intensively studied in many 
laboratories, however, the origins of the extracellular 
matrix-overproducing myofibroblasts in different diseases 
are still disputed. It has been proposed that myofibroblasts 
can originate from the hepatic stellate cells (HSCs), 
portal fibroblasts, or even hepatocytes during epithelial-
mesenchymal transition. Although conversion of 
hepatocytes into myofibroblasts was shown in vitro by 
several groups (for example, [182]), such event is unlikely 
to occur in vivo [183]. Data supporting the conversion of 
hepatocytes into myofibroblasts are scarce, even in animal 
models of fibrogenesis [184]. The current concepts imply 
that myofibroblasts in CHC originate from activation of 
HSCs [181]. 

The processes of HSC activation and proliferation 
are triggered by several cytokines: transforming growth 
factor β1 (TGF-β1), platelet-derived growth factor 
(PDGF) and connective tissue growth factor (CTGF) 
[185, 186] (Figure 2). In CHC, levels of TGF-β1 are 
elevated in serum and liver, and correlate with the fibrosis 
score [187, 188]. TGF-β1 is produced by several types 
of cell, including Kupffer cells and hepatocytes [189]. 
Its expression/secretion in the infected hepatocytes is 
promoted by core, NS3/4A, NS4B, and NS5A proteins 
through ROS- and calcium-dependent mechanisms [178]. 
Furthermore, the processing of TGF-β1 polypeptide 
depends on the uptake of calcium ions by mitochondria, 
and is thus ROS-dependent [178]. In a hepatocyte-HSC 
co-culture model, ROS-dependent increase in TGF-β1 
production triggers activation of stellate cells and 
production of extracellular matrix.

Another mediator of fibrogenesis in CHC is 
osteoponin, a phosphoprotein, the level of which gradually 
increases with the progression of fibrosis [190-192]. As in 
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the case of TGF-β1, the level of osteoponin in the HCV-
infected hepatocytes increases with the increased levels of 
ROS production and altered calcium homeostasis [193]. 
Besides activating HSCs, osteoponin suppresses the 
expression of matrix metalloproteinase 13, shutting down 
the removal of extracellular matrix and forbidding fibrosis 
resolution [194].

Activation of the hepatic stellate cells can be 
triggered not only by cytokines, but also by the uptake 
of apoptotic bodies from HCV-infected hepatocytes [195]. 
HSCs activation is also promoted by the extracellular 
HCV core protein [196] as well as by the expression of 
E1 glycoprotein on/in the stellate cells [81], although the 
physiological relevance of these mechanisms remains 
obscure. Production of ROS in hepatocytes via CYP2E1 
is essential for the activation and proliferation of HSCs 
[197]. Both HCV core and NS5A proteins induce CYP2E1 
[95, 113], indicating that this mechanism may also 
contribute to HCV-induced fibrogenesis. 

Hepatocellular carcinoma. HCV-induced oxidative 
stress contributes to the development of hepatocellular 
carcinoma. Moreover, levels of oxidative stress markers 
in CHC patients correlate positively with the probability 
of development of HCC [198] and can serve as prognostic 
markers for HCC recurrence in chronic hepatitis C patients 
who underwent liver transplantation [199]. Carcinogenesis 
is orchestrated by multiple ROS-mediated processes. 

Firstly, the increased ROS production, in particular in the 
nucleus, leads to DNA damage, accumulation of mutations 
and to genetic instability [200]. Elevated levels of such 
oxidative stress markers as 8-oxoG or thioredoxin are 
often found in CHC patients who develop liver cancer 
[201-205]. Moreover, levels of 8-oxoG increase with 
the progression of liver disease. Furthermore, patients 
with advanced stages of disease exhibit shortening of 
telomeres and elevated levels of telomerase due to the 
methylation of its promoter [205]. HCV can also suppress 
excision of oxidized nucleobases from DNA by down-
regulation of expression of Nei (endonuclease VIII)-like 
protein 1 (NAIL1) [79], an enzyme that catalyzes this 
reaction [206]. The virus thus blocks the damage response 
to DNA lesions [206], though no changes were reported 
for the expression of other glycosylases performing base 
excision and reparation, such as Nei (endonuclease VIII)-
like protein 2 (NAIL2) or oxoguanine DNA glycosylase 
(OGG1) [79].

Secondly, in some cells the oxidative stress, instead 
of inducing apoptosis, switches on the pro-survival 
programs, including the Nrf2/ARE pathway, which 
overcome cell cycle arrest, mitophagy and metabolic 
reprogramming (Figure 3). Activation of Nrf2 transcription 
factor basically leads to the partial scavenging of ROS, 
thus preventing their accumulation to lethal doses [132]. 
Cell cycle progression during enhanced ROS production 

Figure 3: Role of oxidative stress in HCV-induced hepatocarcinogenesis. Carcinogenesis is orchestrated by a combination of 
HCV as well as ROS-mediated processes. Increased ROS levels directly cause increased genetic mutations. However, if ROS levels as 
well as other stress signals are not high enough to induce apoptosis, pro-survival and repair programs, including the Nrf2/ARE pathway are 
activated, which in turn overcome cell cycle arrest, induce mitophagy and reprogram metabolism. See text for more details.
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is achieved through activation of β-catenin, leading to 
enhanced expression of c-Myc transcription factor as well 
as of cyclin D1 and other molecules [70]. Increased ROS 
production also leads to the up-regulation of expression 
of 24-dehydrocholesterol reductase (DHCR24), disrupting 
binding of p53 to Mdm2, thus preventing apoptosis [207]. 
HCV also counteracts apoptosis through the activation of 
peroxisome proliferator-activated protein α (PPARα) [208] 
and through suppression by NS5A protein of the potassium 
ion channel Kv2.1 [209]. It is noteworthy that both 
events involve reactive oxygen species as mediators. In 
addition, ROS suppress the expression of p14 protein that 
is implicated in induction of the proapoptotic p53-Mdm2 
pathway [210]. Additional input into the survival of HCV-
infected cells under chronic mitochondrial dysfunction 
comes from the induction of mitophagy, an event of 
autophagosomal removal of damaged mitochondria [211].

