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INTRODUCTION 

Glioblastoma multiforme (GBM), the highest (IV) 
grade of malignant gliomas, is the most common tumor 
of the central nervous system [1,2]. The mean survival 
of GBM patients is about one year despite use of surgery, 
radiotherapy, and chemotherapy [1,2]. Development 
of effective therapies for GBM must require a better 

understanding of the biology of cells that cause and 
drive the disease [1,3]. Recent studies suggest that 
undifferentiated, stem cell-like neoplastic cells, known 
as ‘cancer stem cells’ (CSCs), but not differentiated 
GBM cells, drive cancer maintenance in rodent xenograft 
models [4,5,6,7]. In GBM, CSCs termed ‘GBM stem 
cells’ (GSCs) are highly proliferative, angiogenic and 
resistant to radiotherapy and chemotherapy [1,2,4,7,8]. 
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AbsTRACT:  
Tumorigenic potential of glioblastoma multiforme (GBM) cells is, in part, attributable 
to their undifferentiated (neural stem cell-like) phenotype. Astrocytic differentiation 
of GBM cells is associated with transcriptional induction of Glial Fibrillary Acidic 
Protein (GFAP) and repression of Nestin, whereas the reciprocal transcription program 
operates in undifferentiated GBM cells. The molecular mechanisms underlying the 
regulation of these transcription programs remain elusive. Here, we show that the 
transcriptional co-activator p300 was expressed in GBM tumors and cell lines and 
acted as an activator of the GFAP gene and a repressor of the Nestin gene. On the other 
hand, Myc (formerly known as c-Myc overrode these p300 functions by repressing 
the GFAP gene and inducing the Nestin gene in GBM cells. Moreover, RNAi-mediated 
inhibition of p300 expression significantly enhanced the invasion potential of GBM cells 
in vitro. Taken together, these data suggest that dedifferentiated/undifferentiated 
GBM cells are more invasive than differentiated GBM cells. Because invasion is a major 
cause of GBM morbidity, differentiation therapy may improve the clinical outcome.

Abbreviations used: ChIP, chromatin immunoprecipitation; CSCs, cancer stem cells; DTT, dithiothreitol; EGF, epidermal growth 

factor; EDTA, ethylenediaminetetraacetic acid; GAS, gamma interferon activated sequence (site); GBM, glioblastoma multi-

forme; GFAP, glial fibrillary acidic protein; GSCs, glioblastoma stem cells; IL-6, interleukin-6; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; NSCs, neural stem cells; PBS, phosphate buffer saline; RNAi, ribonucleic acid interference; TK, thymi-

dine kinase; shRNA, short hairpin ribonucleic acid.
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Invasion is a defining hallmark of GBM [2,9,10,11]. 
Intriguingly, striking resemblances are found between 
the migratory properties of neural stem cells (NSCs) 
and invasive GBM cells [1,12,13]. Invasion of GBM 
cells that are resistant to radiotherapy and chemotherapy 
largely contributes to the recurrence of the tumor 
[9,14]. Therefore, the use of differentiation therapy, in 
combination with the conventional modalities, including 
surgery, radiotherapy and chemotherapy, may improve the 
clinical outcome. However, the molecular mechanisms 
underlying the astrocytic differentiation of GSCs remain 
unclear. Differentiation of normal NSCs is associated with 
a reprogramming of the expression of the intermediate 
filamentous proteins, including Nestin and Glial Fibrillary 
Acidic Protein (GFAP). Nestin is expressed in both NSCs 
and GSCs, and astrocytic differentiation of both cell 
types is associated with repression of the Nestin gene and 
concomitant induction of the GFAP gene [15,16,17,18]. 

The transcriptional co-activator p300, which is 
expressed in GBM cells, acts as a key regulator of 
transcription in a context-dependent fashion by interacting 
with a variety of proteins, including Stat3, Smad1/4, 
and Notch1, which play distinct roles in astrocytic 
differentiation [19,20,21]. p300 also acts as an activator 
of muscle differentiation [20]. Myc, a nuclear oncoprotein 
formerly known as c-Myc, forms dimer with Max, which 
recognizes the E-box sequence located in the regulatory 
regions of a variety of genes that regulate cell proliferation, 
differentiation and apoptosis [22,23]. Myc is expressed 
in GBM cells [23,24,25]. Although amplification, 
rearrangement and overexpression of the Myc are rarely 
found in malignant gliomas [26,27], the half life of Myc 
protein remains 4-6-fold elevated in a number of glioma 
cell lines, suggesting that Myc stabilization may be linked 
to the pathogenesis of GBM [28]. A recent report reveals 
that simultaneous inactivation of p53 and PTEN promotes 
an undifferentiated phenotype of mouse NSCs, which is 
associated with increased expression of Myc [29]. Further, 
Lassman et al. have reported that overexpression of Myc 
represses GFAP expression with a concomitant activation 
of the Nestin gene in mature murine astrocytes, making 
them morphologically similar to NSCs [30]. Another 
study shows that Myc is required for the proliferation and 
survival of GSCs [31]. Interestingly, p300 plays dual roles 
in Myc regulation: as a co-activator of Myc by stabilizing 
Myc protein and as an inducer of Myc instability by 
directly acetylating Myc [32]. 

