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ABSTRACT
Due to genetic heterogeneity and variable diagnostic criteria, genetic studies 

of polycystic ovary syndrome are particularly challenging. Furthermore, lack of 
sufficiently large cohorts limits the identification of susceptibility genes contributing 
to polycystic ovary syndrome. Here, we carried out a systematic search of studies 
deposited in the Gene Expression Omnibus database through August 31, 2016. The 
present analyses included studies with: 1) patients with polycystic ovary syndrome 
and normal controls, 2) gene expression profiling of messenger RNA, and 3) 
sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met 
the inclusion criteria and were performed for the subsequent integrated analyses. 
Through comprehensive analyses, there were 13 genetic factors overlapped in all 
datasets and identified as significant specific genes for polycystic ovary syndrome. 
After quality control assessment, there were six datasets remained. Further gene 
ontology enrichment and pathway analyses suggested that differentially expressed 
genes mainly enriched in oocyte pathways. These findings provide potential molecular 
markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth 
studies on the exact function and mechanism in polycystic ovary syndrome.

INTRODUCTION

Polycystic ovary syndrome (PCOS), as a highly 
complex endocrine disorder, is usually comprised of 
phenotypical and heterogeneous reproductive effects [1] 
as well as metabolic symptoms [2–5]. Thus, there is great 
genetic heterogeneity and different pathophysiological 
mechanisms of various PCOS phenotypes. The genetic 
heterogeneity, combined with the pronounced variability 
in the diagnostic criteria, makes the genetic study and 
susceptibility gene identification of PCOS particularly 
difficult. Although PCOS has been studied for decades, 
the genetic contributions to this disorder are not fully 
understood. Furthermore, lack of sufficiently large 
cohorts also reduces the power to identify specific genes 
of PCOS [6]. 

It has been reported that candidate genes associated 
with PCOS contribute to different biological processes and 
phenotypes [7]. For example, as the association between 
obesity and PCOS [8], gene variants affecting fat mass, 
such as FTO [9], have been found to be involved in PCOS. 
The effect of common variants in TCF7L2 and KCNJ11 
is likely to be mediated by the impairment of insulin 
secretion from β-cells, as a well-established pathogenic 
pathway in PCOS [10]. The hyperandrogenemia of PCOS 
is most commonly characterized by increased testosterone 
levels, resulting from enhanced ovarian biosynthesis [11]. 
Several genes (CYP11A, CYP19) involved in steroid 
biosynthesis pathways are also potential candidate genes 
for PCOS. However, the candidate genetic markers 
significantly contributing to the diagnosis and prognosis 
of PCOS needs to be further explored.
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Recently, gene expression profiling with microarray 
and RNA sequencing has been used to discover gene 
markers and signaling pathways associated with various 
complex diseases [12]. Gene expression datasets from 
PCOS patients and normal controls have been collected 
for the successful identification of gene expression 
signatures [13]. However, as  the extreme heterogeneity 
and small sample size among studies, the reproducibility 
of various studies is very low [14]. If a larger sample 
size is not attainable, integrated analyses of multi-center 
collaborative studies become very useful [15]. 

In this study, to investigate the candidate diagnostic 
and prognostic genetic markers for PCOS, we performed 
comprehensive and statistical analyses on 9 case-control 
studies with 13 gene expression profiling datasets. Finally, 
we identified 13 genetic markers may be potential molecular 
factors for the diagnosis and prognosis of PCOS patients. 
Further functional studies of these candidate genes may 
improve the understanding and treatment of PCOS diseases.

RESULTS

Characteristics of included studies

Nine well-designed GEO studies (accession 
numbers: GSE1615, GSE5850, GSE5090, GSE6798, 
GSE8157, GSE10946, GSE34526, GSE43264 and 
GSE48301) with PCOS patients and normal controls were 
included in this analysis [16–22]. Five different microarray 
platforms (GPL96, GPL 97, GPL570, GPL15362 and 
GPL6244) were used to generate 13 datasets from the nine 
case-control studies. Detailed descriptions of each dataset 
were shown in Table 1. After dataset preparing as shown 
in Figure 1, expression profiles for a total of 8470 genes in 
these datasets were extracted for further analysis.