Thirdly, HCV/HCV proteins interfere with the 
activity of the cyclin-dependent kinase inhibitor p21/Cip1/
WAF1, a crucial protein in the regulation of cell cycle 
arrest, DNA replication and repair, cell differentiation, 
senescence, and apoptosis [212-214]. It is up-regulated 
in response to oxidative stress, promoting cell survival 
[214]. The p53-p21 axis appears to delegate the pro-
survival duties to the Keap1-Nrf2 stress pathway [215, 
216]. The level of Nrf2 was shown to be upregulated 
through a direct binding of Nrf2 to p21 [215, 216]. P21 
competes with Keap1 for Nrf2 binding, thus inhibiting 
Keap1-dependent Nrf2 ubiquitination, resulting in the 
stabilization of Nrf2 protein. Nrf2 is essential for the 
antioxidant effect of p21: the ectopic expression of p21 
enhances cell survival in response to H2O2 in MEF-Nrf2+/+ 
but not in MEF-Nrf2-/- cells [217]. The p21-mediated 
activation of the Nrf2 signaling pathway was suggested 
to be the initial defense mechanism for reducing ROS 
to protect cells from oxidative damage under low stress 
conditions [214, 218]. At a moderate level of oxidative 
stress involving DNA damage, p21-mediated cell cycle 
arrest would be activated to allow time for DNA repair. 
At high levels of oxidative stress, as the point of no 
return, p21-mediated apoptosis would be induced. The 
latter requires accumulation of ROS, and is induced by 
the CDK-binding domain of p21/Waf1 [219] and the 
suppression of the Nrf2 antioxidant response pathway, 
detectable as a decrease in Nrf2 protein levels at the high 
levels of oxidative stress [217]. However, HCV/HCV 
proteins interfere with the p21 activities and subsequent 
regulation of cell cycle activity. Specifically, HCV core 
forms a complex with p21/Waf1 protein and induces 
a marked post-transcriptional reduction of p21/Waf1 
expression [220, 221]. Interestingly, HCV core-induced 
inhibition of the expression of p21/Waf1 is abrogated by 
deletion of the C-terminus of HCV core [92], which is also 
involved in NF-κB-dependent apoptotic cell death [222] 
and induction of the expression of CYP2E1 [95]. NS5A 
is also implicated in the down-regulation of the p21/Waf1 

promoter activity [223]. Both effects of HCV proteins 
on the expression of p21/Waf1 make the Nrf2-depedent 
stress response less sensitive to p21-regulation. According 
to Villeneuve et al., this would interfere with cell survival 
under low to moderate stress, but ensure continuous cell 
proliferation under severe stress [217]. Indeed, in mice, 
depletion of p21 leads to a continuous proliferation of 
severely injured hepatocytes and rapid tumor development 
[91]. In lines with this, p21/Waf1 expression levels in 
the cancerous tissues appear to be significantly reduced 
compared to those in the noncancerous tissues [224, 225]. 
Furthermore, the histological negativity for p21/Waf1 
serves as a negative prognostic factor for the survival 
of patients with HCC after resection [226], although a 
contrary finding has also been reported [227].

Fourthly, carcinogenesis in chronic hepatitis C is 
associated with long-lasting inflammation, specifically 
associated with lymphotoxin (LT) signaling [228, 229]. 
LT production is not triggered by ROS: it is induced by 
HCV RNA-dependent RNA polymerase [229] that does 
not affect cellular redox status [74]. However, site-specific 
oxidation of methionine residues impairs the bioactivity of 
LT and prevents its binding to the TNF receptors 1 and 2 
[230]. The latter leads to dysregulation of ligand-induced 
signaling with respect to the activation of “protective” 
proteins such as SOD2 against “killing” proteins such 
as proteases [231], eventually resulting in the aberrant 
induction of apoptosis. However, one should keep in 
mind that liver tumors can develop even in the absence of 
signs of hepatic inflammation, as was exemplified by the 
experiments with HCV core-transgenic mice [208, 232].

Last but not the least, despite a lack of systematic 
evaluation of HCV’s influence on the carbohydrate 
metabolism, evidence is accumulating of a metabolic 
adaptation of chronically infected cells to oxidative 
stress, which may appear to be critical for the survival of 
the transformed cells. In support of this, HCV-mediated 
oxidative stress leads to the induction of the hypoxia-
inducible factor 1α (HIF1α) [233]. HIF1α, together with 
Nrf2 and c-Myc, controls expression of key enzymes of 
glycolysis, glutaminolysis and gluconeogenesis [234] 
and is known to induce a Warburg effect and glutamine 
dependence, typical of the majority of tumors [234-238].

Besides triggering tumorigenesis, oxidative stress 
supports the survival and propagation of existing tumors 
by promoting angiogenesis. The latter could be achieved 
via ROS-dependent up-regulation of the expression 
of cyclooxygenase 2 (COX2). It was shown long ago 
that COX2 overexpression enhances the production of 
prostaglandin E2 and induces the formation of new vessels 
[239, 240].
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HEPATITIS B VIRUS

Hepatitis B biology

HBV is the leading cause of hepatocellular 
carcinoma; about 350 million people worldwide are 
chronic carriers. Of those who are infected around 
the time of birth, 90% develop chronic hepatitis B as 
against less than 10% of those infected after the age of 
five [241]. Chronic infection is usually asymptomatic 
but cirrhosis and liver cancer may eventually develop 
[242]. These complications result in the death of 15 
to 25% of those with chronic disease [243]. HBV is an 
enveloped DNA virus with an icosahedral nucleocapsid 
core structure. The virus is small, diameter 42 nM, and 
its tropism is confined to hepatocytes. HBV is classified 
as the prototype member of the Hepadnaviridae. The 
genome consists of circular, only partially double-stranded 
DNA. One end of the full length strand is linked to the 
viral DNA polymerase. Viral replication includes RNA 
intermediates. Therefore, viral genomic DNA has to be 
transferred to the cell nucleus, where the partially double-
stranded viral DNA is then made fully double-stranded 
by viral polymerase and transformed into covalently 
closed circular DNA (cccDNA). This cccDNA serves as a 
template for transcription and translation of the four viral 
proteins C (core, HBcAg), X (HBx), P (DNA polymerase), 
and S (surface antigen, HBsAg). The function of the 
protein coded for by gene X is not fully understood but 
is associated with the development of liver cancer. It 
stimulates genes that promote cell growth and inactivates 
growth regulating molecules. In chronic HBV infection, 
the host immune response causes both hepatocellular 
damage and viral clearance. In particular, the adaptive 
immune response, such as virus-specific cytotoxic T 
lymphocytes (CTLs), contributes to most of the liver 
injury by eliminating infected hepatocytes and stimulating 
production of inflammatory cytokines [244]. Although 
liver damage is initiated and promoted by the CTLs, direct 
interaction of HBV within the hepatocytes is also thought 
to have a detrimental effect on liver physiology.