Here, we show that in GBM cells, p300 acted as 
an activator of the GFAP gene and a repressor of the 
Nestin gene, whereas Myc opposed these p300 functions. 
Moreover, the tumorigenic potential of GBM cells was 
reciprocally associated with their astrocytic differentiation 
and p300 markedly suppressed the invasion capacity of 
GBM cells in vitro. 

MATERIALs AND METHODs 

Cell culture and reagents

GBM cell lines U87, U251, SNB19, D54 and LN229 
and human embryonic kidney cell line 293T were cultured 
in DMEM supplemented with 10% heat-inactivated fetal 
bovine serum (Serum Source International Inc, Charlotte, 
NC, USA), 2 mM L-glutamine and 50 mg/l of penicillin G 
and streptomycin. Lipofectamines and Alexafluors were 
purchased from Invitrogen (Carlabad, CA, USA). GFAP 
antibody, MTT assay reagents and Luciferase assay kit 
were purchased from Promega (Madison, WI, USA) and 
site-directed mutagenesis kit was from Stratagene (La 
Jolla, CA, USA). Nestin antibody, p300 antibody and EZ-
ChIP reagents were purchased from Millipore (Temecula, 
CA, USA). shRNAs for p300 and Myc were from Origene 
Tech. Inc. (Rockville, MD, USA). IL-6 and EGF were 
obtained from R & D Systems (Minneapolis, MN, USA). 
Myc antibody and β-actin antibody were purchased from 
Santa Cruz Biotech. Inc. (Santa Cruz, CA, USA). Matrigel 
invasion chambers were obtained BD Biosciences (San 
Jose, CA, USA). 

Transient and stable transfection of GbM cells

U87, D54, SNB19, and LN229 cells were 
transfected with plasmid DNA using lipofectamine 2000 
and U251 cells using Lipofectamine Plus. 293T cells 
were transfected using calcium phosphate and DNA co-
precipitation method as described previously [33]. For 
generation of stable clones, U251 cells expressing p300-
shRNA, cells were selected for 2-3 weeks in the presence 
of 0.5 µg/ml of puromycin [34]. 

Tumor implantation

Implantation of the GBM cells in immune 
compromised rats and mice was performed in accordance 
with protocols approved by the Cleveland Clinic 
Institutional Animal Care and Use Committee, as 
described [34]. Briefly, four weeks old athymic male 
rats (Charles River, National Cancer Institute) were 
anesthetized using ketamine hydrochloride (60 mg/kg) 
and xylazine (5 mg/kg). Head was carefully cleaned with 
iodine, and a fresh suspension of 5X105 GBM cells in 5 µl 
PBS was injected stereotactically in the right frontal lobe 
through a burrhole. After 3 weeks, volumes of intracranial 
tumors were measured by pixel imaging analysis. For 
subcutaneous tumors, 2.5X106 GBM cells were mixed 
with matrigel (1:5) and injected in right flanks of 4 week 
old male nude athymic mice (Charles River, National 
Cancer Institute). Volumes of tumors were measured after 
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5 weeks using the formula: volume = width2 x length x 0.4 
[35]. Five animals were used for each GBM cell line. 

Luciferase reporter constructs and Luciferase 
assay

The GFAP-luciferase reporter (provided by Dr. 
Abhijit Guha, The Hospital for Sick Children, Toronto, 
Canada) is driven by a 2.21 kb human GFAP promoter 
[36,37]. A 714 bp NSC-specific Nestin enhancer (located 
in the second intron of the human Nestin gene) [18,38,39] 
was PCR-amplified using a template of genomic DNA 
isolated from U87 cells. The amplified Nestin enhancer 
fragment was cloned into the Bgl II restriction site of 
TP222 vector in which the luciferase gene was driven 
by an 81 bp minimal thymidine kinase (TK) promoter 
[40]. The GAS enhancer TTCCGAGAA mutated to 
TGCCGAGTA in the human GFAP promoter by site-
directed mutagenesis as described [34,41]. The luciferase 
activity was measured and normalized as described earlier 
[42]. Cells were cotransfected with Renilla luciferase 
construct (driven by TK promoter) and GFAP-luciferase 
or Nestin  luciferase. Normalized values are presented in 
terms of percentage luciferase activity for comparison 
between the two cell lines U87 and U251 used, and among 
the different experimental conditions employed. 