Correlation of gene expression in various PCOS 
profiles 

The expressing pattern for each dataset was 
obtained by the methods of calculating the expression 
variation score (EVS) [23]. By clustering with Pearson, 
Spearman and Kendall correlations, the relationships for 
the 13 datasets were shown in Figure 2A, 2B and 2C, 
respectively. The coefficience values suggested that two 
datasets (GSE6798 and GSE8157) from PCOS muscles 
[20, 21] were extremely consistent with each other 
and obviously apart from the other 11 datasets. The 
high consistency may be resulting from the specificity 
of muscle tissues and the same laboratory. Thus, we 
integrated these two datasets as Muscle2 and performed 
further analysis. Among the remained 11 PCOS datasets 
(Figure 2A–2C), there only three datasets from GSE48301 
showed reasonable similarities. As heterogeneity of 
sampling tissues and low quality of datasets, the quality 
control should be performed before meta-analysis. 

Quality control (QC) assessment in 11 datasets 

To identify datasets with high quality and 
consistency, we carried out the quality assessment for the 
11 PCOS datasets by the R package MetaQC [24]. Six 
QC assessments including homogeneity of coexpression 
structure, accuracy and consistency of biomarkers 
detection with or without pathway information were 
calculated. As shown in Table 2 and Figure 3 with PCA 
biplots, the top five datasets (GSE43264, GSE48301_
eSF, GSE1615, GSE10946_obese and GSE48301_
eMSC) performed relatively well in most criteria, while 
GSE48301_eEP as borderline case. After excluded the 
bottom five datasets (GSE34526, GSE48301_eEN, 
GSE5090, GSE5850 and GSE10946_lean) with low 
quality assessment, there were 6 datasets, named as 
PCOS6, remained for the following analysis. 

Identification of differentially expressed genes 
(DEG) by MetaDE

Further analyses for both groups of Muscle2 and 
PCOS6 were performed by the MetaDE package. The 
datasets in two groups were re-merged and filtered, 
respectively. From the detection competency curves 
(Figure 4A, 4B), most methods of meta-analysis were 
useful to detected common DEGs among different 
datasets, especially for the Fisher method. Under the 
criteria of q value less than 0.05, there were 869 and 287 
DEGs were identified in Muscle2 and PCOS6, respectively 
(Supplementary Table S1, S2). The expression patterns of 
these DEGs were shown in the heatmaps (Figure 4C, 4D), 
suggesting that the common DEGs were almost 
consistency in each dataset.

Functional enrichment and signaling pathway 
analyses

Functional enrichment analyses were performed 
with the DAVID web server. We found that the 869 DEGs 
in Muscle2 datasets were particularly enriched in the 
muscle system, metabolic process and activity (Figure 5A, 
Supplementary Table S3), agreed with previous reports 
[20, 21]. Meanwhile, the 287 DEGs in PCOS6 datasets 
mainly focused on the response to stimulus from 
endogenous, hormone and steroid hormone (Figure 5B, 
Supplementary Table S4). 

Further signaling pathway analyses showed that 
the DEGs in Muscle2 almost enriched in several types 
of cancers, junction pathway, and signaling pathways 
including B cell receptor, VEGF, Calcium and MAPK 
(Figure 5C, Supplementary Table S5). Then, the PCOS6 
DEGs directly focused on the oocyte meiosis and oocyte 
maturation, and also enriched in cancer pathway, apoptosis, 
adhesion, adipocytokine, neurotrophin, mTOR and p53 
signaling pathways (Figure 5D, Supplementary Table S6). 
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Further analyses of common and potential DEGs 
in PCOS 

The DEGs overlapped in Muscle2 and PCOS6 
groups were shown in a Venn diagram (Figure 6). 
Interestingly, there were 13 DEGs (SIAE, S100A8, 
ICAM1, EIF4E2, RAB32, FN1, MORC4, RGS10, 

SLC1A1, FGF7, SLC35D2, PDGFRA and APCDD1) 
identified in both groups. Then, these DEGs were 
classified as common markers of PCOS (Table 3). 