Oxidative stress during hepatitis B

Patients with chronic hepatitis B exhibit signs of 
pronounced oxidative stress. Levels of oxygen radicals 
in liver specimens from these patients exceed the levels 
in healthy people by 1.5-4 orders of magnitude [44, 45]. 
Immunohistochemical analysis from such liver biopsy 
specimens also reveals elevated levels of DNA oxidation 
products such as 8-oxoG [46, 245] as well as lipid 
peroxidation products [246]. 

Patients with hepatitis B exhibit signs of oxidative 
stress not only in the liver but also in plasma/sera. Chronic 

hepatitis B is accompanied by an increase in total oxidant 
status and a concomitant reduction of total antioxidant 
status [247, 248]. Plasma/serum of these patients was also 
characterized by the elevated levels of ROS, including 
H2O2 [248, 249], and oxidation products of lipids [247, 
250-253], and proteins [253, 254]. Moreover, some of 
these products, such as 8-oxoG, were elevated even in 
urine, indicating a possibility to use them as biomarkers 
of chronic liver disease [255]. HBV infection also leads 
to a decreased concentration of total glutathione (GSH), 
an elevated level of its oxidized form (GSSG) and an 
abnormal GSSG/GSH ratio in plasma and blood cells [73, 
245, 250, 251, 253].

Oxidative stress is not just a hallmark of chronic 
HBV infection and advanced liver disease; it is also 
observed in acute and occult hepatitis B, as well as 
in asymptomatic HBV infections. Occult hepatitis B 
infection is characterized by increased levels of ROS in 
lymphocytes and consequent DNA damage [249]. Duygu 
et al. reported a decreased total antioxidant status and 
changes in several oxidative stress markers (i.e. free SH 
groups) even in patients with a non-symptomatic course of 
infection [247] (though other studies refute these findings 
[248]). The increase in the levels of the lipid oxidation 
products and the reduction in levels of reduced glutathione 
are even more pronounced during acute as compared to 
chronic HBV infection [73, 250]. However, the most 
dramatic changes have been described in hepatitis B 
patients with liver cirrhosis [248] and with acute-on-
chronic hepatitis B liver failure (ACHBLF) [256-258].

HBV enhances ROS production through Ca2+-
mediated mitochondrial dysfunction and unfolded 
protein response

Studies of the mechanisms by which HBV induces 
oxidative stress are much less advanced than those 
concerning HCV. The mechanisms have mainly been 
studied in infected cells, in cell lines producing viral 
proteins and in laboratory animals. These studies have 
shown that HBV-mediated ROS production is triggered 
by three viral proteins, HBx [69, 259-262], HBsAg [263, 
264], and HBcAg [265] antigens.

HBx-expressing cells exhibit a reduced enzymatic 
activity of the respiratory complexes I, III, IV, and V, 
and a decreased expression of several of their subunits 
[259]. Their dysregulation is thought to cause a loss of 
mitochondrial membrane potential and an enhanced 
production of ROS. Although HBx protein localizes 
to different compartments: cytoplasm, nucleus, and 
mitochondria (mt) [266-268], the induction of oxidative 
stress is thought to be mainly due to its mt localization and 
its effect(s) on this organelle (Figure 4). In mitochondria, 
HBx was shown to be bound to the outer membrane [268]. 
Several regions were reported to mediate mitochondrial 
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localization: amino acid residues 68-117 [266, 269], 
111-117 [270], and 121-154 [261]. Their deletion results 
in the abrogation of pro-oxidant activity, reversal of 
depolarization of the mitochondrial membrane, and loss 
of the ROS-dependent effects in the expressing cells 
[261, 269, 271, 272]. The decisive role of the HBx-mt 
association in the induction of oxidative stress is supported 
by the finding of elevated mt levels of superoxide anion 
and DNA oxidation products (i.e. of 8-oxoG) [261].

Two key mitochondrial proteins have been identified 
as the HBx-binding partners: voltage-dependent anion 
channel 3 (VDAC3) [271] and cytochrome c oxidase 
subunit III (COXIII) [273, 274]. VDAC3 forming an ion 
channel localized on the outer mt membrane is implicated 
in the formation of the mt permeability transition pore 
(PTP), dysregulation of which is one of the best-known 
mechanisms of oxidative stress induction [88]. VDAC 
and PTP are specifically involved in control of the 
transport of calcium ions through the outer membrane of 
mitochondria. HBx protein was shown by M. Bouchard’s 
group to cause a pronounced increase in Ca2+ levels in both 
cytoplasm and mitochondria, leading to the profound PTP 
dysregulation [268, 275, 276]. No similar study was done 
for VDAC3 protein but HBV-unrelated studies indicate 

that accumulation of calcium ions in mitochondria in 
response to histamine are enhanced by the overexpression 
of VDAC3 and suppressed by its down-regulation by RNA 
interference [277]. Hence, any effect HBx might have on 
VDAC3 would inevitably lead to modulation of the mt 
content of calcium ions and the induction of oxidative 
stress. The effect(s) of HBx on VDAC1 or VDAC2 has 
not been assessed yet.

The second mitochondrial partner protein of HBx 
is COXIII [273, 274, 278], which is one of the subunits 
of the cytochrome c oxidase respiratory complex IV 
[279]. HBx causes an increased expression of COXIII 
and stimulates complex IV activity [273, 274]. A direct 
interaction between HBx and COXIII was identified in a 
yeast two-hybrid system and by immunoco-precipitation 
[280]. However, as HBx localized to the outer mt 
membrane [268], whereas COXIII is localized at the inner 
membrane [279], these data need to be validated. In view 
of this, it is possible that HBx does not directly bind to 
COXIII but interacts indirectly via some yet unidentified 
protein(s).