Immunofluorescence and immunohistochemistry

For detection of GFAP and Nestin expression by 
immunofluorescence, cells were grown on coverslip, 
fixed (30 min) with 4% paraformaldehyde followed by 
permeabilization (10 min) with 2% paraformaldehyde and 
0.2% Triton X-100 and blocked (1 h) in PBS containing 3% 
goat serum and 0.3% Triton X-100. Cells were incubated 
with GFAP (1:1000) or Nestin (1:200) antibody overnight 
at 4oC. Alexaflour488- and Alexaflour568-conjugated 
secondary antibodies were used for the detection of GFAP 
and Nestin respectively. For detection of p300 and Myc in 
GBM tumors by immunohistochemistry, 8 µm sections of 
frozen tumor samples were fixed with 4% formaldehyde 
and permeabilized with 0.3% Triton X-100. Endogenous 
peroxidase activity was quenched with 0.3% H2O2 in PBS 
containing 0.3% normal goat serum (NGS) and blocked 
using 10% NGS. Samples stained with either anti-p300 
(1:200) or anti-Myc (9E10, 1:100) followed by biotinylated 
goat -anti-rabbit (1:500) for p300 or biotinylated goat-anti-
mouse (1:200) for Myc. Samples were then treated using 
the Vectastain Elite ABC Kit (Vector Labs) and visualized 
using DAB Substrate Kit (Vector Labs). Samples were 
counterstained with methyl green (0.5% methyl green; 
0.1M sodium acetate) at 60oC for 5 min, dehydrated and 
mounted using Vecta-Mount (Vector Labs). Appropriate 
negative controls were included for all samples. Images 
were collected at 20X magnification. 

Chromatin immunoprecipitation

For p300 ChIP, cells were grown in serum free 
medium for 4 h followed by the appropriate cytokine 
treatment. U251 and U87 cells were treated with IL-6 
(20 ng/ml) or EGF (100 ng/ml), respectively, for 30 min. 
For Myc ChIP, cells were grown in serum free medium 
for 48 h followed by subsequent incubation with 20% 
serum containing medium for 4 h. Following appropriate 
treatments, U251 and U87 cells were treated with 1.5 mM 
ethylene glycol bis[succinimidylsuccinate] (EGS, Thermo 
Scientific) for 20 min followed by 1% formaldehyde for 
10 min [43,44]. Cross-linking was subsequently quenched 
by treatment with 125 mM glycine for 5 min. ChIP assays 
were carried out using 

2.0 µg of p300-or Myc antibody following the EZ-
ChIP protocol (Millipore). DNA was purified using the 
UltraClean PCR Clean-up Kit (Mobio; Carlsbad, CA, 
USA) following the manufacture’s instructions. PCR 
was carried out using 32P-labeled primers for the GFAP 
promoter to amplify the -2139 to -1824 E-Box containing 
region [(5’-TGCTGGGACTCACAGAGGGAGACC-3’ 
(Forward) and 5’ TGGCGCAACCACGACTCACT 
(Reverse)] and the Nestin enhancer -414 to -166 region 
[(5’-CTCCTTCTCAGACCCTCCAG-3’ (Forward) and 
5’ TCACATACCCACAGACATCACA-3’ (Reverse)] 
using optimized reaction conditions. PCR products were 
resolved by 6% polyacrylamide gel eletrophoresis and 
visualized using a Storage Phosphor Screen and scanned 
using the Storm 840 Imager (Molecular Dynamics). 
Band densities were determined using ImageQuant 
5.2 (Molecular Dynamics) and calculated to represent 
‘percent of input’. 

Cell invasion, migration and proliferation

The invasion potential of U251 cell lines was 
measured using modified Boyden chamber containing 
matrigel (BD Biosciences) [45,46,47]. Membrane 
containing 8 µm pores in each well was coated with a 
basement membrane matrix (matrigel). 2.5x104 U251 
cells stably expressing p300-shRNA (Sh #1-clone 10 or 
Sh #3-clone 10) in 500 µl media containing no growth 
factors were seeded on top of the matrigel. The bottom 
well contained media with growth factors. Cells were 
incubated for 24 and 48 h. Cells that remained on the top 
of the membrane were scrubbed off with cotton swabs. 
Cells invaded into the matrix were fixed, stained with 
hematoxylin blue and counted using the ImageQuant 
software as described [46]. Cell migration was determined 
via wound healing assays as described [48]. Briefly, cells 
were seeded in 6-well plates and grown to 100% confluent 
monolayer, and scratched by a pipette-tip, washed with 
PBS and incubated in serum-free medium for 24 or 48 
h. Then cells were stained with Gemisa stain and phase 
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contrast images were taken. Cell proliferation was 
determined using MTT assay by absorbance at 490 nm 
employing a 96-well plate reader as described [49]. 