Furthermore, the multivariate Cox proportional 
hazard analyses of the 13 DEGs among patients with 
ovarian serous cystadenocarcinoma (TCGA: http://
cancergenome.nih.gov) were performed. We found 

Table 1: Characteristics of the 13 datasets included in the analysis
ID GSE Acc GPL Details #Control #Case Country PMID #Probe #Symbol

1 GSE1615 GPL96/97 Theca cell 4 5 USA 15598877 44928 19923

2 GSE5090 GPL96 Omental adipose 8 9 Spain 17062763 22283 13236

3 GSE5850 GPL570 Oocytes MII 6 6 USA 17148555 54675 22878

4 GSE6798 GPL570 Vastus lateralis 
muscle

13 16 Denmark 17563058 54675 22878

5 GSE8157 GPL570 Vastus lateralis 
muscle

13 10 Denmark 18560589 54675 22878

6 GSE10946_lean GPL570 Cumulus cells(lean) 6 5 Canada 19141487 54675 22878

7 GSE10946_obese GPL570 Cumulus cells(obese) 5 7 Canada 19141487 54675 22878

8 GSE34526 GPL570 Granulosa cells 3 7 India 22904171 54675 22878

9 GSE43264 GPL15362 Subcutaneous 
adipose

7 8 Ireland unpub 17126 16910

10 GSE48301_eEN GPL6244 Endothelial cells 4 3 USA 23824412 32321 19740

11 GSE48301_eEP GPL6244 Epithelial cells 3 4 USA 23824412 32321 19740

12 GSE48301_eMSC GPL6244 Mesenchymal cells 4 3 USA 23824412 32321 19740

13 GSE48301_eSF GPL6244 Stromal fibroblasts 
cells 

4 4 USA 23824412 32321 19740

Figure 1: The process of data collection, selection, processing, and analysis. (A) The process of data collection and selection; 
(B) The process of data processing and further analyses.
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Figure 2: Correlation analyses of the relationships among 13 datasets based on gene expression variation profiles.  
(A) Clustering with Pearson; (B) Clustering with Spearman; (C) Clustering with Kendall correlation coefficience. The positive and negative 
correlations between pairs of datasets are shown as red and green respectively, and the size of node index the strength of correlation.

Table 2: Results of quality control measures and SMRs for 11 datasets
ID Study IQC EQC CQCg CQCp AQCg AQCp SMR Quality

1 GSE43264 4.02 4 2.51 3.32 2.63 4.54 2.67 high
2 GSE48301_eSF 9.49 2.82 8.89 2.44 12.97 1.17* 2.83 high
3 GSE1615 2.43 3 1.92* 2.64 0.92* 2.78 4.67 high
4 GSE10946_obese 7.45 4 0.27* 2.89 0.1* 0.7* 5.17 high
5 GSE48301_eMSC 6.1 2.62 7.12 0.59* 8.35 0.49* 5.33 high
6 GSE48301_eEP 6.25 3.1 1.88* 0.23* 0.46* 1.16* 5.5 borderline
7 GSE34526 1.74* 4 0.35* 1.36* 0.14* 0.05* 7.17 low
8 GSE48301_eEN 4.17 2.34* 0.46* 1.06* 0.63* 0.08* 7.17 low
9 GSE5090 0.98* 1.68* 0.51* 0.77* 1.86* 0.05* 8.33 low
10 GSE5850 0* 2.32* 0.05* 3.07 0.07* 0.41* 8.5 low
11 GSE10946_lean 3.15 2.8 0* 0.03* 0.05* 0.99* 8.67 low