Another protein of hepatitis B virus responsible 
for the induction of oxidative stress in infected cells 
is HBsAg [281]. It is encoded by ORF, which supports 

Figure 4: Mitochondria as key organelle in HBV-induced hepatocarcinogenesis. Three HBV proteins, HBx and HBs and HBc 
antigens are known to interact with mitochondria and contribute to the induction of oxidative stress. HBx interacts with voltage-dependent 
anion channel 3 (VDAC3) and cytochrome c oxidase subunit III (COXIII), a subunit of the cytochrome c oxidase respiratory complex 
IV, and thus increases Ca2+ levels in both cytoplasm and mitochondria, leading to permeability transition pore (PTP) dysregulation. In 
addition, in infected cells HBsAg and HBcAg variants tend to accumulate in the ER and induce ER stress as well as an unfolded protein 
response (UPR). The UPR triggers release of the Ca2+ into the cytoplasm, with subsequent enhancement of ROS production. 
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the formation of three variants of surface antigen: small 
(S-domain), middle (preS2-S domains), and large (preS1-
preS2-S domains) [282]. HBsAg is excreted from the 
cell even in the absence of other components of the virus 
[283]. However, some naturally-occurring mutants of 
the small HBsAg exhibit a reduced ability to be secreted 
and instead accumulate in the ER [264]. This was also 
reported for the natural variants of the large antigen with 
short truncation(s) in preS1 and/or preS2 domains [281]. 
The accumulation of the HBsAg variants in the ER results 
in ER stress and a consequent UPR [264, 281]. In turn, 
HBsAg-induced UPR induces a release of calcium ions 
into the cytoplasm, with subsequent enhancement of ROS 
production. An additional source of oxidative stress is a 
reduction of expression of the antioxidant defense Nrf2/
ARE pathway [283] and protective enzymes, such as 
catalase and HO-1, in particular [264]. However, a study 
on the cohort of chronic hepatitis B patients failed to find 
any association between the mutations in pre-S domains of 
HBsAgs and the level of oxidative stress (as manifested by 
the DNA damage) [284].

ER retention of the truncated middle HBsAg was 
also shown to trigger ROS production [285]. However, 
since the authors acknowledged the concomitant activation 
of the transcription factors NF-kB and AP-1 [285], one can 
suspect that the retention of the middle HBsAg induces not 
an UPR, but rather the ER overload response [286]. 

The third HBV protein that triggers ROS production 
is the HBcAg. The mechanism of its action is similar 
to that of HBsAg; naturally occurring mutants tend to 
accumulate in the ER, leading to a calcium efflux and 
concomitant oxidative stress [265].

Influence of HBV on antioxidant defense system

Hepatitis B virus strongly induces the Nrf2/
ARE pathway of antioxidant defense [283, 287]. It has 
been observed both in infected cell cultures and in liver 
tissues of chronic hepatitis B carriers [283, 287]. These 
findings are consistent with several independent in vitro 
studies that show increased expression levels of classical 
Nrf2-dependent phase II enzymes, such as glutathione 
synthetase (GSS), catalytic (GCLC) and regulatory 
(GCLM) subunits of glutamate-cysteine ligase, and 
glutathione reductase (GR) [288, 289]. Interestingly, 
different genotypes of the virus stimulate the Nrf2/ARE 
pathway in different ways: genotype A activates the 
pathway to a much higher degree than genotype G [283]. 
In addition, HBV-infected cells demonstrated an enhanced 
expression of metallothioneins [289]. Transcription of 
these genes is ARE-dependent and thus exclusively 
controlled by nuclear factor erythroid 2 related factor 1 
(NF-E2-related factor 1, or Nrf1) [290]. Activation of the 
Nrf2/ARE pathway in the infected cells is achieved by 
HBx and LHBs proteins of the virus [287]. In the case 
of HBx, the underlying mechanisms is ROS-independent 

and rather implies sequestering of the Nrf2 partner protein 
Keap1 via formation of a triple HBx-p62-Keap1 complex 
[287, 291].

However, there is a great deal of conflicting data 
concerning the status of the Nrf2/ARE pathway in HBV-
infected cells and in HBV patients. For example, the 
induction of expression of Nqo1 in the study by Schaedler 
et al. [287] is challenged in two other studies, which 
report the suppression of Nqo1 due to HBx-mediated 
recruitment of DNMT3A methyltransferase to the Nqo1 
gene promoter, thus leading to its hypermethylation [292, 
293]. Other Nrf2-dependent genes, such as glutathione-
S-transferases M3 (GSTM3) [256] and π (GSTP1) [294, 
295], were also reported to be epigenetically suppressed 
in either HBV-infected or HBx-expressing cells. HBx 
can inhibit expression of phase II enzymes not only by 
epigenetic mechanisms, but also by interfering with 
regulatory elements/factors other than Nrf2/ARE. For 
example, HBx was shown to prevent the expression of 
genes encoding phase II enzymes in response to agents 
that activate C/EBP elements in their promoters [296]. 
Interestingly, for GSTP1, such inhibition occurs in the 
case of genotype D of the virus, but not genotypes A-C 
[294]. The suppression of these genes augments oxidative 
stress [297]. In support of this, sera of chronic hepatitis B 
patients display no activation of the Nrf2-dependent gene 
encoding thioredoxin, although this could be explained 
by the activation of this pathway/gene exclusively in the 
infected hepatocytes [62].

HBV also changes the levels of expression of other 
antioxidant defense enzymes that are not regulated by the 
Nrf2/ARE pathway. First, production of the virus leads to 
an increased expression of two omega 1 (GSTO1) [295] 
and kappa 1 (GSTK1) [298] isoforms of glutathione-S-
transferases encoded by the Nrf2-independent genes 
[299]. Second, both HBV-producing transgenic mice 
and chronic hepatitis B carriers exhibit an increase in the 
liver of the expression of peroxiredoxin 1 [298]. Third, 
various experimental systems demonstrate that HBV 
induces SOD2 [289, 298, 300], although contradictory 
findings were also reported [301]. The discrepancies 
in these animal studies could be explained by different 
experimental set-ups: the induction was shown for 
6-8 week old mice [300], whereas the suppression was 
described for old animals [301]. These aged mice also 
exhibited the markedly decreased levels of glutathione 
peroxidase, with no changes in catalase or SOD1 levels 
[301]; however, catalase might have been induced by 
the virus since HBV-infected patients demonstrate an 
increased intracellular activity of this enzyme [252].

