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ABSTRACT
Multiple myeloma is a malignant still incurable plasma cell disorder. This is 

due to refractory disease relapse, immune impairment, and development of multi-
drug resistance. The growth of malignant plasma cells is dependent on the bone 
marrow (BM) microenvironment and evasion of the host’s anti-tumor immune 
response. Hence, we hypothesized that targeting tumor-stromal cell interaction and 
endogenous immune system in BM will potentially improve the response of multiple 
myeloma (MM). Therefore, we proposed a computational simulation of the myeloma 
development in the complicated microenvironment which includes immune cell 
components and bone marrow stromal cells and predicted the effects of combined 
treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-
scale agent-based model (HABM) that combines an ODE system and Agent-based 
model (ABM). The ODEs was used for modeling the dynamic changes of intracellular 
signal transductions and ABM for modeling the cell-cell interactions between stromal 
cells, tumor, and immune components in the BM. This model simulated myeloma 
growth in the bone marrow microenvironment and revealed the important role of 
immune system in this process. The predicted outcomes were consistent with the 
experimental observations from previous studies. Moreover, we applied this model 
to predict the treatment effects of three key therapeutic drugs used for MM, and 
found that the combination of these three drugs potentially suppress the growth of 
myeloma cells and reactivate the immune response. In summary, the proposed model 
may serve as a novel computational platform for simulating the formation of MM and 
evaluating the treatment response of MM to multiple drugs.

INTRODUCTION

Multiple myeloma (MM), a B-cell neoplasm, is 
characterized by clonal expansion of plasma cells in the 
hematopoietic bone marrow (BM) and over-production of 
circulating monoclonal immunoglobulin [1, 2]. MM has 
long been used as a paradigmatic model for investigating 
the role of the microenvironment in blood cancers [3]. 
Bone marrow, the natural niche of multiple myeloma, 
provides a milieu of growth factors and cytokines 
for multiple myeloma cell survival and proliferation. 
Therefore, the bone marrow microenvironment greatly 
contributes to the resistance of myeloma against various 
therapies. Interaction of myeloma cells with bone marrow 

stromal cells (BMSCs) via some key factors (SDF-1, 
TGFβ, IFNγ, IL6, and TNFα, etc.), induces pleiotropic 
anti-apoptotic mechanisms, thereby rendering multiple 
myeloma cells resistant to established therapeutic 
regimens [4, 5].

Recent studies have shown that a small population 
of CD138-negative B cells with “side population” 
characteristics presents in multiple myeloma [6, 7]. This 
cell population has the ability to give rise to clonogenic 
growth in vitro and possess stem cell characteristics. These 
myeloma initiating (stem) cells (MICs) have shown higher 
resistance to chemotherapeutic agents [8]. Our previous 
studies demonstrated that 1) BMSCs stimulated the growth 
and expansion of MICs [9]; and 2) the enhanced colony-
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forming and self-renewal ability of MICs were regulated 
via the centralized role of SDF-1 (stromal cell-derived 
factor 1) [9, 10]. We also established an agent-based 
model using the Markov Chain Monte Carlo approach to 
simulate the effects of SDF-1-induced chemo-physical 
communications among MICs and BMSCs on myeloma 
cell growth and examine if the biophysical properties of 
myeloma niches are druggable with two representative 
drugs: AMD3100, and Bortezomib (BTZ) [11]. However, 
the resistance of myeloma to those drugs was not only 
attributed to the myeloma-BMSC interactions.

The immune system has been known to modulate 
tumor cell growth, and tumor development can promote 
immunosuppression. Conversely, immunosuppression 
may support tumor development [12, 13]. Multiple 
myeloma-induced immune paresis is mainly attributed 
to the impairment of T-cell (CD4+, and CD8+) activation 
and proliferation, which is mediated by myeloma cell-
induced production of transforming growth factor (TGFβ) 
[3, 12, 14]. Currently, immunomodulatory drugs, such 
as Lenalidomide (LEN) and Thalidomide (Thal), have 
been used to overcome conventional drug resistance 
and improve patient outcomes in MM [14]. Importantly, 
IMiDs-induced stimulatory effects on effector T cell and 
inhibitory role on T regulatory cells (Tregs) have been 
demonstrated in vivo [15, 16]. However, the precise 
cellular targets and the exact molecular mechanism of 
actions of IMiDs in multiple myeloma remain unclear. 
In clinic, the combined therapy with BTZ and LEN for 
the treatment of MM is widely used and is favorable 
for the initial therapy, but the majority of patients (50–
60%) continue to suffer relapses [17]. An insight into the 
interactions of myeloma cells with BMSCs and immune 
cells in bone marrow microenvironment will potentially 
improve our understanding of myeloma growth, immune 
tolerance, and drug resistance. 

Mathematical models have been used to simulate 
tumor growth or immune response in human [18, 19]. 
Everett, et al. proposed an approximation mathematical 
model of tumor growth and tumor-induced angiogenesis 
in ovarian cancer [20]. Eikenberry, et al. developed 
Partial Differential Equations (PDEs) to describe the basic 
process of melanoma invasion into healthy tissues [19]. 
However, systemic modeling of tumor growth (lineage 
process of cancer stem cell) and immune response within 
an integrated system was rarely studied. In this study, 
we proposed a 3D hybrid multi-scale agent-based model 
(HABM) to reveal the molecular mechanisms associated 
with myeloma development and immune escape in the 
bone marrow microenvironment (Figure 1). Hybrid model 
was composed of an ABM model and ODE system [43]. 
In our HABM, the ODEs were designed to simulate 
the dynamics of intracellular signal transductions and 
ABM to describe the cell-cell communications between 
stromal cells, tumor, and immune components in the  
Bone Marrow.

