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ABSTRACT
Recent data suggest that autophagy does not influence spontaneous and 

therapy-elicited tumor infiltration by immune cells in murine models of melanoma 
and breast carcinoma. These findings, which have been obtained in the absence of a 
therapeutically relevant anticancer immune response, indicate that the intrinsically 
low immunogenicity of some tumors cannot be compensated for by increased danger 
signaling.

Macroautophagy (hereafter referred to as autophagy) 
is a highly conserved catabolic pathway though which 
eukaryotes preserve homeostasis at both the cellular (cell-
intrinsic) and organismal (cell-extrinsic) level [1, 2]. Thus, 
autophagy continuously operates at low rates to remove 
cytoplasmic entities that may accumulate (and hence pose 
a threat) as a consequence of normal metabolism, such 
as redox-active protein aggregates and permeabilized 
mitochondria [3]. Moreover, the flux of substrates 
through the autophagic machinery is highly responsive to 
perturbations of intracellular and extracellular homeostasis 
as diverse as nutritional, metabolic, hormonal, physical 
and chemical cues [4-6]. This means that most - if not 
all - eukaryotic cells can adapt the rate of autophagic 
degradation to external stimuli, and this is a key 
component of adaptive stress responses [7]. In line with 
this notion, inhibiting autophagy with pharmacologic 
agents or genetic maneuvers generally precipitates (rather 
than retards) the death of cells experiencing potentially 
lethal microenvironmental perturbations [8, 9]. Finally, 
autophagy contributes to the preservation of organismal 
homeostasis and supports healthy aging as it impacts on 
multiple extracellular processes with local (short-range) or 
systemic (long-range) outcomes [10, 11]. As a standalone 

example, proficient autophagic responses in muscles 
and in the liver are required for the beneficial effects of 
endurance exercise on systemic glucose metabolism [12].

Unfortunately, the pronounced capacity of 
autophagy to support cellular homeostasis in the course of 
adaptive stress responses does not benefit normal, healthy 
cells only [3, 13]. Thus, autophagy not only promotes 
natural tumor progression as it favors the survival of 
malignant cells experiencing adverse microenvironmental 
conditions (e.g., hypoxia, reduced nutrient and growth 
factor availability) [14], but also promotes chemo- 
and radioresistance (at the cell-intrinsic level) [15, 
16]. Accordingly, chemical agents as well as genetic 
interventions targeting core components of the autophagic 
machinery have been shown to increase the sensitivity of 
cultured cancer cells to a wide panel of chemotherapeutic 
agents and radiotherapeutic regimens [15]. Similar 
findings have been obtained when the response of 
autophagy-competent versus autophagy-deficient cancer 
cells to treatment was evaluated in immunodeficient 
animals [15]. Throughout the past decade, all these 
observations generated remarkable enthusiasm on the 
possibility that inhibiting autophagy would mediate 
anticancer effects per se, or it would boost the efficacy 
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of conventional chemo- and radiotherapeutic regimens 
[2, 17]. The results of multiple clinical trials testing these 
therapeutic paradigms in cancer patients, however, have 
been largely disappointing [18-25].

Although several factors may underlie such a fiasco, 
we and others are persuaded that it relates for the most 
part to: (1) the too-often-disregarded cell-extrinsic effects 
of autophagic responses within malignant cells, and (2) 
the cell-intrinsic effects of autophagy in non-malignant 
components of the tumor environment (including immune 
effector cells) [15]. Proficient autophagic responses in 
neoplastic cells succumbing to some chemotherapeutics 
are indeed fundamental for optimal danger signaling, 
which involves the spatiotemporally ordered emission of 
endogenous immunostimulatory molecules commonly 
referred to as “damage-associated molecular patterns” 
(DAMPs) [26-29]. In particular, autophagy-deficient 
malignant cells fail to secrete ATP and to release high-
mobility group box 1 (HMGB1) as they die, underlying 
their inability to trigger tumor-targeting immune responses 
in the absence of exogenous adjuvants [26, 27, 30, 31]. 
Moreover, the activation of autophagy in dying cancer 
cells is required for dendritic cells to optimally process 
tumor-associated antigens and cross-present them to 
CD8+ cytotoxic T lymphocytes (CTLs) on MHC Class I 
molecules [32-34]. Thus, autophagy-deficient malignant 
cells growing in syngeneic immunocompetent hosts are 
generally less (rather than more) sensitive to anticancer 
agents that actively promote a therapeutically relevant 
immune response, including doxorubicin and oxaliplatin 
[35, 36], as well as to some forms of radiotherapy [37-
39], then their autophagy-competent counterparts [26, 27, 
40, 41]. Finally, autophagy is required for the survival, 
proliferation and activity of multiple cell populations 
involved in adaptive anticancer immunity, notably CD8+ 