Western blot analyses

For detection of protein levels, whole cell lysates 
were prepared by lysing cells in ice-cold buffer composed 
of 50 mM Tris-HCl (pH 7.9), 150 mM NaCl, 1 mM EDTA, 
1 mM DTT, 1% NP-40, 10% glycerol, 1 mM PMSF, 2 
µg/ml leupetin, 2 µg/ml pepstatin, and 5 µg/ml aprotinin, 
on ice for 30 min. SDS-PAGE and Western blot analyses 
were performed using standard procedures [41,42]. 

statistical Analyses

Results are presented as Mean ± SE from at least 
three independent experiments. Prism software was used 
to perform Student’s t-test and differences between values 
will be considered significant when P < 0.05.

REsULTs 

Tumorigenic potential of GbM cells correlates 
with GFAP and Nestin expression

It is well documented that GFAP expression 
correlates with the astrocytic differentiation of GBM 
cells, while a high level of Nestin expression is detected in 
undifferentiated neural precursor cells [1,2,4,15]. We have 
investigated the tumor forming potential of two GBM cell 
lines, U251 and U87, expressing different levels of GFAP 
and Nestin. We found that U87 cells formed significantly 
larger tumors than U251 cells in immune compromised 
rodents when implanted in frontal brain lobes of rats 
(Fig. 1A), and right flanks of mice (Fig. 1B). We found 
differential expression of GFAP and Nestin in these 
two cell lines: while GFAP levels were much higher in 
U251 cells compared with U87 cells (Fig. 1C), Nestin 
expression pattern was in reverse to that of GFAP with 
high levels in U87 cells and almost undetectable in U251 
cells (Fig. 1D). 

To determine the transcriptional activity of GFAP 
and Nestin in U251 and U87 cells, we used luciferase 
reporter constructs driven by either a 2.2 kb human GFAP 
promoter [36,37] or a 714 bp NSC-specific Nestin enhancer 
(located in the second intron of the human Nestin gene) 
[18,38,39] linked to a minimal thymidine kinase (TK) 
promoter [40] (Fig. 1E). We found that U251 cells had 
high transcriptional activity for GFAP but undetectable 
Nestin transcription. In contrast, U87 cells exhibited 
undetectable GFAP transcription and high Nestin enhancer 
activation (Figs. 1F and G). Taken together, these results 

suggest that the tumorigenic potential of GBM cells is 
reciprocally associated with the level of differentiation. 
These observations are in agreement with earlier reports 
for the tumorigenic potential of U251 cells and their 
expression levels of GFAP and Nestin [4,12,50,51,52,53]. 

p300 differentially regulates the expression of 
GFAP and Nestin in GBM cells

We found that overexpression of p300 increased 
the GFAP promoter activity in a dose-dependent 
manner in U251 (Fig. 2A) and U87 (Fig. 2B) cells, as 
measured by luciferase reporter assay. On the other hand, 
overexpression of p300 inhibited Nestin enhancer activity 
in U87 cells (Fig. 2C). The inhibitory effect of p300 on 
Nestin enhancer activity was not measured in U251 cells 
because these cells had very low or undetectable basal 
activity. 

Activation of Stat3 is implicated in the astrocytic 
differentiation of NSCs and GBM cells [6,15,19,54,55,56]. 
Based on co-immunoprecipitation of overexpressed p300 
and Stat3 in 293T cells, Nakashima et al. have suggested 
that activated Stat3 binds to the interferon-γ activation 
site (GAS) in the GFAP promoter and recruits p300 [19]. 
We have previously demonstrated that GBM cells contain 
basal levels of constitutively activated Stat3, which can 
be increased in U87 cells by treatment with EGF or 
TGF-α and in U251 cells by treatment with IL-6 [41,49]. 
To examine whether p300 was recruited to the GFAP 
promoter in GBM cells and activated Stat3 contributed 
to this, chromatin immunoprecipitation (ChIP) was 
performed using chromatin preparations derived from IL-
6-stimulated U251 and EGF-stimulated U87 cells. p300 
recruitment to the GFAP promoter was detected only in 
U251 cells treated with IL-6 (Fig. 2D), suggesting that Stat3 
activation was required for the GFAP promoter occupancy 
of p300 that does not directly bind to DNA [20,21]. p300 
recruitment to the GFAP promoter was not detectable in 
EGF-treated U87 cells (Fig. 2D), which could, at least in 
part, be due to the differential transcriptional activity of 
the GFAP promoter in these two cell lines (Fig. 1F). 