In the proposed model, we simulated the dynamics 
of MIC-derived myeloma development in a BM 
microenvironment to study the role of tumor-stroma 
interactions in MM progression and immune evasion. 
The BM microenvironment consisted of BMSCs and 
immune cells. This modeling system was classified into 
intracellular, intercellular, and tissue levels. The HABM 
model integrates events at different spatial and temporal 
scales. For the spatial scales, intracellular signaling 
pathways of BMSCs and MICs were simulated by ODEs 
to determine the biomechanical phenotype of BMSCs (cell 
stiffness) and tumor cell behaviors (such as migration 
and apoptosis). Cancer cells discern the changes of local 
stiffness of BSMCs and compete for the best location 
in the extracellular matrix (ECM) for their migration 
or proliferation. For the temporal scales, we modeled 
the intracellular signaling dynamics (minutes to hours); 
cell division, apoptosis, and local migration (hours to 
days); drug response (days to weeks); and tumor growth 
(weeks to months). In order to model the tumor growth 
and immune response of myeloma cells quantitatively 
within the same system, we mainly focused on the direct 
and indirect role of two important factors: SDF-1 and 
TGFβ. The studies from our groups and others have found 
that SDF-1α enhances the rigidity of BMSCs through 
its receptor CXCR4, and provides a proper environment 
for myeloma cell proliferation and migration [10, 11]. 
Immune tolerance of myeloma cells was mainly mediated 
by the production of TGFβ [21]. Our in vitro experiments 
also shown that SDF-1 and TGFβ play key roles in 
promoting the tumor growth, survival and propagation. 
SDF-1 triggers CXCR4 receptor dimerization and 
activate the intracellular signaling pathways of BMSCs, 
and the positive feedbacks from BMSC will change the 
behaviors of MICs. Secretion of TGFβ both from BMSCs 
and myeloma cells inhibited the proliferation of CD8+ T 
cells and promoted the expansion of Tregs. Moreover, 
activated Tregs suppressed the function of CD8+ T cells 
via induction of cell cycle arrest or apoptosis. Through 
the parameters tuning, the outcomes from our HABM 
model under different conditions were consistent with 
the experimental observations from previous studies. 
Moreover, to examine the potential targets of multiple 
myeloma in this microenvironment and discover novel 
therapeutic strategy, we further simulated the treatment 
effects of three representative drugs (BTZ, LEN and Thal). 
Our findings suggest that targeting SDF-1 and TGFβ in 
BM using a triple-combination with BTZ, LEN, and 
Thal, potentially improve the response of myeloma cells 
by increasing the inhibition of myeloma cell growth and 
activating the endogenous immune surveillance against 
tumor antigens.

In summary, the proposed HABM model provides 
new insight into the myeloma development in the bone 
marrow microenvironment carrying immune system; 
and also builds an efficient computational platform for 
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prediction of drug response for discovering the optimal 
dose combination.

RESULTS

RPPA data analysis

In our previous studies, we have demonstrated that 
SDF-1α secreted by myeloma cells regulated the rigidity of 
BMSCs through binding to its receptor CXCR4, thereby, 
provided a proper environment for cell attachment, growth 
and migration [10]. Therefore, SDF-1α/CXCR4 axis 
appears to play an important role in myeloma cells-BMSC 
communication. Hence, we collected RPPA data to study 
the SDF-1-mediated signaling pathways. The myeloma 
BMSCs were treated with 100 ng/mL SDF-1α and then 
protein samples were collected at 0, 5, 10, and 15 min. 
The protein profiling was analyzed using Rreverse Phase 
Protein Array (RPPA) technology. There are 172 proteins 
in this RPPA dataset and the differentially expressed 
proteins were presented in the Supplementary Figure S1. 
However, stiffness-related signaling pathway was not well 
covered by our RPPA data. Choi, et al. proposed a model 
of biophysical regulation of BMSC. Binding of SDF-1 
ligand to its cognate receptors CXCR4/CXCR7 results in 
the activation of PI3K or MEK. Subsequently, MYL2 is 
phosphorylated, which leads to changes in cell stiffness 
[10]. Hence, we did Western Blot for three key proteins 
(FAK, RhoA, and MYL2) as the complementary data 
[10, 22]. Focusing on the above measured proteins, we 
picked up a sub-graph from Choi’s proposed network for 
simulating the dynamic changes of SDF-1-trigged BMSC 

stiffness, which in turn regulated the proliferation of MIC 
(Figure 2A).

To understand the effects of stiffness on myeloma 
cells, RPPA data were also collected in the myeloma 
cells treated with different stiffness (100Pa, and 400Pa) 
at 0, 30 min, 60 min, and 24 hour. The expression of an 
individual protein after treatment was normalized using 
the value obtained at t = 0. The samples were collected 
at 30–60 min and 24 hour represented the immediate 
and stable responses of MICs to different stiffness 
cues, respectively. Total 195 proteins were analyzed, in 
which 45 proteins up-regulated and 19 proteins down-
regulated significantly. Several proteins were significantly 
upregulated under the condition of 400Pa, such as HSP70, 
BCL2, etc (Supplementary Table S1). Based on the 
measured proteins in the RPPA dataset and data collected 
from related literatures, we built an intracellular signaling 
pathway map for MIC (Supplementary Figure S2). Several 
important signaling pathways were included in this map. 
The stiffness of BMSC trigged the expression of FAK in 
MIC, which can increase cell adhesion via p38 and JNK 
signaling pathways, and promote cell survival via PI3K/
AKT signaling. Moreover, autocrine SDF-1 signaling can 
also stimulate the expression of BCL2 and thereby inhibit 
the apoptosis of MIC by reducing BAX. In this study, we 
investigated the growth and adhesion of myeloma cells 
on hydrogel and collagen gels in vitro (see “Materials and 
Methods”). Based on the above data and signaling pathway 
map shown in the Supplementary Figure S2, we developed 
a signaling network module (integrin/FAK pathways) for 
dynamically simulating the effect of stiffness on adhesion 
and survival of MIC cells (Figure 2B).

Figure 1: Hybrid multi-scale agent-based model of myeloma cell growth. 
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Increased expression of SDF-1 in the myeloma-
associated bone marrow stromal cells

In our previous studies, we found that SDF-1 
regulated the stiffness of BMSCs in vitro to generate a 
better microenvironment for myeloma growth [22]. We 
compared the expression of SDF-1 in BMSCs collected 
from myeloma patients (myeloma BMSCs) and healthy 
volunteers (healthy BMSCs) with/without coculture of 
myeloma cells. As shown in Figure 3A, the SDF-1α mRNA 
level in the myeloma BMSCs was 6 times higher than that 
in the health BMSCs. The mRNA levels of SDF-1 were 
dramatically increased 4.13 ± 0.7 and 2.68 ± 0.2 times in 
both myeloma BMSCs and health BMSCs, respectively, 
when cocultured with U266 myeloma cells. We also 
compared the expression of SDF-1 in U266 myeloma cells. 
The expression of SDF-1 was significantly elevated about 
16.2 ± 0.4 times and 13.1 ± 0.3 times when cocultured 
with myeloma BMSCs and healthy BMSCs, respectively 
(Figure 3B). Together, these results suggest that cell-cell 
interaction of myeloma cells and BMSCs enhance the 
expression of SDF-1 in both types of cells. 

