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A four gene signature predictive of recurrent prostate cancer
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ABSTRACT

Prostate cancer is the most common form of non-dermatological cancer among 
US men, with an increasing incidence due to the aging population. Patients diagnosed 
with clinically localized disease identified as intermediate or high-risk are often 
treated by radical prostatectomy. Approximately 33% of these patients will suffer 
recurrence after surgery. Identifying patients likely to experience recurrence after 
radical prostatectomy would lead to improved clinical outcomes, as these patients 
could receive adjuvant radiotherapy. Here, we report a new tool for prediction 
of prostate cancer recurrence based on the expression pattern of a small set of 
cooperation response genes (CRGs). CRGs are a group of genes downstream of 
cooperating oncogenic mutations previously identified in a colon cancer model that are 
critical to the cancer phenotype. We show that systemic dysregulation of CRGs is also 
found in prostate cancer, including a 4-gene signature (HBEGF, HOXC13, IGFBP2, and 
SATB1) capable of differentiating recurrent from non-recurrent prostate cancer. To 
develop a suitable diagnostic tool to predict disease outcomes in individual patients, 
multiple algorithms and data handling strategies were evaluated on a training set 
using leave-one-out cross-validation (LOOCV). The best-performing algorithm, when 
used in combination with a predictive nomogram based on clinical staging, predicted 
recurrent and non-recurrent disease outcomes in a blinded validation set with 83% 
accuracy, outperforming previous methods. Disease-free survival times between the 
cohort of prostate cancers predicted to recur and predicted not to recur differed 
significantly (p = 1.38x10-6). Therefore, this test allows us to accurately identify 
prostate cancer patients likely to experience future recurrent disease immediately 
following removal of the primary tumor.

INTRODUCTION

Prostate cancer is the most common non-
dermatological cancer among men in the United States, 
with an estimated 220,000 new diagnoses in 2015 [1]. 
Prostate cancer is often indolent and may not require 
immediate treatment upon diagnosis. On the other hand, 
prostate cancer can adopt a locally aggressive and rapidly 
metastatic phenotype that is fatal without intervention. 
The aggressiveness of prostate cancer can be assessed 

via clinical staging, levels of prostate-specific antigen 
(PSA) and the Gleason score, a histological measure of 
tumor organization. Patients with intermediate or high-risk 
prostate cancer are often treated by radical prostatectomy, 
an invasive surgical procedure that removes the prostate 
in its entirety as well as the pelvic lymph nodes. Radical 
prostatectomy is potentially curative, but approximately 
33% of patients will experience biochemical persistence or 
recurrence, as defined by a non-zero serum PSA level [2, 
3]. These patients may receive salvage radiotherapy, which 
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has demonstrated only modest benefits to survival [4]. 
Salvage radiotherapy substantially decreases the rate of 
local recurrence, but many of these patients will develop 
metastatic disease [5]. Adjuvant radiotherapy has been 
found to significantly decrease the rate of biochemical 
recurrence and increase cancer-free survival [6]. However, 
to prevent over-treatment, adjuvant radiotherapy is 
typically reserved for patients who have diffusely positive 
surgical margins or tumor invasion through the prostatic 
capsule [7]. Predictive methods for identifying patients 
likely to develop recurrent disease are thus critical for 
selecting proper treatment.

Most prediction models for prostate cancer 
recurrence are based on clinical features alone [8]. Gene 
expression signatures predictive of patient outcomes 
are in clinical use for many other cancers, and therefore 
prediction models for prostate cancer may be greatly 
improved by the inclusion of a molecular component. 
Previous efforts made to identify genes predictive of 
prostate cancer recurrence have utilized microarray 
data, which were comprehensive, but had limited 
reproducibility [9-15]. We chose to circumvent the 
microarray reproducibility issue through quantitative 
PCR analysis of carefully selected smaller gene sets. This 
also allows us to identify differentially expressed genes 
by the same method by which gene expression would be 
determined in the clinic.