Both U87 and U251 cells expressed endogenous 
p300 at comparable levels (Supplementary Fig. 1A), 
which were significantly reduced by the expression of 
shRNA (Supplementary Figs. 1B and C). Consistent 
with the observations described above, RNAi-mediated 
knockdown of endogenous p300 significantly reduced 
the GFAP promoter activity in U251 cells (Fig. 2E) while 
elevating the Nestin enhancer activity in U251 (Fig. 2F) 
and U87 cells (Fig. 2G). Two (Sh#1 and Sh#3) of the 
four different p300-shRNAs in pRS retroviral vector 
plasmid (Origene) found to be more effective than others 
(Supplementary Figs. 1B and C) were used in luciferase 
assays. To further investigate the role of p300, puromycin 
resistant stable clones of U251 cells expressing p300-
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Figure 1: Tumorigenicity of GBM cells correlates with expression of Nestin and GFAP. (A) Rat right frontal lobes were 
implanted with 5X105 U251 or U87 cells in 5 µl PBS. After 3 weeks, tumor volumes were determined by pixel imaging analysis. (B) The right 
flanks of nude mice were injected (s.c.) with 2.5X106 U251 or U87 cells in 100 µl PBS (mixed with 100 µl matrigel). After 5 weeks, tumor vol-
umes were calculated using the formula: volume = width2 x length x 0.4. U251 or U87 cells grown on coverslips were fixed, permeabilized and 
stained for (C) GFAP (green) and (D) Nestin (red) using respective primary antibodies and secondary antibodies conjugated with Alexafluor488 
and Alexafluor568 respectively. (E) Schematic of luciferase (Luc) reporter constructs: GFAP-Luc constitutes a 2.21 kb human GFAP promoter 
containing a GAS element (-1558 to -1547) in pGL3-Basic vector (upper panel) and Nestin-Luc constitutes a 714 bp enhancer fragment form the 
second intron of the human Nestin gene cloned upstream of an 81 bp minimal thymidine kinase (TK) promoter driving the luciferase gene in the 
vector, TP222 (lower panel). Activities of the GFAP promoter (F) and the Nestin enhancer (G) were determined at 72 h post transfection of U251 
and U87 cells (1X106) with indicated reporter plasmids (or empty vectors) by luciferase assay. For (A) & (B), each value represents mean ± SE 
of 5 individual animals of each group. Normalized percent luciferase values for (F & G) are plotted as mean ± SE (n = 3). ** indicates p < 0.01
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Figure 2: p300 differentially regulates transcription of GFAP and Nestin genes. U251 (A) and U87 (B & C) cells (1X106) 
were transfected with 2 µg GFAP-Luc (A & B) or 2 µg Nestin-Luc (C) reporter constructs along with indicated amounts of p300 or empty control 
vector (A, B & C). Luciferase activity was measured at 72 h after transfection. (D) 2X106 cells treated with 20 ng/ml of IL-6 or 100 ng/ml of EGF 
for 30 min and subjected to ChIP using anti-p300 or matched IgG antibodies. p300 occupancy to the GFAP promoter was determined by PCR 
using radio-labeled primers and product densities plotted as ‘percent of input’. U251 (E & F) and U87 (G) cells (1X106) were transfected with 
two different p300 -shRNAs (Sh#1 and Sh#3) or 2 µg empty vector along with 2µg GFAP-Luc (E) or Nestin-Luc (F & G) reporter constructs. The 
promoter/enhancer activity was determined at 72 h posttransfection by luciferase assay. Normalized percent luciferase values are plotted as mean 
± SE (n=3). * and ** indicate p < 0.05 and p < 0.01 respectively.
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shRNA constructs (Sh#1 and Sh#3) were generated 
(Supplementary Fig. 1D). These U251 stable clones 
had significant reduction of GFAP promoter activity 
(Fig. 3A) concomitant with significant upregulation of 
Nestin enhancer activation (Fig. 3B). A similar trend in 
the changes of GFAP (Fig. 3C) and Nestin protein (Fig. 
3D) expression was detected by immunofluorescence. 
Taken together, these data show that p300 differentially 
regulates GFAP and Nestin expression by likely acting as 
an inducer of astrocytic differentiation of GBM cells. 