Myeloma-BMSC interaction up-regulates TGFβ 
expression

TGFß1 is a vital factor in regulating the balance 
of Tregs and CD8+ T cells; and increased expression 

of TGFß1 contributes to immune suppression in the 
MM microenvironment [3]. Here, we measured the 
expression of TGFß1 in the myeloma cells treated with or 
without BMSCs. Since both BMSCs and myeloma cells 
synthesize TGFβ [14, 23, 24], the expression of TGFß1 
was determined in BMSCs and myeloma cells separately. 
There were dramatic changes of TGFß1 expression in 
U266 myeloma cells after cocultured with either healthy 
BMSC or myeloma BMSCs as shown in the Figure 4. 
A reduced expression of TGFß1 was observed in the 
U266 cells cocultured with healthy BMSCs (Figure 4A). 
In contrast, the expression of TGFß1 in the U266 cells 
cocultured with myeloma BMSCs was enhanced 1.4 fold. 
No significant changes in the TGFß1 expression were 
seen in the healthy BMSCs cultured with or without U266 
cells (Figure 4B). In the myeloma BMSCs cocultured 
with U266 cells, the expression of TGFß1 increased about  
2.4 times. Additionally, the basal expression level of 
TGFß1 in the myeloma BMSCs was about 1.7 times 
higher than that in the health BMSCs. Our results indicate 
that the interaction of myeloma with BMSC enhances 
TGFß1 expression in both cells. 

Model development

In this study, we established a hybrid multi-scale 
agent-based model (HABM) to simulate the development 
of myeloma in various bone marrow microenvironments in 

Figure 2: ODE systems in the proposed model. (A) The intracellular signaling pathways in MIC cell, which modulates adhesion and 
survival rate to response the local BMSC stiffness; (B) The intracellular signaling pathways in BMSC cell, which determine the stiffness of 
BMSC section according to relative SDF-1 concentration.
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a three-dimensional space, and validated the performance 
of this model with experimental data. We hypothesize 
that 1) SDF-1 boosts MIC growth and protects MICs 
from chemotherapy-induced injury; and further drives 
the lineage process of multiple myeloma [11]; 2) 
myeloma-BMSC interaction induced secretion of TGFβ, 
which suppress the immune response during myeloma 
development. As shown in the Figure 1, myeloma 
development was simulated at intracellular, intercellular, 
and tissue levels. The HABM model described a 
simulated system including five types of cells, which were 
represented by five types of compartments of intracellular 
signaling events and interfaces. Supplementary Table S4 
represents the parameters of ABM model, which were 
directly collected from some related studies or indirectly 
inferred based on the data produced in our laboratory. The 
above five compartments are shown below.

(1) Bone Marrow Stromal Cell (BMSC) compartment. 
This compartment modeled the 3D reticular network formed 
by BMSCs. The changed stiffness of BMSCs in response to 
SDF-1 altered the three-dimensional distribution of bone 

marrow. Based on the signaling pathways shown in the 
Figure 2A, we developed an ODE system to simulate SDF1-
triggered signaling transduction and BMSC responses. The 
details of this ODE system were described in the section 
“Materials and Methods”. All the parameters involved in 
this system were estimated using GA algorithm [25], and 
presented in the Supplementary Table S2. The predicted 
stiffness of myeloma BMSC via this ODE system was 
changed from 400 to 526pa following treatment with 5nM 
SDF-1, which was very close to the experimental results  
(400–530 pa) shown in the Choi’s work [10]. To understand 
the relationship between ODE system outputs and variations 
in individual model parameter values, local parameter 
sensitivity analysis was performed [25]. The sensitivity 
analysis for these parameters indicated that this system was 
very stable (Figure 5).

(2) Myeloma Initiating Cell (MIC) compartment. 
This compartment represented the myeloma stem cells. 
MIC cells sensed the changes of stiffness from its local 
BMSCs and accordingly modulated their proliferation, 
differentiation, apoptosis, migration and adhesion. MICs 

Figure 3: CXCL2 (SDF-1) expression in U266 and BMSCs. (A) The expression level of CXCL12 in myeloma BMSCs was 
increased after coculture with U266 cells. N BMSC means healthy BMSCs, N BMSC+U266 means healthy BMSCs coculture with U266, 
M BMSC means myeloma patients’ BMSCs, M BMSC+U266 means M BMSC coculture with U266. (B)The expression of CXCL12 in 
U266 cells after coculture with healthy and myeloma BMSCs. U266 means U266 cells only, U266+N BMSC means U266 was collected 
after culturing with healthy BMSCs, U266+M BMSC means U266 was collected after culturing myeloma BMSCs. **p < 0.01.

Figure 4: TGFβ expression in U266 and BMSCs. (A)The expression of TGFβ in U266 cells after coculture with healthy and 
myeloma BMSCs. U266 means U266 cells only, U266+N BMSC means U266 was collected after culturing with healthy BMSCs, U266+M 
BMSC means U266 was collected after culturing myeloma BMSCs. (B) The expression level of TGFβ in myeloma BMSCs was increased 
after coculture with U266 cells. N BMSC means healthy BMSCs, N BMSC+ U266 means healthy BMSCs coculture with U266, M BMSC 
means myeloma patients’ BMSCs, M BMSC+U266 means M BMSC coculture with U266. **p < 0.01. 
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can continuously generate MMs during the process 
of proliferation and differentiation [49]. Particularly, 
the adhesion and survival rate of MICs were simulated 
using an ODE system basing on the signaling pathways 
shown in the Figure 2B. The pathway map involved in 
this ODE system was determined according to the data 
shown in the Supplementary Figure S2 and others from 
the related literatures. All of the parameters in this system 
were also estimated using GA algorithm [25] and shown 
in the Supplementary Table S3. The sensitivity analysis of 
all the parameters demonstrated that this system was also 
stable (Figure 6). 