HBV also suppresses the expression of proteins that 
are indirectly involved in the antioxidant defense system. 
Namely, HBx, was shown to inhibit the expression of 
selenoprotein P (SeP) [302] as well as of selenium-binding 
protein 2 (Selenbp2) [298]. SeP is a protein synthesized 
and excreted by liver cells [303, 304]. It’s role is to bind 



Oncotarget3910www.impactjournals.com/oncotarget

to dietary selenium and to transport it to various organs. A 
decrease in SeP expression correlates with a reduction of 
selenium levels in the organism, which in turn hampers the 
activity of various antioxidant selenoproteins such as GPx, 
GST, and thioredoxin reductases.

ROS as regulators of the HBV life-cycle: almost 
nothing is known so far

Data on the influence of ROS on the HBV life-cycle 
are scarce. It is not yet known whether oxidative stress 
can affect the early stages of infection, and/or regulate the 
activity of HBV DNA polymerase and HBV replication. 

Past findings have indicated that H2O2 increases 
intracellular concentrations of the viral DNA, but this 
may simply be related to the oxidative damage-related 
increase in the number of sites available for HBV DNA 
integration [305]. However recently it was reported that 
H2O2 enhances HBV replication, whereas N-acetylcystein 
or overexpression of sirtuin 3 that alleviate stress, suppress 
replication of the virus [262].

The effect of ROS on gene transcription is 
ambiguous. On the one hand, hydrogen peroxide at high 
concentrations (>0.1 mM) decreases the expression 
and secretion of HBsAg and HBeAg and consequently 
reduces the number of produced virions [306]. On the 
other hand, H2O2 (0.5-1 mM), as well as anticancer agents 

Figure 5: Role of oxidative stress in HBV-induced hepatocarcinogenesis. HBV-induced oxidative stress promotes liver 
carcinogenesis via modulation of signaling cascades, resistance to ROS-triggered apoptosis, promotion of genome instability and metabolic 
adaptation of infected cells. So far analysis of the mechanisms by which HBV-derived ROS drive carcinogenesis are limited predominantly 
to in vitro systems based on HBx overexpression, however some observations have been made in biopsy materials. HBx activates 
proinflammatory NF-κB signaling via ROS generated in mitochondria. HBx induces, again in a ROS-dependent manner, the expression 
of cyclooxygenase 2 (COX2), which in turn amplifies proinflammatory cytokine signaling. Virally-induced ROS also activate the Nrf2/
ARE pathway with subsequent induction of liver regeneration (ALR) protein, the forkhead transcription factor FOXO4 and alterations 
to the PI3K/AKT pathway. Additional metabolic alterations induced by HBx are due to induction of key transcription factors of lipid 
homeostasis, such sterol regulatory element binding protein 1 (SREBP-1), liver X receptor, C/EBP1 and peroxisome proliferator-activated 
receptor γ (PPARγ). HBx also induces oxidation of tumor suppressor phosphatase and tensin homolog protein (PTEN), which further 
enhances the activation of the PI3K/AKT pathway. In addition, in HCC tissues expression of OGG1, a DNA repair enzyme frequently is 
frequently (over)expressed and methylation of the promoter of a runt-related transcription factor 3 (RUNX3) gene is augmented. RUNX3 
is a protein whose inactivation has been implicated in the development of various solid tumors. Finally, HBV also causes a ROS-dependent 
translocation of Raf-1 kinase to mitochondria.
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(i.e. doxicyclin, adriamycin/doxorubicin) which trigger 
its production in the cell, activate the expression of HBx 
by stabilizing its mRNA and protein [307, 308]. Min et 
al. also demonstrated that ethanol enhanced transcription 
from the core and pre-S1, but not from pre-S1/S and X 
promoters [309]. Such activation is achieved through 
induction of a ROS-producing CYP2E1 and activation 
of several hepatic transcription factors that bind to these 
promoters.

Secondly, hydrogen peroxide was shown to 
promote HBV capsid assembly [310]. This enhancement 
was revealed in several systems, including cell-free 
experiments involving Hsp90 protein, thus demonstrating 
that H2O2 can influence the conformation of the Hsp90/
capsid complex.

Finally, oxidative stress enhances the integration of 
hepadna virus DNA into the host cell genome, as shown 
for human HBV and duck hepatitis B virus infection in 
the cells treated with H2O2 at micromolar concentrations 
[305, 311]. In this context, the increase in the intracellular 
concentration of viral DNA relates to the oxidative 
damage-related increase in the number of sites available 
for HBV DNA integration. It is noteworthy that all the 
above-mentioned effects in the HBV-infected cells 
depend on ROS but are not related to the activation (or 
suppression) of the Nrf2/ARE pathway [287].

ROS as mediators of HVB pathogenesis: an 
obscure subject

HBV-induced oxidative stress is a crucial factor 
for establishment of chronic infection and the further 
development of liver inflammation and cancer (Figure 5). 
Patients with chronic hepatitis B have increased levels of 
sulfhydryl and lipid peroxidation [247] as well as hepatic 
oxidative DNA damage [245]. In HBV-infected children 
the level of oxidative stress markers correlates with the rate 
of chronicity of the disease [312]. The direct mechanisms 
underlying this effect are not known. However, Schaedler 
et al. reported that HBV-induced oxidative stress is 
accompanied by activation of the Nrf2/ARE pathway, 
leading to suppression of the immunoproteasome and 
probably to at least partial evasion from immune responses 
[287]. Interestingly, additional input into the suppression 
of antigen presentation in infected cells may be achieved 
via induction of proteasome-inhibiting factor CYP2E1 on 
the background of heavy alcohol consumption [313].

Oxidative stress also contributes to liver damage and 
inflammation. For example, an increase in MDA levels 
was observed in patients with an increased risk of an 
acute-on-chronic hepatitis B liver failure [256]. Levels of 
8-oxoG in the liver determined by immunohistochemical 
tissue staining were shown to correlate with the activity 
grade of chronic hepatitis [46] and with the amount 
of aspartate aminotransferase in the serum [245]. A 

positive correlation was also noted between ALT and 
H2O2 and the oxidative stress index in plasma of chronic 
hepatitis B carriers [248]. In contrast, patients with 
elevated aminotransferases exhibit lower α-tocopherol 
concentrations in serum compared to patients with 
persistently normal aminotransferases (PNAT) [314]. 