Inhibition of endogenous p300 enhances the 
invasion and migration capacities of U251 cells

Because GSCs are implicated in the tumor invasion 
[13], we were interested to know whether RNAi-mediated 
reduction of p300 expression in U251 cells influenced 
their invasion capacity. Stable U251 clones expressing two 
p300  shRNA constructs (Sh#1 and Sh#3 in Supplementary 
Fig. 1D), which had significantly reduced levels of p300 
exhibited a more invasive phenotype compared with 
both parental and vector controls in a modified Boyden 
chamber invasion assay [45,46,47] (Figs. 4A and B). 
Moreover, consistent with the invasion data, wound 
healing assay revealed that shRNA-mediated reduction 
of p300 expression substantially increased the migration 
capacity of U251 cells (Fig. 4C). These differences were 
not due to differences in cell proliferation (Fig. 4D) as 
determined by MTT assay [49]. Taken together, these data 
suggest that p300 negatively regulates the migration and 
invasion of GBM cells in vitro. 

Myc plays a role opposite to that of p300 in the 
transcriptional regulation of GFAP and Nestin. 

Recent reports suggest that Myc regulates the 
‘stemness’ in GBM cells, although the underlying 
mechanisms remain unclear [30,31]. As with p300, we 
sought to investigate whether Myc regulated the GFAP 
promoter and Nestin enhancer activities in GBM cells. 
Comparable levels of Myc were expressed in U87 and 
U251 cells (Supplementary Fig. 2A). Overexpression 
of Myc resulted in reduction of the GFAP promoter 
activity in U251 cells (Fig. 5A) and increase in the Nestin 
enhancer activity in U251 (Fig. 5B) and U87 cells (Fig. 
5C). Consistent with the overexpression data, knockdown 
of endogenous Myc by two (Sh#2 and Sh#3) of the four 
different shRNA constructs (in pRS vector, Origene) 
tested (Supplementary Figs. 3B and C) increased the 
GFAP promoter activity in U251 (Fig. 5D) and U87 cells 
(Fig. 5E). Further, RNAi-mediated knockdown Myc 
expression reduced the Nestin enhancer activity in U87 
cells (Fig. 5F). These results suggest opposing effects for 
p300 and Myc on the transcription of GFAP and Nestin 
genes. This was further substantiated by the observations 

that Myc recruitment to the GFAP promoter was enhanced 
(Fig. 5G), and that to the Nestin enhancer was attenuated 
(Fig. 5H) in U251 cells that stably expressed p300-
shRNA (Sh#1-clone 10), as determined by ChIP assay. 
Collectively, our data suggest that p300 activates the 
GFAP promoter activity and represses the Nestin enhancer 
function, whereas Myc represses the GFAP promoter 
activity, and antagonizes the p300-mediated repression of 
the Nestin enhancer function. 

Myc overrides p300 function during 
transcriptional regulation of GFAP and Nestin 
genes in GbM cells

To further understand the relative contributions of 
p300 and Myc to the astrocytic differentiation of GBM 
cells, we overexpressed both p300 and Myc in U251 
and U87 cells and observed that Myc overrode the 
p300 functions with respect to both GFAP promoter and 
Nestin enhancer activities in U251 (Figs. 6A and B) and 
U87 cells (Figs. 6C and D). Both p300 and Myc were 
expressed in GBM cell lines (Supplementary Figs. 1A 
and 2A). To determine whether p300 and Myc were also 
expressed in human GBM tumors, frozen samples were 
sectioned (8 µm) and subjected to immuno-peroxidase 
staining with anti-p300 or anti-Myc antibody employing 
standard techniques (ABC method, Vector Laboratories, 
Burlingame, CA, USA), as described earlier [49]. All 
primary GBM tumors expressed p300 and Myc proteins, 
albeit at varying amounts (Supplementary Fig. 4 and Fig. 
6E) Interestingly, we noted tumors, like CCF 1267, that 
expressed relatively higher levels of Myc had cytoplasmic 
staining of p300 (Fig. 6E). Further, U87 cells-derived 
tumors grown in nude mice also expressed both p300 and 
Myc at varying levels (data not shown). We have used three 
other tumorigenic GBM cell lines, namely LN229, D54 
and SNB19, and found that p300 acted as an inducer of 
GFAP promoter and while inhibiting the Nestin enhancer 
activity, as measured by luciferase reporter assay; Myc, 
on the other hand, repressed the GFAP promoter and 
activated the Nestin enhancer in these cell lines (data not 
shown). 

In summary, our data indicate that Myc and p300 
have opposing functions with regards to regulating GFAP 
and Nestin transcription in GBM cells. Importantly, p300 
suppresses the invasion and migration potential of U251 
cells in vitro. Moreover, the effects of Myc appear to be 
dominant over those of p300. 