The predicted outcomes of the ODE system for the 
intracellular signaling in MICs had a close similarity to 

the experimental data (Supplementary Figures S3–S4). The 
measured (Supplementary Figure S3A/S3B) and predicted 
(Supplementary Figure S3C/S3D) survival rates of MIC 
population with absence/ presence of BTZ under different 
collagen Gels (or hydrogels) were consistent. According to 
the analysis from Feng et al., the effect of collagen can be 
roughly equivalent to hydrogel: the stiffness on collagen 
0.5 mg/ml and 0.75mg/ml are close to 200pa and 400pa, 
respectively [26]. Another aspect, the adhesion rate of 
MICs in the presence of BMSCs from myeloma patients 
is 67% (Supplementary Figure S4A), when compared the 
cells cultured with normal BMSCs, in which stiffness made 
great contribution on cell adhesion as 47% (Supplementary 
Figure S4B). Here, we assumed that other factors except 

Figure 5: Sensitivity analysis of stiffness-related signaling pathways in BMSC cells.

Figure 6: Sensitivity analysis of survival- and adhesion- associated signaling pathways in MIC cells. (A) Survival rate (B) 
Adhesion rate.
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stiffness totally have the same contribution (~20%) to 
different conditions. Therefore, the predicted adhesion 
rates of MICs from 100 pa to 400 pa were also close to the 
observations (Supplementary Figure S4C). 

(3) Mature Myeloma cell (MM) compartment. 
This compartment represented the mature myeloma cell 
population which was differentiated from MICs.

(4) CD8+ (CD8+ CTL) T cell compartment. This 
compartment represented the Cytotoxic T Lymphocyte 
(CTL) population, which mediates lysis of myeloma cells 
through cell-cell contact. The activation and proliferation 
of CD8+ T cells reflected the immune response against the 
myeloma development. 

(5) Regulatory T cell (Treg) compartment. This 
compartment represented the immune-suppressive T cell 
population, which is responsible for the maintenance 
of peripheral tolerance, and has been implicated in the 
suppression of tumor immunity. Tregs have been shown 
to inhibit tumor-specific T cell functions, such as the 
cytotoxic effects of CD8+ T cells. 

The intercellular communications in HABM 
reflects the relationship between cancer cells, immune 
cells and tumor microenvironment evolution during 
multiple myeloma progression through the following 
five aspects. 1). The MIC-BMSC positive feedback 
loop is composed of SDF-1-triggered alteration in the 
biomechanical property of BMSC and BMSC-boosted 
proliferation of MICs [11]. MICs secreted SDF-1 into 
their surrounding extracellular matrix [28]. SDF-1 is then 
diffused in the 3D ECM. Responding to the stimulation 
from the local SDF-1, the stiffness of BMSCs is altered 
via activated SDF-1/CXCR4 signaling pathway [10]. 
MICs sensed those changes and attached on the stiffer 
BMSCs in the local position [26]. Once attached, the 
growth factors secreted by BMSCs boost the survival, 
proliferation, and differentiation of MICs, and thus drive 
multiple myeloma growth. The BMSCs also protected 
MICs from the treatment of drugs, such as BTZ [29]. 2). 
The lineage process of myeloma expansion is illustrated 
by the dynamics of two types of myeloma proliferation. 
Myeloma cells (MM) are generated not only from MIC 
differentiation but also expansion by themselves [11].  
3). CD8+ T cells recognized MICs and MMs in their 
local regions, and migrate toward these target cells for 
clearance [3]. 4). Accumulation of Treg cells potentially 
inhibit the generation of CD8+ T cells, resulting the 
suppression of CTL-mediated antitumor immune responses 
[27]. 5). The secretion of TGFβ from both myeloma 
and BMSCs lead to an increased proliferation of Tregs 
and inhibited proliferation of CD8+ T cells, resulting a 
suppression of immune response [14]. The myeloma-
BMSC interaction impair the CTL-mediated lysis of 
multiple myeloma cells via the increased production of 
TGFβ [30].

The tissue scale of our HABM model reflects the 
3D cancer growth via various intercellular cell-cell 

interactions spatially and temporally. These interactions 
include SDF-1-induced MIC-BMSC positive feedback 
loops, the myeloma lineage process from MIC to MM, 
TGFβ-induced immune suppression, and CTL-mediated 
target cell lysis etc. At the tissue level, intracellular 
signaling pathways are triggered by the local SDF-1 or 
TGFβ via the interfaces of cell agents, and the changes 
in the cells’ fate and behaviors in turn modulate the 
environment for cell growth. In this scale, the dynamic 
3D distribution of SDF-1 is defined by the secretion 
of SDF-1 from MICs and the diffusion of SDF-1 in 
the 3D ECM. TGFβ can be secreted from both BMSC 
and MM, and the dynamic 3D distribution of TGFβ is 
defined by the diffusion of TGFβ in the ECM. TGFβ 
plays an important role in regulating the immune system. 
Chemical microenvironment is determined by the drug 
concentration in the bone marrow. In addition, the tissue 
stiffness defined by BMSC contraction determined the 
biophysical microenvironment. The cell behaviors, such 
as proliferation and migration in 3D ECM, determined the 
distribution of cell populations in bone marrow.

Multiple myeloma cells at different stages of 
differentiation were initially in the bone marrow 
microenvironment. We used 100, 100, 20 and 5 cells 
of MIC, MM, CD8+ T cells, and Tregs, respectively, 
to mimic the initial stage for myeloma spreading to a 
new location in the bone marrow. The ratio of Treg/
CD8+ was determined based on the previous findings 
[31]. In addition, BTZ, LEN, and Thal were used as the 
representatives of cytotoxic and immunomodulatory 
drugs in this model to test the response of myeloma 
cells and immune cells. These drugs were applied alone 
or combined with various doses. The treatment duration 
was scheduled with 144 hours (6 days) in HABM, which 
represented the acute drug effects in clinic. In HABM 
model, a set of parameters for the dosage regimen of three 
drugs indicates a treatment condition. Once the variables 
related to drug dosages were assigned with certain values, 
the cells response to the “treatment” by changing their 
apoptosis and proliferation rates. The number of each cell 
population in HABM was counted every 2 hours. The drug 
effects were quantitatively identified from the changes in 
living tumor cell and immune cell populations following 
treatment. In this model, we simulated the tumor and 
immune responses up to 600 hours. 