Cooperation Response Genes (CRGs) are a group 
of genes synergistically dysregulated in response to 
cooperating oncogenic mutations. They are critical to the 
cancer phenotype at about 50% frequency [16]. Due to 
their significant influence on the malignant phenotype, we 
hypothesized that expression of a subset of CRGs might 
be predictive of prostate cancer recurrence.

In this study, we analyzed CRG expression in a 
set of frozen prostate cancer samples. A gene signature 
differentially expressed in prostate cancer that later 
recurred was identified, and various predictive algorithms 
were evaluated using this signature. The best algorithm 
was then combined with a surgical nomogram that further 
increased predictive power. This was capable of predicting 
clinical outcomes of an independent blinded validation set 
with 83% accuracy, outperforming previous methods.

RESULTS

Tissue from prostate cancer and benign prostate was 
collected from patients (n = 55) who underwent radical 
prostatectomy between 1990 and 2002. All patients had 
newly-diagnosed, clinically localized prostate cancer 
[17]. Data collected for each patient included standard 
prognostic variables, such as clinical (cTNM – a measure 
of tumor size, nodal involvement, and metastasis) and 
pathological (pTNM) stage, Gleason score, and PSA.

Differences in CRG expression between 
prostate cancer and benign prostate were assessed 

post-normalization. 64% of CRGs were significantly 
dysregulated in prostate cancer compared to benign 
prostate (two-tailed t-test, p < .05) (Supplementary 
Figure S1), and expression values of CRGs distinguished 
the majority of malignant from benign samples via 
hierarchical clustering (Figure 1).

The samples were separated into training (n = 32) 
and validation (n = 23) sets, and disease outcomes were 
blinded in the validation set. The strategy was to test 
multiple methods of making predictions using the training 
set, identify the method that generated the most accurate 
predictions via cross-validation, and use this method to 
make predictions using the validation set.

To make predictions on patient outcomes, we 
first normalized our gene expression data. In addition, 
a newly developed method for imputing missing gene 
expression values caused by PCR amplification failure 
was implemented [18]. Two-tailed t-tests were performed 
on the normalized training set to identify the genes 
most differentially expressed between the recurrent and 
non-recurrent cohorts. Various p-value cutoffs were 
used to create gene signatures of varying sizes. Finally, 
three prediction algorithms based on standard clustering 
techniques were developed and software to implement 
them was written in R.

Each algorithmic combination was assessed by 
Leave-one-out cross-validation (LOOCV) using the 
training data set. Each combination consists of a data 
handling method, a p-value cutoff for inclusion in gene 
signature, and a prediction algorithm. Of the data-
handling strategies we tested, predictions made using 
data normalized to BECN1 and then imputed to restore 
missing values caused by PCR amplification failure 
performed best, with accuracy of 86% averaged across 
the three algorithmic predictive methods and p-value 
cutoffs (Figure 2a). Predictions made with unimputed 
data had an accuracy of only 59% (Figure 2a). Of the 
three prediction algorithms tested, the centroid algorithm 
resulted in the most accurate predictions, with an 
accuracy of 75% averaged across all data handling 
conditions and p-value cutoffs (Figure 2b). The distance 
algorithm also performed well (accuracy = 74%) on 
the training set, while the nearest neighbor algorithm 
was inferior (accuracy = 69%) (Figure 2b). The highest 
overall accuracy of 90% was achieved using the lowest 
p-value cutoff (p < 0.01) (Figure 2c). This cutoff resulted 
in the generation of a 4-gene signature (Table 1). We 
therefore chose to make predictions on the validation 
set using the centroid algorithm with a 4-gene signature 
derived from applying a p-value cutoff of <0.01 to the 
BECN1-normalized and imputed data. Predictions made 
on the training set using these conditions had a sensitivity 
of 100% (Figure 2c). The lack of false negatives is 
important since they represent patients who could benefit 
from adjuvant radiotherapy but would not receive it based 
on the predictions.
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Our chosen conditions accurately predicted 70% 
of the samples in our validation set, outperforming or 
equaling two sets of predictions made utilizing different 
cutoffs of Gleason score (61%, 70%) and predictions 
made based on surgical stage (64%) (Figure 3). For 
our CRG-based predictions, sensitivity (92%) was 
significantly higher than specificity (40%), indicating 
that we were successfully identifying recurrent tumors, 
but also misidentifying many non-recurrent tumors as 
likely to recur. We hypothesized that these errors may 