CTLs [42-46]. Taken together, these observations suggest 
that not only the systemic but also the local inhibition of 
autophagy, may limit the efficacy of antineoplastic agents 
that stimulate anticancer immune responses [47], at least 
in immunocompetent hosts (such as the vast majority 
of cancer patients). As a corollary of this hypothesis, it 
has been proposed that activating (rather than inhibiting) 
autophagy may boost the efficacy of cancer therapy [15]. 
Indeed, various nutritional interventions that potently 
trigger autophagy in multiple organs (including short-
term fasting, fasting-mimicking diets, and so-called 
caloric restriction mimetics, CRMs) turned out to improve 
disease outcome in a variety of rodent tumor models 
established in syngeneic immunocompetent hosts [40, 
48-51]. Moreover, biomarkers of proficient autophagic 
responses in malignant cells have been associated with 
improved disease outcome in cohorts of breast carcinoma 
and multiple myeloma patients [52-54]

Irrespectively (and in spite of the considerable 
success achieved by multiple forms of immunotherapy 
throughout the past decades), many investigators and 

clinicians tend to perceive cancer as a cell-autonomous 
disorder, and hence favor the interpretation that autophagy 
should be inhibited in the context of cancer therapy [2]. 
To obtain additional insights into this issue, Starobinets 
and collaborators recently investigated the impact of 
autophagy inhibition on quantitative and qualitative 
aspects of the immunological tumor infiltrate in two mouse 
tumors models, notably B16 melanoma cells (syngeneic 
to C57BL/6 mice) and 4T1 breast carcinoma cells 
(syngeneic to BALB/c mice) implanted subcutaneously or 
orthotopically [55].

Initially, B16 and 4T1 cell variants with stable (but 
partial) autophagic defects imposed by the short hairpin 
RNA (shRNA)-mediated depletion of autophagy related 7 
(Atg7) or autophagy related 12 (Atg12) were established. 
The stable downregulation of Atg7 or Atg12 did not affect 
tumor growth in immunocompetent syngeneic mice [55], 
contrasting with previous literature on the topic [15]. Next, 
spontaneous tumor infiltration by multiple populations 
of immune cells (CD45+ cells, CD3+ T cells, CD3+CD4+ 
T cells, and CD3+CD8+ CTLs) [56] was determined in 
established (2-3 weeks after implantation) autophagy-
competent versus -incompetent tumors, and no differences 
were found [55]. Similarly, the spontaneous CD3+CD4+ 
and CD3+CD8+ T-cell infiltrates isolated from autophagy-
proficient versus -deficient B16 and 4T1 tumors growing 
in immunocompetent syngeneic mice did not differ with 
respect to an panel of activation/exhaustion markers 
encompassing CD44, interferon gamma (IFNG), tumor 
necrosis factor (TNF), granzyme B (GRZB, measured on 
CD8+ CTLs only) and programmed cell death 1 (PDCD1, 
best known as PD-1) [55, 57, 58].

To extend their observations to another relevant 
model, Starobinets and colleagues generated autophagy-
competent (transfected with an irrelevant shRNA) 
and -incompetent (transfected with Atg7- and Atg12-
targeting shRNAs) B78 melanoma cells stably expressing 
ovalbumin (OVA) as a model antigen [55, 59]. OVA-
expressing autophagy-proficient and -deficient B68 tumors 
developed with similar kinetics in immunocompetent 
C57BL/mice, and they attracted comparable amounts 
of adoptively transferred OVA-specific CD3+CD4+ and 
CD3+CD8+ OT-1 cells [55, 60]. Moreover, CD3+CD4+ and 
CD3+CD8+ OT-1 cells infiltrating autophagy-competent 
versus -incompetent B68 tumors did not differ with respect 
to CD44, IFNG, TNF and GRZB expression [55].