The mechanisms by which HBV-derived ROS 
stimulate inflammation have been poorly studied 
(Figure 5). The only available data were obtained in 
in vitro systems based on HBx overexpression. It was 
shown that HBx activates proinflammatory NF-κB 
signaling [260]. NF-κB is induced by several HBV-
driven mechanisms, including generation of ROS in 
mitochondria [260], suppression of multiple cytoplasmic 
inhibitors of rel-related proteins [315] as well as of 
selenoprotein P, leading to enhanced lipid peroxidation 
[302]. In turn, NF-κB activation leads to the induction 
of proinflammatory cytokines, including TNFα [302, 
316, 317], lymphotoxin-α [318], IL-1β [316, 319], and 
IL-6 [320], as well as interferon γ [321] and a chemokine 
interferon-gamma inducible protein 10 (IP-10) [322]. The 
induction of proinflammatory cytokines (IL-6, TNF-α) 
in HBx-expressing cells is augmented by a high fat diet/
fatty acids through the efflux of calcium ions from ER 
stores and consequent overproduction of ROS [323]. 
Furthermore, simultaneously with the induction of the 
proinflammatory cytokines, HBV antigens, namely HBx, 
repress the expression of anti-inflammatory cytokines 
[316]. 

Also, HBx, in a ROS-dependent manner, induces the 
expression of cyclooxygenase 2 [266]. COX2 is rapidly 
expressed in several cell types in response to growth 
factors, cytokines, and pro-inflammatory molecules and 
is the dominant source of prostaglandin formation in 
acute and chronic inflammatory conditions [324]. COX2 
induction by HBx may also be NF-κB-mediated since NF-
κB is known to control COX2 expression (for example 
[325]).

Glutathione-S-transferase P1 (GSTP1) is an 
important phase II enzyme that can protect cells from 
oxidative stress in various human cancers. In CHB patients 
who progress to HCC, GST-P1 expression decreases 
compared to patients in earlier stages of the disease, and 
its level correlates positively with MDA and xanthine 
oxidase expression and negatively with GSH levels [326]. 
Specifically, acute-on-chronic hepatitis B patients are 
characterized by frequent GSTP1 (hyper)methylation, 
leading to the absence of expression of this protein [327]. 
GSTP1 (hyper)methylation is a hallmark of carcinogenesis 
and the most common molecular alteration in human 
cancer [328, 329]. In HBV infection as well, high GSTP1 
methylation status predicts a poor prognosis [327].

Although HBV (HBx)-triggered oxidative stress 
may lead to cell death [269, 330], solid data have been 
accumulated suggesting that HBV can also confer 
protection against exogenous ROS, such as hydrogen 
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peroxide [331-334]. This is achieved by several routes, 
including (i) activation of the Nrf2/ARE pathway 
[287] and subsequent induction or augmentation of 
expression of liver regeneration (ALR) protein [335]; 
(ii) hypermethylation of the p16INK4a promoter, leading 
to alterations in the induction of a senescence p16INK4a 
regulator with subsequent prevention of cell cycle arrest 
[332]; and (iii) induction of the forkhead transcription 
factor FOXO4 [333]. Forkhead transcription factors of the 
FOXO class have been implicated in cellular protection 
against oxidative stress via the transcriptional regulation 
of manganese superoxide dismutase (SOD2) and catalase 
gene expression [336]. Altogether, HBx expression in liver 
cells causes oxidative stress and at the same time boosts 
the survival of the “stressed” cells [331], which serves for 
HBV persistence in the inflamed cell environment.

HBV-induced oxidative stress promotes liver 
carcinogenesis. Development of liver tumors is thought to 
be driven by several mechanisms, including modulation of 
signaling pathways, resistance to ROS-triggered apoptosis, 
promotion of genome instability and metabolic adaptation 
of the infected cells. Indeed, increased O2

•- and MDA 
levels are present in HCC tissues compared to non-tumor 
liver samples and concentrations of oxidized glutathione 
are elevated in the blood of chronic hepatitis C carriers 
with HCC [337].

A recent study of Yuan et al. revealed that HBV-
induced carcinogenesis is promoted via ROS-mediated 
induction of IL-6 and concomitant activation of STAT3 
transcription factor as well as by induction of Snai1 and 
subsequent down-regulation of a suppressor of cytokine 
signaling 3 (SOCS3), an inhibitor of IL-6/STAT3 pathway 
[246]. These data obtained in laboratory models were 
verified in xenograft mice model as well as by notion that 
a life span of chronic HBV carriers is lower in patients 
with higher expression of Snail and with lower expression 
of SOCS3 [246]. 

ROS are known to be harmful for both the genomic 
and the mitochondrial DNA of the host cell. Indeed, HBV 
[255] and, in particular, its HBx [261] and PreS [281] 
proteins induce an increased oxidation of DNA. The latter 
is accompanied by an enhanced expression of OGG1, a 
DNA repair enzyme frequently (over)expressed in HCC 
tissue [281, 298]. At the same time, HBV decreases the 
expression of apurinic/apyrimidinic endonuclease 1 (APE-
1) [338]. A combination of these two processes explains 
an observed correlation between the oxidative DNA 
damage and hepatocyte immortalization [204], Even an 
occult HBV infection appears to trigger oxidative stress 
and DNA damage not just in the liver but also in the 
peripheral blood lymphocytes. The latter may contribute 
to immune dysfunctions, which in turn aggravate liver 
damage and increase the rate of HCC occurrence [249]. 
One can speculate that DNA oxidation and concomitant 
removal of oxidized nucleic bases in HBV-infected cells 
is compensated by a defective repair of the oxidative 

damage, with a concomitant accumulation of single-
strand breaks. This hypothesis is supported by data which 
indicate that HVB infection leads to activation of the 
ATM-Chk2 pathway [339] responsible for the repair of 
double-strand breaks, DNA damage response resulting in 
an increased genomic instability [340].