Moreover, we defined synergy effect index of 
three-drug combination, and quantitatively examined 
the synergism among these three drugs. Eleven doses of 
each drug and their combination with other drugs were 
then examined in the established HABM model; and 
each treatment condition simulated for 200 times. Time 
resolution was 2 hours. Totally 1331 conditions were 
simulated for 266,200 times using the parallel computation 
on TACC (http://www.tacc.utexas.edu) with 1400 cores.

This is the first time to apply mathematic model for 
simulating tumor growth and immune response within 
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an integral system. Supplementary Figure S5 shows 
simulation examples for myeloma growth in the bone 
marrow microenvironment and the effects of immune 
system on myeloma cell growth. Supplementary Figure 
S5Ai–S5Aiii represent the dynamic changes of myeloma 
cell growth in the absence of immune system in the 
bone marrow microenvironment. Supplementary Figure 
S5Ai indicates that the growing rate of MM is obvious 
faster than MIC, consistent with the experimental results 
reported by Yang. et al. [32]. The simulation results 
for myeloma cell growth at 100 hour and 600 hour 
were shown in the Supplementary Figure S5Aii–Aiii, 
respectively. When the immune cells were added in 
this system, the simulated growth for MICs and MMs 
obviously slowed down (Supplementary Figure S5Bi). 
Supplementary Figure S5Bii–Biii show that myeloma 
cell growth at 100 and 600 hour in the presence of the 
immune cells. The results from the Supplementary 
Figure S5 indicate a negative regulatory role of the 
immune system to myeloma cell growth. Supplementary  
Figure S5Bii–Biii represent multiple myeloma cell 
killing by CD8+ CTL, however, the anti-MM effects was 
interfered by MM-induced immune paresis. The model 
shown in Supplementary Figure S5B was further perturbed 
with two types of combination treatment strategies, 
and the dynamic changes of each cell compartment are 
presented in the following sections. 

Model validation

The simulation results from our HABM model were 
validated using experimental results from our laboratory 
and previously reported studies. We firstly modeled 
MIC progression in the microenvironment without the 
immune system and compared our results with the ABM 
model reported by Su, et al. [11]. When the immune 
system was absent, the simulated MIC populations in 
a microenvironment with BMSCs was expanded 5.98 
times after 4 weeks (Figure 7A), which is consistent with 
the experimental observations reported in Feng’s work 
[9], and is also close to the predicted results in Su, et al’s 
model [11]. However, the HABM model reflects more 
pathogenesis-associated factors. For example, (1) HABM 
is able to demonstrate the significant difference of myeloma 
development in the microenvironment with/without the 
immune cells (Supplementary Figure S5); and (2) tumor 
growth is much slower in the microenvironment with anti-
tumor immune response (Supplementary Figure S5). Thus, 
the computational models with the immune system will 
lead to a more accurate prediction of tumor development 
and drug treatment effects.

In the absence of the immune cells, we then 
predicted that the response of myeloma cells treated by  
5 nM BTZ was close to the experimental outcomes  
(Figure 7B). The predicted cell viability of MIC cells 
on the day 6 after treatment was reduced 89.2%, which 

was close to our experimental result shown in the 
Supplementary Figure S3. The number of myeloma cells 
was reduced 49.5% following two days treatment, which 
was also consistent with Campanella’s work [2]. We 
further analyzed the effects of LEN on the proliferation 
of CD8+ T cells (Figure 7C). The treatment with 5 μM 
and 10 μM of LEN led to 38.4% and 46.4% increase in 
the number of CD8+ T cells, respectively. These results 
were also consistent with the data reported previously 
[33]. Moreover, we predicted the suppressive effects of 
Tregs on CD8+ T cells proliferation when combined with 
different ratio of Treg to CD8+ T cells.  As shown in the 
Figure 7D, the simulated results were similar to those 
from Fostier’s work [34]. Finally, we predicted the CD8+ 
T cells-mediated lysis of myeloma cells (Figure 7E). The 
survival rate of myeloma cells (MIC and MM together) in 
presence with three different ratios of CD8+ T cells were 
close to the experimental results from Haart. et al [3]. 
These above simulation results suggest that our HABM 
model is of high accuracy.

Effects of therapeutic drugs on myeloma 
development

To explore the resistance of myeloma cells to chemo- 
and immuno- therapeutic drugs and the risk of tumor 
relapse in a simulated bone marrow microenvironment, we 
modeled the outcomes from the treatments with BTZ, LEN, 
and Thal, respectively. Multiple myeloma was sensitive to 
BTZ, so that anti-cancer therapy using BTZ induces direct 
tumor cell apoptosis by activating Caspase-8/9 mediated 
apoptotic pathways [14, 35]. According to Campanella’s 
experimental results, the dose 1.5 nM of BTZ was a turning 
point to the myeloma cell killing [2]. Therefore, we used 
1.5 nM BTZ in our model for this simulation. Different from 
BTZ, the most important working mechanisms of IMiDs 
(such as, LEN and Thal) include T-cell co-stimulatory, 
suppression of Tregs, and disruption of myeloma cell 
-BMSC interaction [14]; Thus, a relative high dose (10 μm) 
was used for both LEN and Thal in our model [1, 33].  
Figure 8 represents the effects of all three drugs on each 
type of cells.  The growing rates for the untreated MIC 
and MM were obviously increased following time; Once 
BTZ was delivered to bone marrow, the populations of 
MIC and MM were sharply killed (Figure 8A–8B). As a 
widely used immunomodulatory drug for  the treatment of 
multiple myeloma, LEN re-activates the immune system 
in bone marrow, resulting in suppression of Treg cells and 
activation of CD8+ T cells [12, 36]. Compared with BTZ 
and Thal, LEN effectively increased the proliferation of 
CD8+ T cells and inhibited the proliferation and function of 
Tregs (Figure 8C–8D). Considering the special inhibiting 
effects to SDF-1/CXCR4 signaling pathway in MM [1], 
Thal indirectly inhibits the proliferation of myeloma cells 
by regulating the SDF-1-trigged stiffness of BMSC and 
further decreases the secretion of TGFβ from BMSC. 
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Figure 8A–8B show that the treatment with Thal induced 
suppressive effects on both MIC and MM cells. Together, 
these simulating results suggest that: (1) BTZ alone 
resulted a significant killing in the cell numbers of MIC and 
MM; (2) LEN or Thal alone didn’t lead to a significantly 
kill of the tumor cells but to recover the immune system.