result from making predictions about prostate cancers 
with an unfavorable gene expression profile, but which 
nevertheless were small, located in only one half of the 
prostate, with no lymph node involvement, no distant 
metastases, and negative margins on surgery. These 
cancers were detected early and cured by surgery. 
Therefore, surgical information was incorporated into the 
CRG prediction decision procedure to improve specificity. 
Using this modified decision procedure, prediction 
accuracy improved to 83% (Figure 3). Specificity 

Figure 1: Hierarchical clustering of samples on highly significantly differentially expressed CRGs. Genes were selected 
via two-tailed t-test between prostate cancer and benign tissue specimens with p-value < .01. Gene expression values were determined 
following normalization of qPCR data and imputation of missing values using the R package “nondetects”.
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Figure 2: Determining ideal prediction conditions using the training set. a. Prediction accuracy (% correct predictions) on 
the training set comparing imputed vs unimputed data. Predictions were made on either imputed or unimputed data via Leave-One-Out 
Cross Validation (LOOCV) using all three prediction algorithms (centroid, distance, and nearest neighbor) at multiple gene signature 
p-value cutoffs. The arithmetic mean for accuracy under all three algorithms was displayed for each p-value cutoff. Area under the curve of 
arithmetic means was computed. Predictions were significantly better across all p-value cutoffs and all algorithms tested using the imputed 
data. b. Prediction accuracy on the training set comparing the three prediction algorithms. Predictions were made using each algorithm 
via Leave-One-Out Cross Validation (LOOCV) using both imputed and unimputed data at multiple gene signature p-value cutoffs. The 
arithmetic mean for accuracy under both data-handling techniques was displayed for each p-value cutoff. Area under the curve of arithmetic 
means was computed. The centroid and distance algorithms were superior to the nearest neighbor algorithm. The centroid algorithm 
was most effective at reducing the impact of outliers on the data. c. Prediction accuracy on the training set comparing p-value cutoffs. 
Predictions were made using the optimal data handling strategy (normalization to BECN1 and imputation via R package “nondetects”) and 
prediction algorithm (centroid) at multiple gene signature p-value cutoffs. Prediction accuracy was highest at a p-value cutoff of <0.01, 
which produced a 4-gene signature. This strategy gave 100% sensitivity for the training set.
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improved to 70%, while our sensitivity remained high 
at 92% and false negatives were few. In comparison, 
predictions based on the CRG signature were not improved 
when combined with predictions based on Gleason grade 
(Figure 3). Likewise, predictions made using Gleason 
grade were not improved when combined with surgical 

information (Figure 3). In our most important metrics, 
accuracy and sensitivity, the CRG + surgery-based 
predictions outperformed all other prediction modalities.

Receiver operating characteristic (ROC) curves 
were created to evaluate the sensitivity and specificity of 
predictions made using different discrimination thresholds 

Table 1: CRG predictive gene signature with fold changes in recurrent samples

Gene Fold change in recurrent

HBEGF -2.2

HOXC13 6.7

IGFBP2 -1.4

SATB1 -3.1

Genes chosen were differentially expressed between recurrent and non-recurrent cohorts using two-tailed t-test for 
independent samples with unequal variance with p-value < 0.01.