DIsCUssION 

In this article, we report three novel findings: one, 
p300 acts as an inducer of astrocytic differentiation 
of GBM cells; two, Myc overrides this p300 function 
and suppresses the differentiation; three, and p300 
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Figure 3: Effect of RNAi-mediated knockdown of p300 on GFAP and Nestin expression. (A & B) Five p300-shRNA 
stable clones (Sh#1-clones: 10, 20 and 27; Sh#3-clones: 10 and 12), one vector control and parental U251 cells (1X106) were transfected with 2 
µg of GFAP-Luc (A), and 2 µg of Nestin-Luc (B). Luciferase activity was measured at 72 h posttransfection and normalized percent luciferase 
activities were plotted as mean ± SE (n=3) (* and ** indicate p < 0.05 and p < 0.01 respectively). U251 stable clones overexpressing p300  shRNA 
(Sh#1-clone 10 and Sh#3-clone 10) were stained for GFAP (green) (C) and Nestin (red) (D) using specific antibodies.



Oncotarget 2010; 1: 289-303www.impactjournals.com/oncotarget 297

Figure 4: RNAi-mediated knockdown of p300 enhances invasion and migration of U251 cells in vitro. 2.5X104 
parental U251 cells, U251 stable clones expressing two different p300-shRNA constructs (Sh#1-clone 10 and Sh#3-clone 10) or empty vector 
were used for modified Boyden chamber invasion assay in serum-free medium. After 16 h, cells invaded to the underside of the membrane were 
fixed with methanol, stained with hematoxylin blue and (A) visualized using phase contrast microscopy. The number of invaded cells in (A) were 
counted and plotted as mean ± SE (n=3) (B). The experiment was repeated two times, and similar results were obtained. (C) U251 cells as used in 
(A) (parental, vector, Sh#1-clone 10, Sh#3-clone 10) were used for wound healing assay in serum-free medium and phase-contrast images were 
obtained at 0, 24 and 48 h after scraping. (D) Cell proliferation/viability was determined using MTT assay after 0, 24 and 48 h of serum starvation. 
The values are plotted as mean ± SE (n=3). ** indicates p < 0.01. 
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Figure 5: Myc differentially regulates the transcription of GFAP and Nestin genes in GBM cells. U251 (A, B & D) 
and U87 (C, E & F) cells (1X106) were transfected with 2 µg GFAP-Luc (A, D & E) or 2 µg Nestin-Luc (B, C, & F) reporter construct along with 
indicated amounts of Myc expression plasmid (or empty vector) (A, B & C) or two different Myc-specific shRNAs (Sh #2 and #3) (D, E, & F). 
GFAP promoter (A, D & E) and Nestin enhancer (B, C & F) activities were determined at 72 h post transfection by luciferase assay and normal-
ized percent luciferase activities are plotted as mean ± SE (n=3). * and ** indicate p < 0.05 and p < 0.01 respectively. 2X106 parental U251 or 
p300-shRNA-expressing stable clone (Sh#1-clone 10) were treated with 20% FBS for 4 h and subjected to ChIP using anti-Myc or matched IgG 
antibodies (G & H). Myc recruitment to the GFAP promoter (G) or the Nestin enhancer (H) was determined by PCR using radio-labeled primers 
and product densities plotted as ‘percent of input’.
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Figure 6: Myc overrides p300-mediated transcriptional regulation of GFAP and Nestin. U251 (A & B) and U87 (C & 
D) cells (1X106) were transfected with 2 µg GFAP-Luc (A & C) or 2 µg Nestin-Luc (B & D) reporter construct along with 1 µg of p300 and 1 
µg of Myc expression constructs, either separately or in combination. Luciferase activity was determined at 72 h posttransfection and normalized 
percent luciferase activities were plotted as mean ± SE (n=3) (* and ** indicate p < 0.05 and p < 0.01 respectively). (E) Sections (8 µm) of human 
GBM tumors (CCF-1267 and CCF-1315) were stained with p300-or Myc antibody, visualized using DAB substrate kit (Vector Laboratories) and 
counterstained with methyl green. Representative samples were also stained with hematoxylin and eosin (H & E). 



Oncotarget 2010; 1: 289-303300www.impactjournals.com/oncotarget

suppresses the invasive potential of GBM cells. Aside 
from these in vitro findings, we observed a reciprocal 
correlation between degree of astrocytic differentiation 
of GBM cells and their capacity of tumor formation in 
immune compromised rodents. It is well recognized that 
neoplastic cells in a tumor are heterogeneous with respect 
to their differentiation states and a number of recent 
studies suggest a hierarchical model for tumorigenesis, 
demonstrating that undifferentiated cancer cells, but not 
differentiated ones, drive cancer maintenance in rodent 
xenograft models [4,6,7,8,50,51]. Accordingly, our in 
vivo data support the hierarchical model for tumorigenesis 
in GBM model. Because each neoplastic cell of a tumor 
virtually represents the progeny of a single cell, a stochastic 
model for tumorigenesis was proposed earlier, postulating 
that each neoplastic cell of a tumor may retain the same 
potential for tumorigenesis [5]. Now, there is compelling 
evidence that differentiation is not an irreversible process 
[57,58], which suggests that these two tumorigenesis 
models may not be mutually exclusive. 