Combined drug effects on disease development

As shown in Figure 8, treatment multiple myeloma 
with individual drug didn’t obtain desired effects [35]. In 
this section, we simulated the combined drug effects on 
myeloma development to investigate optimal therapeutic 
strategies. Our rationale is that an optimal therapeutic 

strategy should consider multiple potential targets in 
bone marrow for complete clinical responses. Here, we 
focused on the BTZ-based combined effects, in which 
chemotherapy and immunotherapy drugs were delivered 
to multiple myeloma in bone marrow, simultaneously. 
Figure 9 shows three strategies of drug-combinations 
and the corresponding effects on myeloma growth and 
immune response simulated by our model. Treatment 
with multi-drug presents obvious stronger effect than that 
with a single drug. This is consistent with the Wang’s 
work [37]. The treatment efficacy on multiple myeloma 
with BTZ plus Thal is better than that with BTZ plus LEN 
(Figure 9A–9B). Triple combination with BTZ, LEN, and 
Thal results in the lowest survival rate of both MIC and 

Figure 7: Comparison of simulation results and experiment observation. The simulation results of MIC populations (A) 
myeloma cell viability after treatment with BTZ (B) LEN-induced CD8+ T cell proliferation (C) the suppressive effects of Tregs on CD8+ 
proliferation, and CTL-induced lysis of myeloma (E) under Myeloma-BMSC were compared with published experiment results. 
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MM cells (Figure 9A–9B). The enhanced anti-tumor effect 
appears to be due to the increased CD8+ T cells activity. 
Combined treatment with BTZ, LEN, and Thal maximizes 
leads to a quick increase in the population of CD8+ T cells 
(Figure 9C), and a suppression in the proliferation and 
function of Tregs (Figure 9D). Together, these findings 
indicate that the combined therapy with three drugs (BTZ, 
LEN, and Thal) results in an excellent treatment response, 
which is due to a direct antitumor effect and enhances the 
host’s antitumor immune responses, simultaneously. 

Drug synergy evaluation

We tested the combined effects of three 
representative drugs, BTZ, LEN, and Thal, to examine if 
induction of direct tumor cell apoptosis, disruption of the 
MIC-BMSC interactions and enhancement of anti-tumor 
immune response have clinical potentials for multiple 
myeloma treatment. For each drug, 11 doses (0 as no drug, 
1–10 levels from 0.1 × to 1 × to the original dose) were 
selected and the full combinations of these three drugs 
were explored for drug efficacies. Each combinatorial 
condition was simulated for 200 times at 300 time points 
(600 hours) for 5 cell types, and totally 266,200 data sets 
were generated. For each combined strategy, the means of 
200 replicates were used for further analysis.

Here, we defined synergy effect index (Ci,j,k) of 
three-drug combination as following:

+ + 2
         i jk j ik k ij i j k

i, j,k
i, j,k

D D D D D D D D D
C

D
−

=
 (1)

Where i, j, and k are the doses for BTZ, LEN, and 
Thal, respectively, and i, j, { }    1,…,10      k .∈ D denotes the 
survival ratio of myeloma cells after treatment by drugs. 
Di, Dj, and Dk,represent the cell viability after treated 
with single drug; and Dik, Dij, and Djkwith two drugs. In 
formula (1), the numerator and denominator indicates the 
expected response effects [38] and simulated effects of 
triple-combination, respectively. The effect is synergistic 
if the value of Ci, j, k > 1, antagonistic if Ci, j, k < 1, and 
additive if Ci, j, k = 1. We presented four cases about the 
synergy effects of three-drug combination (Supplementary 
Figure S6). For example, we randomly set Thal with 
dose level 10, the synergy has been obviously found 
between BTZ (level 1 to 7) and LEN (level 1 to 10) in 
Supplementary Figure S6A; It also consistent with some 
previous works that LEN potentiates the activity of BTZ 
in preclinical studies [35, 39, 40]. If the dose of BTZ is 
low, the synergy effects occurred when the doses of Thal 
and LEN are increased (Supplementary Figure S6–S6D). 
When the dose of LEN is low (immune system was not 

Figure 8: The treatment effects of single drug on four types of cells. The simulation results of single drug treatment effect on 
MIC (A) MM (B) CD8+ T cells (C) and Tregs (D) were compared with three strategies.
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activated), the synergy effects was induced when Thal is 
increased (Supplementary Figure S6C).

DISCUSSION

This work focused on studying the effects of cell-
cell interaction on myeloma development in bone marrow 
microenvironment, and cast new light on the strategies to 
overcome immune suppression and improve the relapse 
of multiple myeloma. The central hypothesis of this 
work is that myeloma development in the bone marrow 
is promoted by: (1) the positive feedback loop between 
MICs and BMSCs via SDF-1 and the increased stiffness 
in the BMSCs niche; (2) cell adhesion-mediated immune 
resistance against CTL function induced by TGFβ. These 
are the main reasons responsible for immune tolerance 
[3], drug resistance and cancer relapse [11], and have been 
successfully covered in our hybrid multi-scale agent-based 
model.

We are the first to study systemic modeling of tumor 
growth, drug response, and immune response within an 
integrated 3D system (Figure 1). In the above section, we 
briefly introduced one of our previously reported works 
(Su, et al.) using an ABM model to simulate the effects of 
SDF-1-induced chemo-physical communications among 
MICs and BMSCs on myeloma lineage process [11]. 

We also used the well-defined SDF-1-induced chemo-
physical communications between MICs and BMSCs 
in our HABM model and simplified the lineage process 
MICPCMMTMM by using MICMM [49]. For the model 
structure, we borrowed the idea of hybrid model from 
Solovyev’s work, which combines ODEs and ABM in a 
single computational system [43].