Figure 3: Test set prediction data. Predictions were made using 5 different prediction strategies. Strategy 1: Use centroid prediction 
algorithm and 4-gene CRG signature comparing samples to training set data normalized to BECN1 and imputed. (CRG) Strategy 2: Samples 
were predicted to be recurrent if Gleason score was 7-10 and non-recurrent otherwise. (Gleason 1) Strategy 3: Samples were predicted 
to be recurrent if Gleason score was 7 (4+3), or above, and non-recurrent if Gleason score was 7 (3+4) or below. (Gleason 2) Strategy 4: 
Samples were predicted to be non-recurrent if primary tumor staging was <T2c, lymph node stage was 0 and metastatic staging was 0 and 
recurrent otherwise. (Surgery) Strategy 5: Samples were predicted to be non-recurrent if primary tumor staging was <T2c, lymph node stage 
was 0 and metastatic staging was 0. Other samples were evaluated using strategy 1. (CRG + Surgery) Strategy 6: Samples were predicted 
to be recurrent if Gleason score was 9-10 and non-recurrent if Gleason grade was 2-6. Other samples were evaluated using strategy 1. 
(CRG + Gleason) Strategy 7: Samples were predicted to be non-recurrent if primary tumor staging was <T2c, lymph node stage was 0 and 
metastatic staging was 0. Other samples were evaluated using strategy 2. (Gleason 1 + Surgery) Strategy 8: Samples were predicted to be 
non-recurrent if primary tumor staging was <T2c, lymph node stage was 0 and metastatic staging was 0. Other samples were evaluated 
using strategy 3. (Gleason 2 + Surgery) Accuracy = % predictions correct. Sensitivity = (1 - %False Negatives). Specificity = (1 - %False 
Positives). PPV = (# Recurrent tumors/# Total Recurrent Predictions). NPV = (# Non-recurrent tumors/# Total Non-Recurrent Predictions).
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for recurrence or non-recurrence. ROC curves generated 
using CRG-based predictions resulted in an area under 
the curve (AUC) of 0.67 (Figure 4). When samples best 
handled by predictions based on surgical information were 
removed from the sample set, the AUC increased to 0.75 
(Figure 4).

Kaplan-Meier survival curves were created to 
visualize recurrences in our predicted high risk and low 
risk cohorts (Figure 5). Of the patients in the validation 
set predicted to recur (n = 15), 12 experienced biochemical 
recurrence at a median time of 40 months post-
prostatectomy. Only one patient in the cohort predicted 
not to recur (n = 8) experienced biochemical recurrence 
126 weeks post-prostatectomy, a highly significant result 
(p= 1.38x10-6, log-rank test).

To control for the possibility that the predictive 
power of the gene signature reported here may be affected 
by variation in stromal content of the prostate cancer 
specimens, we assessed the mRNA expression of two 
stromal markers, smooth muscle alpha-actin and vimentin, 
in our validation set. The two mRNAs are highly expressed 
in smooth muscle, fibroblasts, and myofibroblasts. Neither 
vimentin nor alpha-actin was significantly differentially 
expressed in recurrent vs non-recurrent cohorts using 
both non-normalized expression values (p = .18, .95, 
two-tailed student’s t-test) (Supplementary Figure S2a) 
and expression values normalized to Becn1 mRNA (p 
= .88, .15) (Supplementary Figure S2b). Consistently, 
Becn1 mRNA was also not significantly differentially 
expressed in the two cohorts (p = .69) (Supplementary 
Figure S2a). In addition, expression levels for Becn1 
and RhoA mRNAs, and ribosomal 18S RNA were 
strongly correlated between all samples (r = .822, .658, 

.850, Pearson’s correlation coefficient) (Supplementary 
Figure S3), suggesting that Becn1 expression qualifies as 
a reasonable reference for sample normalization. Taken 
together, these results suggest that the predictive power 
of the gene signature originates primarily from gene 
expression differences associated with cancer cells, rather 
than variance in the stromal content of tissue samples.