*P value not significant after Bonferroni correction (i.e. P > 0.05/# of studies).
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Table 3: The 13 common DEGs identified in both Muscle2 and PCOS6 
Muscle2 PCOS6

Gene Meta.stat Meta.p_value Meta.q_value Meta.stat Meta.p_value Meta.q_value

SIAE 24.8724 7.09E-05 0.0094 36.5715 0.0006 0.0383 
S100A8 17.3211 0.0022 0.0485 36.2393 0.0006 0.0404 
ICAM1 20.0402 0.0007 0.0290 49.7231 8.01E-06 0.0150 
EIF4E2 32.4194 2.34E-06 0.0012 39.4171 0.0002 0.0324 
RAB32 18.2467 0.0015 0.0410 40.2864 0.0002 0.0298 
FN1 22.7958 0.0002 0.0172 43.3634 5.93E-05 0.0208 
MORC4 21.3159 0.0004 0.0236 34.4672 0.0011 0.0469 
RGS10 19.1576 0.0010 0.0343 47.2925 1.87E-05 0.0156 
SLC1A1 18.3162 0.0014 0.0403 38.6278 0.0003 0.0333 
FGF7 19.3963 0.0009 0.0328 34.6910 0.00103 0.0460 
SLC35D2 19.9783 0.0007 0.0292 38.0259 0.0004 0.0347 
PDGFRA 18.5395 0.0013 0.0382 38.8920 0.0003 0.0333 
APCDD1 27.6092 1.82E-05 0.0040 35.3975 0.0008 0.0430 

Figure 3: The PCA biplots of QC measures by MetaQC in 11 datasets. The top five datasets (GSE43264, GSE48301_eSF, 
GSE1615, GSE10946_obese and GSE48301_eMSC) performed relatively well in most criteria. The bottom five datasets (GSE34526, 
GSE48301_eEN, GSE5090, GSE5850 and GSE10946_lean) were defined as exclusion cases.  GSE48301_eEP was defined as borderline case.
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that four genes (SIAE, ICAM1, FN1, and FGF7) were 
significantly correlated with disease-free survival, while 
the other three genes (SIAE, FGF7, and PDGFRA) were 
significantly correlated with overall survival (Table 4). 
These findings further confirmed that the critical role of 
these candidate genes in PCOS.

DISCUSSION

PCOS is a highly complex endocrine disorder 
and affected by phenotypically heterogeneous. As its 
phenotypic heterogeneity and studies with small sample 
sizes, the power is low to identify specific genes for PCOS. 

To increase the sample size and make powerful analysis, 
we performed the integrated and meta-analyses to improve 
the quality of gene association studies. Then, we identified 
13 genetic markers may be potential molecular factors for 
the diagnosis and prognosis of PCOS patients.

Recently, microarray analysis of gene expression 
profiles has been widely used to identify genes and 
biological pathways associated with various complex 
diseases, including PCOS. However, previous studies 
have sampled different tissues from PCOS patients. The 
pathological factors and mechanisms in various tissues of 
PCOS patients may be similar. In this study, to identify the 
common PCOS-associated genes in multiple types of tissues, 

Figure 4: Results of DEGs by metaDE. (A) The detection competency curves for Muscle2; (B) The detection competency curves for 
PCOS6; (C) The heatmap plot of DEG expression profiles for Muscle2; (D) The heatmap plot of DEG expression profiles for PCOS6. The 
column with 0 on top stands for normal samples, while 1 stands for PCOS patients.
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we carried out the integrated analysis and identified 13 
common DEGs for PCOS. Taking ICAM-1 for an example, 
two SNPs of ICAM-1, G241R and K469E, have been found 
to be risk factors for PCOS [25]. Moreover, ICAM1 K469E 
is associated with obesity and PCOS, according to serum 
triglyceride levels [26]. As evidenced by gene ontology and 
pathway analyses, these DEGs in Muscle2 datasets directly 
involved in muscle mysion complex, myofibril, muscle 

system and muscle contraction. The DEGs in PCOS6 
datasets mainly focused on oocyte pathways, including 
oocyte meiosis (PPP2R1B, RPS6KA6, MAD2L1, SGOL1, 
CAMK2D, IGF1, and ANAPC11) and progesterone-
mediated oocyte maturation (RPS6KA6, MAD2L1, IGF1, 
ANAPC11, PIK3R3, and CCNA2). In-depth functional 
studies of these candidate genes and signaling pathways may 
improve the understanding of PCOS.