Our contributions are summarized as below:
Firstly, Su, et al. didn’t take the effects of immune 

system into consideration, which plays a key role in tumor 
progression and drug resistance in human. Our work is 
the first one to study systemic modeling of tumor growth 
and immune response within an integrated 3D system. 
We creatively added two components “CD8+ T Cell” and 
“Treg” in our model to represent a basic immune system 
with key functions, including CTL-mediated target cell 
lysis, and Treg-induced suppression of CTL proliferation. 

Secondly, comparing with the two-dimensional 
hybrid model developed by Solovyev et al., our 3D hybrid 
multi-scale model mimics signal transduction processes 
at the intracellular scale, stochastic cell behavior at the 
intercellular scale, and the diffusion of growth factors and 
drugs within the microenvironment at the tissue scale. 

Thirdly, we defined the synergy index of the three-
drug combinations and predicted the combined effects 
of three drugs with multiple doses in an ABM system. 

Figure 9: The effects of combined treatment on four types of cells. The simulation results of multiple drug treatment effect on 
MIC (A) MM (B) CD8+ T cells (C) and Tregs (D) were compared with three strategies.
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While most of previous models only studied the synergy 
effects between two drugs in the ABM models or signaling 
pathway networks [45–48].

In our HABM model, an ODE system modeled the 
SDF-1-triggered signal transduction process to determine 
the changes in the biophysical property (stiffness) of 
BMSCs (Figure 2A and Supplementary Figure S7). The 
increased stiffness in BMSCs promoted the proliferation 
of MICs, which was also processed by another ODE 
system (Figure 2B and Supplementary Figure S4). In the 
result section, we introduced the local sensitivity analyses 
of parameters in ODEs by increasing or decreasing 
one parameter at a time. Moreover, we discussed the 
uncertainty analysis [44] for all the parameters. 

Uncertainty analysis

Based on the estimated parameters shown in the 
Supplementary Tables S2–S3, we obtained two baseline 
ODE models. We then generated the testing samples, in 
which all of the parameters were increased or decreased 
randomly with uniform probability within a given range 
(5%). Each testing sample denoted a set of new parameters, 
which was then used to execute the related ODE model. 
Considering the search space of testing samples is quite 
large, we randomly generated nine statistical experiments 
with different sample sizes, and evaluated the variability of 
model results with each sample set. The numbers of testing 
samples in nine experiments were significantly different 
(e.g. 30, 100, 200, 500, 1000, 2000, 5000, 8000, and 
10000). Supplementary Figure S8  shows the variability of 
stiffness for all testing cases in each experiment. The mean 
and standard deviation were normalized by the output 
from the baseline model (the green line in Supplementary 
Figure S8). When the size of a sample set is larger than 
5000, the mean values of outputs converge to the steady 
state and the changes in outputs would be less than 4% 
eventually. Supplementary Figure S9 shows the variability 
of survival rate and adhesion rate for all testing cases in 
each experiment. Similarity, when the sample size is 
larger than 5000, the mean values converge to the steady 
state and the percentage changes of outputs in all cases 
eventually would be less than 5%. Our proteomic data was 
represented as fold changes comparing with the time point 
0 (Tables S1–S2 in Supplementary Data File), thus, we 
executed all the testing cases on each ODE model with 
the same initial state of the related network (each protein 
node was assiggend as “1”). In summary, Supplementary 
Figures S8–S9 indicate that the constructed pathway 
models in BMSC and MIC cell agents are stable.

We also provide a novel computational platform 
for evaluation of the cellular responses to the single and 
combined drug treatment. Wang. et al. performed a meta-
analysis for the efficacy and safety of combined treatments 
(BTZ plus LEN/Thal vs BTZ or LEN/Thal) containing 
regimens as the induction therapies in newly diagnosed 

multiple myeloma [37]. Their analysis suggests that BTZ 
plus LEN or BTZ plus Thal resulted a significant increase 
in the clinical responses of patients compared with those 
received a single drug. Our simulated results also indicated 
that BTZ-based combined treatments were more efficient 
than the single drug strategy (Figures 8–9). In addition, we 
found that predicted survival outcomes from the combined 
therapy with three drugs were greatly improved (Figure 9), 
consistent with the results from clinic indicating that the 
use of BTZ, LEN and Thal dramatically changed outcomes 
for patients with relapsed myeloma [41]. Our simulations 
indicate that the combined therapy with three drugs (BTZ, 
LEN, and Thal) results in an excellent treatment response 
rather than other combinations. In addition, the maximal 
dose of BTZ, LEN, and Thal simulated in our model 
were 5 nM [2], 10 μM [33], and 10 μM [1], respectively. 
Clearly, this model facilitates us to identify the optimal 
dose setting of combination therapeutic options for 
improving survival outcomes.

Although the parameters of the HABM model 
were tuned manually or determined from some related 
literatures, the proposed model under different contexts is 
capable to re-capture the experimental observations with 
high precision. 

(1) Pro-oncogenetic myeloma-associated BMSC 
microenvironment. Without the intervention of immune 
system, the MICs population was boosted in myeloma-
associated bone marrow and thus driven the development 
of myeloma (Figure 7A).

(2) The response of myeloma cell to BTZ treatment. 
The predicted dose effects of BTZ on cell survival 
(Figure 7B) was consistent with the experimental results 
(Supplementary Figure S3 and [2]), indicating that our 
model has the capability to predict the drug responses of 
myeloma.

(3) The efficacy of LEN in activating CD8+ T cells. 
When the representative IMiD drug LEN was delivered 
with a wide range of doses, CD8+ T cells were efficiently 
activated and the proliferation was promoted obviously. 
The predicted outcomes and the experimental observations 
were very close (Figure 7C).

(4) The suppressive effects of Tregs on CD8+ 
proliferation. Figure 7D represents that the suppressive 
effects of Tregs on CD8+ T cell proliferation without any 
drug perturbation [34].

(5) CD8+ T cells mediated lysis of myeloma cells. 
Myeloma cells were significantly lysed by the cytotoxic 
effect of CTL when CD8+ T cell population was expanded 
[3]. Our predicted results were consistent with these 
observations (Figure 7E).