DISCUSSION

An estimated 50,000 radical prostatectomies are 
performed each year in the US, and about 15,000 of these 
patients will experience biochemical recurrence. Here 
we show that a four-gene signature based on HBEGF, 
HOXC13, IGFBP2, and SATB1 was able to identify 
patients whose prostate cancer recurred. The prediction 
algorithm that incorporated surgical information provided 
accurate prognostic information on patient outcomes 
with 83% accuracy. Most patients undergoing radical 
prostatectomy receive no additional treatment beyond 
regular monitoring of PSA. Adjuvant radiotherapy 
administered immediately after radical prostatectomy 
could improve outcomes for patients identified using the 
CRG signature to be at high risk for recurrence.

The four genes identified in our signature, HBEGF, 
HOXC13, IGFBP2, and SATB1, all play significant roles 
in the modification of cancer phenotypes. HOXC13, a 
homeobox-family transcription factor known to control 
cell proliferation and differentiation, was found to be 
upregulated in our recurrent prostate cancer samples. 
HOXC13 has been reported to be upregulated in 
metastatic melanoma compared to primary tumor tissue 
[19]. Furthermore, knockdown of HOXC13 has been 

Figure 4: ROC curves for predictions on validation set. ROC curves were constructed both with all samples considered (blue) and 
with those best handled by surgical predictions removed compared to predictions made by chance (yellow). Arrows indicate the points at 
which recurrence score and non-recurrence score were given equal weight and predictions were made.
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reported to decrease viability of several cancer cell 
lines in vitro, including the prostate cancer line PC-
3ML [20]. SATB1 is a chromatin organizer responsible 
for the recruitment of chromatin remodeling proteins, 
and was found to be downregulated in our recurrent 
sample cohort. In colorectal cancer, loss of SATB1 was 
reported to be a strong predictor of worse outcomes 
[21]. Publicly available microarray data indicates that 
SATB1 is downregulated in prostate cancer as well as 
other solid tumors. Increased nuclear localization of 
SATB1 has been reported to be correlated with increased 
prostate cancer aggression and invasive potential [22]. 
Although this runs counter to our observation, it is 
possible that our recurrent prostate cancer samples may 
have higher nuclear localization despite lower overall 
expression. The appearance of IGFBP2 in our gene 
signature was reassuring, since decreased expression of 
this gene has been reported to be a predictor of prostate 
cancer recurrence after radical prostatectomy [23]. The 
structurally similar protein IGFBP5 has also been found 
to be downregulated in metastatic prostate cancer [24]. 
Finally, HBEGF is a ligand of the EGF receptor that also 
binds heparin. HBEGF has not been studied in prostate 
cancer, but HBEGF is known to promote invasion and 
metastasis in breast, colon, and ovarian cancer [25, 26, 
27]. HBEGF was unexpectedly downregulated in the 
recurrent prostate cancer samples, which would appear 
at odds with its previously documented role in cancer. 
However, a recent study found that the expression of 
the growth factor receptor FGFR1 was associated with 
indolent prostate cancer. While the particular mechanism 

by which FGFR1 acts to drive this outcome is unknown, 
HBEGF may function in a similar way [28].

The focus for this study was biochemical recurrence 
after radical prostatectomy. Biochemical recurrence 
after prostatectomy almost always requires the primary 
tumor to already have escaped the prostatic capsule, 
either invading local tissue or metastasizing to regional 
lymph nodes or distant organs. These behaviors are 
hallmarks of tumor aggressiveness, and suggest that the 
CRG signature may provide valuable information for 
assessing patient outcomes even in patients who have 
not undergone radical prostatectomy. Currently the best 
test to determine risk of aggressive disease is the Gleason 
score, a test with limited predictive power in many cases. 
Several groups have already identified gene signatures 
that are hallmarks of either indolent or aggressive disease 
[24, 28, 29]. The CRG signature, which is predictive of 
biochemical recurrence of prostate cancer, could likewise 
provide useful prognostic information to patients at the 
point of diagnosis, and further tests should be conducted to 
evaluate this possibility. This would, however, necessitate 
the use of formalin-fixed, paraffin-embedded biopsy 
tissue.