Figure 5: The enrichment analysis of the DEGs by DAVID. (A) The barplot of gene ontology enrichment for Muscle2 (green for 
molecular function, blue for cellular component, red for biological process); (B) The barplot of gene ontology enrichment for PCOS6; (C) 
Rich factor plot of pathway enrichment for Muscle2; (D) Rich factor plot of pathway enrichment for PCOS6.
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Table 4: Cox proportional hazard analysis of the 13 common DEGs for DFS and OS among patients 
with ovarian serous cystadenocarcinoma

Variable PHA Test* HR P 95%CI_L 95%CI_H
DFS
SIAE 0.7022 1.1439 0.0354† 1.0092 1.2965 
ICAM1 0.9702 1.2007 0.0361† 1.0119 1.4247 
EIF4E2 0.7475 1.2159 0.0707 0.9837 1.5030 
RAB32 0.1007 0.7993 0.0586 0.6336 1.0082 
FN1 0.4617 0.7808 0.0158† 0.6387 0.9547 
FGF7 0.3707 1.4987 0.0001† 1.2204 1.8404 
OS
AGE 0.8117 1.0325 0.0008† 1.0134 1.0520 
FGF7 0.1797 1.4019 0.0129† 1.0741 1.8298 
PDGFRA 0.2893 0.5232 0.0052† 0.3321 0.8243 

Abbreviations: DFS, disease-free survival; OS, overall survival; PHA test, proportional hazards assumption test; HR, hazard 
ratio. *!PHA test P < 0.05 violates the hazards assumption. †Significant. 

Figure 6: The venn plot for common biomarkers among DEGs of Muscle2 and PCOS6. The 856 DEGs are specific in 
Muscle2, while 274 DEGs are specific in PCOS6. There are 13 DEGs identified in both groups are SIAE, S100A8, ICAM1, EIF4E2, 
RAB32, FN1, MORC4, RGS10, SLC1A1, FGF7, SLC35D2, PDGFRA and APCDD1. 



Oncotarget3178www.impactjournals.com/oncotarget

Along with next generation sequencing (NGS), 
increasing numbers of studies explored differences in 
ncRNA and epigenetic modifications (such as DNA 
methylation) between PCOS patients and normal controls. It 
has been reported that serum miR-21 is markedly increased 
in PCOS patients. Through targeting LATS1, miR-21 may 
promote PCOS progression and act as a novel non-invasive 
biomarker for the diagnosis of PCOS [27]. lncRNA SRA 
has been found to be associated with PCOS, and may 
be an important mediator of adiposity-related processes 
in individual susceptible to PCOS [28]. The global 
methylation of peripheral leukocyte DNA has no difference 
between PCOS patients and controls [29]. The methods for 
genome-wide DNA methylation analysis at a single base 
pair resolution are evolving quickly [30]. Therefore, it will 
be more feasible to carry out genome-wide studies with 
sufficient samples in different tissue types.

In conclusion, this meta-analysis successfully 
integrated gene expression datasets for PCOS. This 
process stabilized the effects of the studies’ extreme 
heterogeneity and small sample sizes, and uncovered 
genes and biological pathways associated with PCOS. 
Finally, we identified 13 common genes among various 
PCOS tissues, providing novel and potential molecular 
markers for the diagnosis and prognosis of PCOS diseases. 
Further functional studies on these genes may improve 
understanding of the pathological processes of PCOS. 