Indeed, integration of HBV genomes is often 
observed in HCC tissues compared to surrounding non-
tumor tissue [341-343]. Oxidative stress and H2O2, in 
particular, enhance the integration of both HBV [311] and 
duck hepatitis B virus [305]. Interestingly, the preferred 
sites of HBV DNA integration appear to be repeat 
elements such as Alu and minisatellite sequences, while 
integration into cellular genes, thought to be important for 
the regulation of cell division, is rare [344]. Furthermore, 
integration often modifies genes controlling carcinogenesis 
and triggers cancer-related signaling pathways [345]. 
Namely, HBV induces a number of procarcinogenic 
signaling cascades via ROS. HBV-induced oxidative 
stress in HCC tissues enhances methylation of the 
promoter of runt-related transcription factor 3 (RUNX3) 
[346]. RUNX3 is a protein whose inactivation has been 
implicated in the development of various solid tumors 
[347] thus prompting speculation that methylation of 
its promoter may be a key event in HBV-associated 
pathogenesis. HBV also causes a ROS-dependent 
translocation of Raf-1 kinase to mitochondria [348]. 
Raf-1 kinase represents a proto-oncogene responsible for 
activation of ERK1/2 mitogen-activated protein kinases 
[349]. In addition, HBx triggers oxidation of a tumor 
suppressor phosphatase and tensin homolog protein 
(PTEN), leading to its inactivation and subsequently to 
permanent activation of the PI3K/AKT pathway, with 
potentially important metabolic consequences on lipid 
homeostasis [350, 351]. 

HBx protein can also alter carbohydrate fluxes. Via 
activation of Nrf2, HBx is known to induce glucose-6-
phosphate dehydrogenase (G6PD) [291] and to increase 
levels of ATP, NADPH and fatty acid oxidation, which 
may promote cellular survival by conferring on the 
infected cells a resistance to glucose deprivation [352].

Analysis of lipid metabolites in HBx transgenic 
mice showed that arachidonate 5-lipoxygenase, lipoprotein 
lipase, fatty acid binding protein 4, 1-acylglycerol-3-
phosphate O-acyltransferase 9, and apolipoprotein A-IV 
expression are all induced [353]. Furthermore, HBx-
transgenic mice exhibit elevated levels of cholesterol 
and triglycerides, as well as activated expression of the 
key transcription factors in lipid homeostasis [353], such 
as the prolipogenic sterol regulatory element binding 
protein 1 (SREBP-1), liver X receptor [354], C/EBP1 
and peroxisome proliferator-activated receptor γ (PPARγ) 
[355]. In turn, liver PPAR-γ and SREBP-1c up-regulation 
in parallel with PPAR-α down-regulation enhance de 
novo lipogenesis and reduce fatty acid oxidation [356]. 
On the long term the consequences of this is an onset 
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of steatosis and related long-chain polyunsaturated fatty 
acid n-3 (LCPUFA n-3) depletion, insulin resistance, 
hypoadiponectinemia, and endoplasmic reticulum stress. 
Although no data are yet available on the role of ROS in 
the activation of these transcription factors, the activation 
of CREBP1 in a ROS-dependent fashion by HCV has been 
already demonstrated [357]. 

As a result (of the induction and promotion of 
continuous oxidative stress), disease progression in chronic 
hepatitis B correlates to a number of polymorphisms in 
the stress response genes and enzymes described above. 
Polymorphisms correlating with disease progression 
and outcome occur in CYP2E1, HOGG1, and XRCC1 
genes [358]. CYP2E1 and HOGG1 polymorphisms 
independently correlate with the development of fibrosis, 
whereas the c2 variant of CYP2E1 correlates with the 
severity of liver disease and histology activity index. 
Also, certain alleles (rs769217 T) in the gene encoding 
catalase, an endogenous antioxidant enzyme involved in 
ROS neutralizing pathways, appear to predispose to the 
development of chronic hepatitis B, and HBV-induced 
liver cirrhosis and HCC [359].

Altogether, these data suggest that HBV infection 
induces a series of metabolic changes, most of which serve 
to aggravate the oxidative stress response and at the same 
time provide the infected cells with instruments to survive 
it, thus paving the way to cell transformation.

HCC incidence in patients with chronic hepatitis 
B or C: effect of antiviral drugs

Since HBV and HCV are oncogenic viruses, treating 
and eliminating the infection should prevent liver cancer. 
Indeed, viral suppression or control in chronic hepatitis 
B patients substantially reduces HCC risk [360-363]. As 
an example, treatment of patients in Korea reduced the 
incidence of HCC during a 5 year follow by 7.1% to 58.8% 
depending on the treatment regimen [360]. Treatment of 
patients with persistently normal or moderately elevated 
liver enzymes with nucleos(t)ide analogues resulted in 
a significantly lower risk of HCC incidence [364]. In 
patients with cirrhosis, 4-year treatment with entecavir 
led to 60% reduction in HCC occurrence [365]. Antiviral 
therapy was also shown to reduce risk of HCC occurrence 
for patients with compensated cirrhosis and low but 
detectable viral load [366] or even with decompensated 
cirrhosis [367]. Noteworthy, in most studies entecavir 
displayed higher ability to prevent liver cancer compared 
to other drugs such as lamivudine or adefovir [368], 
although this difference was not statistically significant 
in all studies [369, 370]. Pegylated interferon α treatment 
was reported to even better reduce HCC incidence than 
the nucleos(t)ide drugs [371]. However, none of these 
treatments could totally reduce the incidence of liver 
cancer back to baseline (for example, [367, 372]). Overall 

HCC incidence rates in patients with incomplete viral 
control remain elevated compared to patients with inactive 
stage disease [373].

An important question is whether it is worth to treat 
HBV infection in patients who already developed tumors 
in the liver. In liver cancer patients presence of HBV 
profoundly worsens prognosis [374]. Moreover, the effect 
of the infection is virus titer-dependent: the cut-off values 
for event-free survival and overall survival were reported 
to be 10,100 and 12,800 IU/mL, respectively, requiring 
treatment of the infection prior to removal of the tumor 
by hepatectomy [374]. However, a study of a cohort in 
Hong Kong revealed that treatment of such patients with 
nucleos(t)ide analogues reduces risks of HCC incidence if 
it starts after and not before surgical removal of a tumor 
[375]. Interestingly, no differences were found between 
effects of lamivudin and entecavir [375]. Treatment of 
chronic hepatitis B also reduced risks of HCC recurrence 
after radiofrequency ablation [376].