Irshad et al. [28] identified a three-gene signature 
associated with aging and cellular senescence that is 
predictive of indolence in prostate cancer with low Gleason 
grades. These low-grade cancers are often managed with 
active surveillance, however, not all of them are indolent. 
Identifying patients who would typically not be treated 
aggressively who do in fact require an intervention is 
also the focus of our study. Likewise, Ross-Adams et al. 

Figure 5: Survival curves for predictions on validation set. Kaplan-Meier survival curves were constructed for the subset of 
samples in the validation set that were predicted to recur (n = 15) as well as the subset of samples predicted not to recur (n = 8). Statistical 
analysis was performed by log-rank test using the R package “survdiff”.
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[30] identified a 100-gene panel predictive of prostate 
cancer recurrence using a transcriptomics approach. The 
indolence signature and the transcriptomics signature may 
complement the recurrence signature reported herein; 
combining these different approaches may lead to better 
prediction of prostate cancer outcomes.

The success of this model to predict prostate cancer 
recurrence speaks to the importance of the CRGs in 
regulating human cancer behavior. As the CRGs were 
originally identified in a colon cancer background, it 
stands to reason that CRG expression may provide 
valuable prognostic information for colon cancer as well. 
Early-stage colon cancer is treated primarily with surgical 
resection, and assessing the likelihood of recurrence is an 
important clinical question. Future studies of the predictive 
potential of CRGs may provide greater insight into the 
likelihood of different disease outcomes, thus permitting 
better-informed decisions about treatment.

MATERIALS AND METHODS

Tissue specimens

All tissue samples were collected from radical 
prostatectomy specimens by the RPCI Pathology Resource 
Network with IRB approval. Patient demographic, 
clinical, pathology, and outcome data were collected 
through the Clinical Data Network, another shared 
resource at RPCI. All tissue specimens were immediately 
processed and snap frozen in liquid nitrogen within 
30 minutes of prostatectomy by the Department of 
Urology.17 All tissue samples were reviewed by a board 
certified anatomic pathologist to verify the diagnosis of 
prostatic adenocarcinoma and to estimate the percent 
neoplastic tumor nuclei. Data collected for each patient 
included standard prognostic variables, such as Gleason 
score, clinical (cTNM) and pathological (pTNM) stage, 
and PSA. All patients had at least 3 years of follow-up 
data. Biochemical progression was defined by the AUA 
guidelines of serum PSA of 0.2 ng/mL or greater (obtained 
6 weeks - 3 months postoperatively), with a second 
confirmatory level of PSA greater than 0.2 ng/mL.

CRG expression data

Total RNA was harvested from frozen tissue sections 
using a standard Trizol (Life Technologies, Carlsbad, 
CA) application. Tissues were homogenized with Trizol 
reagent. RNA was precipitated from the aqueous phase 
using isopropanol and rehydrated using DEPC water. An 
RNA aliquot was run on an Agilent 2100 bioanalyzer to 
confirm RNA integrity by generating a RNA Integrity 
Number (RIN) value. RNA was converted to cDNA and 
quantified via Taq-Man Low Density Array (TLDA) RT-
PCR.

Data handling

Ct values were normalized to Becn1. Non-
detects were imputed based on estimation of a non-
random missing data mechanism using the nondetects 
R/Bioconductor package.18 Statistical assessment of 
differential expression was performed using a t-test based 
on maximum likelihood estimates (MLEs) of the within 
group means and variances generated by the development 
version of the nondetects package (manuscript in 
preparation).

Generation of predictions

Two-tailed t-tests were performed on normalized 
data to identify genes differentially regulated between 
biochemically recurrent and non-recurrent cohorts. 
Multiple p-value cutoffs were tested to assess the relative 
success of different sizes of gene signature. Three 
prediction algorithms based on clustering techniques were 
generated and software was written to implement each 
in R. Algorithms incorporated a gene signature of size N 
and evaluated samples as points in N-dimensional space. 
The “distance” algorithm generates recurrence and non-
recurrence scores by comparing the Euclidian distance 
between the sample point and all points in the recurrent 
and non-recurrent groups respectively. The “centroid” 
algorithm generates recurrence and non-recurrence scores 
by comparing the distance between the sample point and 
the centroids of the recurrent and non-recurrent group. 
The “nearest neighbor” algorithm generates recurrence 
and non-recurrence scores by comparing the distance 
between the sample point and the closest member in both 
the recurrent and non-recurrent groups. Predictions are 
made by selecting the lower of either the recurrence or 
non-recurrence scores.