MATERIALS AND METHODS

Collection and inclusion criteria of studies 

Using the Gene Expression Omnibus (GEO) 
Microarray Search Tool (http://gbnci.abcc.ncifcrf.gov/
geo/)[31] , we searched the GEO database for publicly 
available studies from its inception to August 31, 
2016, using the following keywords: “Homo sapiens” 
(organism), “PCOS” or “Polycystic ovary syndrome” 
(study keywords), and “RNA” (sample type). After a 
systematic review, 22 GSE studies were collected. The 
inclusion criteria for studies were as follows: 1) patients 
diagnosed with PCOS diseases and normal controls; 2) 
gene expression profiling of mRNA; and 3) sufficient 
information to perform the analysis. Then, 13 datasets 
from 9 studies were collected for subsequent analysis 
(Table 1). Figure 1A provides details of the process of 
data collection and study selection. The workflow of data 
processing and analysis is illustrated in Figure 1B.

Dataset preparing

Thirteen gene expression datasets were downloaded 
from the GEO database, which were completed in five 
different platforms. Because different probes were used to 
detect gene expression in different platforms, the number 
of detectable genes varied across platforms (Table 1). 

To merge these datasets from different studies, we used 
three functions in the R package MetaDE: MetaDE.match, 
MetaDE.merge, and MetaDE.filtering [15]. First, the probe 
with largest interquartile range (IQR) among all probes 
annotated to the same gene was selected to represent the 
expression level of the gene. Second, we merged the gene 
expression profiles to maintain the commonly profiled 
genes across the 13 datasets. Finally, either un-expressed 
(10% genes with small mean intensity) or un-informative 
genes (10% small standard deviation) were filtered, 
and the remaining 8470 genes were retained for further 
analysis.

Statistical analyses

The ind.analysis function in the MetaDE package 
was used to compare gene expression between PCOS 
patients and normal controls in each dataset. We used 
moderated t statistics to evaluate statistical significance. 

The transcriptome of each dataset was evaluated 
with the expression variation score (EVS), introduced 
by Marina Sirota [23]. In each dataset, the EVS for the 
gene j is defined as EVSj=-sign(tj)log(pj), where tj is the 
moderated t statistic for the gene j and pj is the p-value 
of the test. The scale and sign of the EVS represent 
the degree of significance and the ‘direction’ of the 
association, respectively. Then, we used the EVS vector 
to represent the pattern of the gene expression profile 
for each dataset. The consistency of the transcriptome 
tendency was estimated by the correlation coefficients of 
the EVS vectors between datasets [23]. 

Quality control

Before meta-analysis, the MetaQC package [24] 
was used to determine the inclusion/exclusion criteria for 
meta-analysis. The six quantitative quality control (QC) 
measures were calculated by MetaQC, and the principal 
component analysis (PCA) biplots and standardized mean 
ranks (SMR) were helpful to identify and exclude study 
with low quality before further meta-analysis.

Meta-analysis 

The meta-analysis in each group was completed 
by MetaDE package. The q-values less than 0.05 for 
Fisher method, which were subjected to multiple-testing 
correction with the Benjamini-Hochberg method [32], 
were the critical to DEGs. The expression patterns in 
datasets of all DEGs were shown on heatmap plot.

Gene ontology and pathway enrichment analyses

The gene ontology and pathway enrichment analyses 
of interested gene sets were completed by DAVID web 
servers (https://david.ncifcrf.gov) [33]. 
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TCGA and survival analysis

A study on ovarian serous cystadenocarcinoma 
(ov_tcga) with 586 patients was collected form TCGA 
database (TCGA: http://cancergenome.nih.gov). Based 
on information of disease-free survival (DFS) and overall 
survival (OS) for ov patients, we used a multivariate Cox 
proportional hazards model to determine hazard ratios 
(HRs) for biomarkers. All analyses were performed with 
R statistical software (survival and risksetROC packages). 
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