Next, the release of ATP and HMGB1 by 
autophagy-proficient versus -deficient B16 cells exposed 
to doxorubicin in vitro was monitored, confirming that 
doxorubicin can promote the release of these DAMPs 
by B16 cells in an autophagy-dependent manner. 
However, Starobinets and collaborators could not 
vaccinate C57BL/6 mice with B16 cells succumbing to 
doxorubicin, irrespective of autophagic proficiency [55, 
61, 62]. This in line with a previous report from our group, 
demonstrating that B16 cells are poorly immunogenic 
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(repeated administrations of dying B16 cells was required 
to achieve protective immunity, to some extent) [63]. Of 
note, intravenous doxorubicin failed to limit the growth 
of autophagy-competent (and -incompetent) B16 tumors 
established in C57BL/6 mice. Moreover, the differential 
sensitivity of autophagy-proficient versus -deficient B16 
cells to acute cell death induced doxorubicin in vitro 
was marginal at best (same sensitivity at 8 different 
concentrations of the drug in the 1-10 µM and 20-100 
µM ranges, some extent of increased sensitivity for Atg7-
depleted cells at approximately 1, 10 and 50 µM; based 
on a single representative experiment) [55]. In the absence 
of any therapeutic effect, doxorubicin failed indeed to 
promote the infiltration of B16 tumors by CD3+CD4+ and 
CD3+CD8+ T cells, irrespective of autophagic-proficiency, 
although it did promote some activation in the pre-
existing tumor infiltrate (as per intratumoral levels of 
CD3+CD4+CD44+ and CD3+CD8+CD44+ cells [55].

Finally, Starobinets and colleagues monitored the 
impact of autophagy inhibition with antimalarial drugs 
like chloroquine and quinacrine (which are highly non-
specific as they block lysosomal degradation) [64-68] on 
the growth of B16 and 4T1 cells in immunocompetent 
hosts [55]. Neither chloroquine nor quinacrine had an 
effect on tumor progression in vivo (although they did 
inhibit autophagy in malignant cells). Moreover, these 
antimalarial drugs failed to affect spontaneous tumor 
infiltration by CD3+CD4+ and CD3+CD8+ T cells and the 
activation/exhaustion status of these cells [55 Apetoh, 
2015, 26137416]. It is tempting to speculate that such a 
complete absence of response reflects (at least in part) 
the detrimental effects of autophagy inhibition on various 
populations of the immune system (including myeloid 
antigen-presenting cells, a compartment for which 
autophagy is particularly important from a functional 
perspective) [69-74].

In conclusion, the findings by Starobinets and 
colleagues suggest that autophagy-dependent DAMP 
signaling cannot compensate for the intrinsically low 
immunogenicity of some tumors (and the consequent 
absence of a therapeutically relevant anticancer immune 
response). An abundant literature demonstrates that 
autophagy plays a critical role in the capacity of multiple 
chemotherapeutic and some forms of radiation therapy 
to elicit anticancer immune responses that beneficially 
influence disease outcome (in mice and in cancer 
patients). Thus, in tumor models in which chemotherapy 
(or radiation therapy) mediates antineoplastic effects that 
depend on the immune system, the autophagic proficiency 
of malignant cells appears to support the elicitation 
of local, therapeutically relevant anticancer immune 
responses [75-79]. Moreover, in such models, nutritional 
interventions that potently induce autophagy at the whole-
body level can boost the efficacy of chemotherapy or 
radiation therapy via immunological mechanisms. These 
experimental settings include (but are not limited to) (1) 

mouse MCA205 fibrosarcomas, TC1 lung carcinomas, 
4T1 breast carcinomas, and CT26 colorectal cancers 
established in immunocompetent syngeneic mice; (2) 
carcinogen-driven breast carcinomas in C57BL/6 mice; 
and (3) KRASG12D-induced lung carcinoma in in C57BL/6 
mice [40, 50]. In sharp contrast, as demonstrated by 
Starobinets and colleagues [55], when chemotherapy 
fails to elicit immunogenic cell death, the autophagic 
proficiency of malignant cells does not influence 
anticancer immunosurveillance (which is therapeutically 
irrelevant a priori).
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