Algorithms

Distance:

å= - + - + + -d nr x nr x nr x( ) ( ) ( )n n n i

n

( ) (1)
2

( ) (2)
2

( ) ( )
2

1
i1 2  

recurrence score

å= - + - + + -d r x r x r x( ) ( ) ( )n n n i

n

( ) (1)
2

( ) (2)
2

( ) ( )
2

1
i1 2  

non-recurrence score
I = # genes in signature
N = # samples in training set
Rn(i) = expression of the ith gene in the signature

in the nth recurrent sample in the training set
NRn(i) = expression of the ith gene in the signature

in the nth non-recurrent sample in the training set
Xi = expression of the ith gene in the signature

in the current sample in the test set
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Centroid:

d r x r x r x(( ) ) (( ) ) (( ) )n n n i( ) (1)
2

( ) (2)
2
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2

i1 2
= − + − + + −  

recurrence score
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2
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2
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= − + − + + −  

non-recurrence score
I = # genes in signature
N = # samples in training set
Rn(i) =  average expression of the ith gene in the 

signature
in the nth recurrent sample in the training set
NRn(i) =  average expression of the ith gene in the 

signature in the nth non-recurrent sample in 
the training set

Xi =  expression of the ith gene in the signature in the 
current sample in the test set

Nearest-neighbor

d r x r x r x( ) ( ) ( )i i(1) (1)
2
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( ) ( )
2= − + − + + −

 
recurrence score

d nr x nr x nr x( ) ( ) ( )i i(1) (1)
2

(2) (2)
2

( ) ( )
2= − + − + + −

 
non-recurrence score

I = # genes in signature
Rn(i) =  expression of the ith gene in the signature in 

the closest recurrent sample in the training set
NRn(i) =  expression of the ith gene in the signature 

in the closest non-recurrent sample in the 
training set

Xi =  expression of the ith gene in the signature in the 
current sample in the test set

Evaluation of algorithms on training set

Predictions were made on a 32-sample training set 
with 16 biochemically recurrent and 16 non-recurrent 
tumors. Each permutation of normalization method, p-value 
cutoff for gene signature, and prediction algorithm was 
evaluated using Leave-one-out cross-validation (LOOCV).

Evaluation of algorithms on validation set

The centroid algorithm was used to make predictions 
about a 23-sample validation set using the imputed and 
BECN1-normalized data with a CRG signature generated 
using a p-value cutoff of < 0.01.

Incorporation of surgical information and final 
predictions

Surgical information was incorporated into the 
prediction decision procedure to improve specificity. Tumors 
with clinical stage of T2bN0M0 or below, with negative 
surgical margins were classified as non-recurrent. All other 
predictions were generated algorithmically as before.

ROC curve generation

ROC curves were created using predictions made by 
varying the discrimination threshold between a prediction of 
recurrence vs non-recurrence. The model is altered by adding 
a modifier to the recurrence score before making predictions. 
When a modifier of -10 is added, all samples were predicted 
to be non-recurrent; when a modifier of +10 is added, all 
samples were predicted to be recurrent. Sensitivity and 
specificity of predictions were measured and plotted for each 
value of the modifier at which a prediction changes.

Kaplan-Meier survival curve generation

Kaplan-Meier survival curves were taken by plotting 
time from prostatectomy to biochemical recurrence for 
patients predicted to recur and patients predicted not to 
recur respectively. Statistical analysis was done via log-
rank test using the R package “survdiff”.
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