Our knowledge on prevention of HCC and reversal 
of fibrosis in chronic hepatitis C has much advanced with 
the recent availability of potent antiviral drugs (see Lee 
at al. [377] for excellent review). An important number 
of clinical investigations show the benefits of a sustained 
virological response (SVR) independently of the fibrosis 
stage [378]. These benefits include reduced levels of 
complications related to end-stage liver disease, reduced 
mortality and improved quality of life [379]. Importantly, 
upon elimination of the virus, fibrosis is reversible in up to 
87-93% of patients, only in a minority of patients fibrosis 
does not regress or even progress despite successful 
antiviral treatment [380, 381]. However, histological 
analysis of the liver in HCV patients pre- and post-
SVR has shown, that albeit a significant reduction in the 
Metavir score and a normalization of liver functions, 
hepatic stellate cell activation and inflammatory activity 
did not reverse or even become more severe over time in 
these patients, and this occurred independently of the post-
treatment fibrosis stage [382]. Further histological analysis 
will be necessary to validate and extend these data on 
fibrosis reversal. While the overall risk of HCC decreases 
upon SVR in chronic hepatitis C patients, it does not 
completely drop back to baseline and particularly patients 
with advanced fibrosis remain at elevated risk for HCC 
for at least 8 to 10 years after SVR [243, 383-388]. HCC 
risk factors include pretreatment fibrosis score, but also 
age, steatosis/genotype 3, gender, diabetes and alcohol 
consumption [377, 388]. In patients who had eradicated 
HCC prior to antiviral treatment, achievement of SVR 
does not prevent recurrence of liver cancer, especially 
in the short term [387]. However, treatment of the virus 
before tumor resection in many cases prevents recurrence 
of the infection after liver transplantation [389]. Several 
antiretroviral drugs trigger oxidative stress, however to our 
knowledge the effect of anti-HBV/HCV agents on ROS 
production has never been investigated. Recently Reig 
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et al. noted higher rates of HCC recurrence in patients 
who received treatment with all-oral antiviral drugs, at 
least compared to treatment with pegylated interferon 
[390], and these results were supported by other groups 
(for example, see [391]). Other groups did not support 
differences between HCC incidence in patients with SVR 
following interferon-based or all-oral antivirals [392, 393]. 
Nevertheless, safety of direct acting antivirals and their 
effect on redox systems has yet to be investigated.

In neither HBV not HCV infection occurrence of 
hepatocellular carcinoma has been directly correlated to 
alterations in redox parameters. Treatment of chronic HBV 
infection with nucleos(t)ide analogues is accompanied 
by reduction of MDA levels and increase in expression 
of antioxidant defense enzymes [394]. In case of chronic 
hepatitis C, interferon α-based treatment leads to reduction 
of elevated levels of oxidative stress markers such as 
MDA [53, 58, 395], or oxysterol [60], as well as restores 
depletion of antioxidant status in patients’ serum [58, 
395]. Nanba et al. reported a correlation between levels of 
8-oxoG and HCC incidence in CHC patients treated with 
a combination of pegylated interferon and ribavirin [198]. 
Moreover, in patients who fail to achieve SVR MDA 
levels exceed the levels for SVR patients thus correlating 
to the HCC occurrence rates for both groups [396]. These 
data warrant a more detailed investigation of the role of 
oxidative stress in the neoplastic transformation process 
in order to be able to develop therapeutic means towards 
the prevention of HCC. 

CONCLUSIONS AND FUTURE 
PERSPECTIVES

Viruses disturb the physiological balance between 
ROS producing and ROS eliminating pathways in a 
normal cell because they need to adopt and optimize the 
cellular environment for their replication. Both HBV and 
HCV infections are characterized by accumulation of a 
similar spectrum of oxidative stress markers in liver and 
blood of the patients. Overall the underlying molecular 
mechanisms have been well studied for HCV, but remain 
much more obscure for HBV due to the absence of 
efficient in vitro infection systems. Both viruses trigger 
ROS production in the infected hepatocytes due to 
mitochondrial dysfunction and unfolded protein response. 
In case of HCV, additional sources of ROS were identified, 
such as NADPH oxidases, CYP2E1 and Ero1a, but their 
involvement in HBV-induced oxidative stress has yet to 
be studied. Besides, most studies of mechanisms of ROS 
production in HBV-infected cells were carried out on cell 
lines overexpressing individual protein of the virus, thus 
requiring verification of the obtained results in infectious 
models. Both, HCV and HBV infections were also shown 
to affect expression of antioxidant defense enzymes. 
However, most of these results are inconsistent between 
various groups and models used. A further particular gap 

in the field is the almost complete absence of data on the 
impact of HBV/HCV on the ROS scavenging protein 
families of peroxiredoxins and glutathione peroxidases 
and the respective roles of these latter families in the 
life cycle of these viruses. For both, HBC and HCV, 
there is a number of findings indicating that ROS can 
affect various stages of their life cycle. For example, 
the fusiogenicity of HCV virion membranes is inhibited 
by lipid peroxidation and viral replication is sensitive 
to peroxide levels. However, with a few exceptions the 
underlying molecular mechanisms remain unknown. 
HBV and HCV-triggered ROS production was also shown 
to promote expression and secretion of proinflammatory 
cytokines and to drive liver inflammation. There are also 
some data showing that ROS contribute to neoplastic 
transformation of the host cell by various mechanisms: 
they interfere with DNA reparation systems responsible 
for removal of oxidized DNA bases as well as by other 
mechanisms. ROS trigger metabolic changes and in 
particular glycolytic adaptation and enhanced lipid 
biosynthesis, the latter promoting steatosis which in turn 
contributes to hepatocarcinogenesis. HCV associated ROS 
were also shown to block proapoptotic pathways and to 
promote cell cycle progression, both of which are crucial 
for cell transformation. In conclusion, we need a better and 
more detailed understanding of how HBV and HCV alter 
ROS producing and ROS scavenging events and to assess 
their impact on fibrosis and neoplastic transformation. 
These studies will be important, as targeting the redox 
homeostasis therapeutically can have potential anti-
inflammatory and anti-fibrotic as well as antiviral effects. 
However, these approaches need to go beyond the simple 
use of antioxidants, as in the context of patients, where 
neoplastic transformation events have already occurred, 
antioxidants may have procarcinogenic effects.
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