Differentiation of stem cells, in general, is associated 
with  their  nuclear reprogramming resulting in the 
silencing of ‘stemness’-specific genes and induction 
of differentiation-specific genes [57,58,59,60]. During 
development of the central nervous system (CNS), 
differentiation of NSCs to neurons, astrocytes and 
oligodendrocytes is associated with major reorganization 
of the cytoskeleton associated with differential expression 
of intermediate filamentous proteins [15,17,18]. 
For example, Nestin and Vimentin are expressed in 
the early phase of CNS development and are later 
replaced by neurofilaments and GFAP in neurons and 
astrocytes respectively. In consistence with this genetic 
reprogramming, GSCs, like NSCs, express Nestin but not 
GFAP, and differentiated GBM cells do not express Nestin 
but GFAP [4,12,18,38,52]. 

Our data suggest that p300 serves as a key inducer 
of the astrocytic differentiation of GBM cells, which 
is demonstrated at the levels of GFAP- and Nestin 
transcription. p300 does not directly bind to DNA, 
but associates with chromatin through protein-protein 
interactions [20]. Two families of cytokines are shown to 
play key roles in astrocytic differentiation of NSCs: IL-6 
family cytokines that activate Stat3 and BMPs that activate 
Smad1 [1,15,19,55]. The GFAP promoter contains a Stat3 
recognition site (GAS) that recruits activated Stat3 [19]. 
Based on co-immunoprecipitation of overexpressed p300 
and Stat3 in 293T cells, Nakashima et al. have suggested 
that activated Stat3 binds to the GAS and recruits p300 
[19]. We found that expression of a mutant dominant 
(DN-Stat3) [34,61] resulted in an increase in Nestin 
enhancer activity in U87 and U251 cells (Supplementary 
Figs. 4A and B), while inhibiting GFAP promoter 
activity in U251 cells (Supplementary Fig. 4C). Further, 
mutation in the GAS (Fig. 1E) in the GFAP promoter 
dramatically reduced the luciferase activity in U251 cells 

(Supplementary Fig. 4D). Moreover, the recruitment 
of Stat3 to the GFAP promoter in both U251 and U87 
cells could be demonstrated by ChIP experiments (data 
not shown). Thus, our data suggest that p300 could be 
recruited to the GFAP promoter via activated Stat3, which 
is persistent in GBM cells [49]. The enhancer element that 
controls the cell-specific transcription of the Nestin gene 
does not contain a functional GAS element; therefore, it 
remains to be seen how p300 is recruited to the Nestin 
enhancer to suppress its activity. 

Because malignant glioma cells expressing neural 
stem cell markers exhibit a migratory potential similar to 
normal neural stem cells [13], we wanted to know whether 
p300 regulates the migration and invasion of GBM cells. 
Our data show that RNAi-mediated knockdown of p300 
significantly increases the migration and invasion of U251 
cells in vitro. This finding is consistent with the earlier 
observations by Rutka et al., who have demonstrated 
that elimination of GFAP in U251 cells with anti-sense 
RNA results in the marked decrease in cell adhesion and 
increase in invasiveness [12], which is associated with 
increased expression of β1 integrin [62] and CD44, and 
with redistribution of actin forming actin stress fibers 
implicated in the regulation of cell motility [63]. 

Myc plays important roles in development and 
cancer by regulating cell cycle progression, apoptosis, 
transformation, differentiation and angiogenesis [22,64]. 
Mice overexpressing transgenic Myc under the GFAP 
promoter develop malignant gliomas [65]. Here, we report 
that Myc represses the transcription of GFAP in GBM cells 
with concomitant induction of Nestin, and it overrides 
the p300-mediated induction of GFAP and repression of 
Nestin. Thus, Myc suppresses the astrocytic differentiation 
of GBM cells. These findings are consistent with the 
report by Lassman et al. that overexpression of Myc 
suppresses GFAP expression and induces the expression 
of Nestin in mature murine astrocytes [30]. It is important 
to note that recent studies have identified Myc as one of 
the four transcription factors (Oct3/4, Sox2, Klf4 and 
Myc), which are capable of inducing the dedifferentiation 
of human and mouse fibroblasts to pluripotent stem cells 
[57,58]. Further, it has been speculated from these studies 
that Myc serves as chromatin modifier allowing Sox2 and 
Oct3/4 recruitment to the ‘stemness’-associated genes for 
the maintenance of the pluripotency of stem cells [58,66]. 
Therefore, it remains to be seen whether chromatin 
modification by Myc contributes to the ‘stemness’ of 
GBM cells. 
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