In summary, we proposed a 3D hybrid multi-scale 
agent-based model (HABM) to reveal the molecular 
mechanisms associated with cancer development and 
immune response in an integrated tumor microenvironment. 
In the HABM system, not only cell-cell interactions were 
modeled for describing various types of intercellular 
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communications, but also the key signaling pathway 
networks were stimulated for elaborating the intracellular 
signal transduction processes. Under different perturbed 
conditions, the predicted outcomes of HABM model 
were very close to the experimental observations, which 
proved that the simulation results of our model are reliable. 
This is the first time to model the cancer development in 
a complicated system with immune component, so that 
the stimulated microenvironment was more close to the 
condition in vivo rather than previous works. This study 
also provided a novel computational tool to quickly predict 
the drug treatment response of multiple myeloma, which is 
good for us to find the best treatment strategy of multi-drug 
and the optimal dose combination. 

MATERIALS AND METHODS

Experiment

Cells and culture 

Myeloma cells

Human myeloma cell line RPMI8226 was obtained 
from the American Type Culture Collection. RPMI 8226 
cells were cultured in RPMI 1640 (Hyclone) containing 
10% heat-inactivated fetal bovine serum (Sigma), 
2 mmol/L l-glutamine (Invitrogen), 100 U/mL penicillin 
and 100 μg/mL streptomycin (Invitrogen). 

Bone marrow stromal cells (BMSCs)

Myeloma BMSCs were isolated from remaining 
bone marrow samples of myeloma patients for routine 
diagnostic. Cells in the bone marrow sample were obtained 
by Ficoll density gradient centrifugation (AXIS-SHIELD). 
The cells were then plated in the tissue culture flasks at a 
concentration of 106 cells/mL in Mesencult basal medium 
supplemented with MSC stimulatory supplements (both 
from Life technology). After 24 h incubation at 37°C 
in a 5% CO2 humidified atmosphere, non-adherent cells 
were removed, and the adherent fraction was cultured in 
fresh medium. Cells used for future experiment were no 
more than 10 passages. Normal BMSCs cell line HS5 
was obtained from ATCC, and cultured in Mesencult 
basal medium supplemented with MSC stimulatory 
supplements. 

Coculture of myeloma cells and BMSCs

For coculture experiments, myeloma cells were 
seeded onto BMSCs pre-cultured on 6-well plates. Cells 
were cultured in RPMI 1640 with 10% FBS at 37°C 
in a humidified atmosphere of 21%O2 normal or 5% 
O2 hypoxic condition. Suspended myeloma cells were 
collected by repeated gently rinsing mixture. BMSCs were 
scraped for following RNA extraction.

Reverse transcription-quantitative polymerase 
chain reaction (RT-qPCR)

Total RNA was extracted from the collected 
myeloma cells using Qiagen mini RNA extraction kit 
(Qiagen), according to the manufacturer’s instructions. 
A total of 1 μg RNA was reverse-transcribed into cDNA 
using a SuperScriptIII first-strand synthesis system (Life 
Technology). RT-qPCR was performed using an Applied 
Biosystems Fast 7500, with endogenous GADPH used as a 
reference. The gene expression levels of transforming growth 
factor (TGFβ) and CXCL12 (SDF-1) were determined in 
each group. The primers used in this study designed and 
synthesized by Integrated DNA technologies. Primers were 
as follows: GADPH, 5′-3′GAGTCAACGGATTTGGTCGT 
(forward) and 5′-3′ TTGATTTTGGAGGGATCTCG 
(reverse); TGFβ, 5′-3′ CGTGGAGCTGTACCAGAAATAC 
(forward) and 5′-3′ CACAACTCCGGTGACATCAA 
(reverse); and CXCL12, 5′-3′ CAGAGCCAACGTCAAGCA 
(forward) and 5′-3′  AGGTACTCTTGGATCCAC (reverse). 
The cycle conditions were as follows: 1 min at 60°C, 10 min 
denaturation at 95°C followed by a total of 40 cycles 95°C 
for 15 sec and 60°C for 1 min. 

Proteomics data for SDF-1 signaling in myeloma 
BMSC

To model the SDF-1 signaling network of BMSC 
cells shown in Figure 2A, we collected phosphor-protein 
data from three sources. (1) The myeloma BMSCs were 
treated with SDF-1 (100 ng/ml) and the protein levels of 
p-FAK, p-MYL2, and p-RhoA were detected at 0, 5, and 
10 minutes shown in the Choi’s work [10]. (2) We did 
the similar experiment with SDF-1 (100 ng/ml) and also 
obtained the phosphorylation of p-FAK, p-MYL2, and 
p-RhoA at 0, 15, and 60 minutes [22]. (3) We did the RPPA 
analysis for the myeloma BMSCs treated with 100 nM/mL 
of SDF-1. This RPPA dataset covered four time points:  
0, 5, 10, and 15 minutes. From this dataset, we collected 
the phosphorylated protein levels of ERK and MEK at 
above four time points. The phosphor-state of each protein 
was normalized against its expression at time point 0.

Proteomics data of MIC 

Similarly, we obtained the phosphorylation of key 
proteins for modeling the signaling network of MIC shown 
in Figure 2B. Side population of myeloma cells seeded 
on 100 Pa and 400 Pa surfaces and the protein samples 
collected at 0, 30, 60, and overnight for RPPA analysis. For 
each protein, the expression levels are normalized against 
its t = 0 min level. Finally, we collected the expressions 
of FAK, PI3K, AKT, JNK, c-Jun, and NFKB from this 
RPPA dataset because they were covered in the topology 
of network shown in Figure 2B. The details of the above 
proteomic data were described in Supplementary Data File. 



Oncotarget7660www.impactjournals.com/oncotarget

Cell population

MIC growth and response to BTZ on the premade 
collagen gels with various stiffness

Two hundred of the side population (SP) of U226 
cells were mixed with premade collagen gel with various 
concentration as shown in Supplementary Figure S3A. 
The Cells were allowed to grow in the gel for 1 week 
and then treated with or without 5 nM BTZ for six days. 
Cell viability was determined using MTT assay. The 
details of relative cell viabilities were represented in the 
Supplementary Figure S3B.

Adhesion of MIC Cells on and the premade 
collagen gels

The Side population of U226 cells was seeded on 
the premade collagen gel with various stiffness. Twenty 
four hours after incubation, the attached cells were 
trypsinized and counted. The details were represented as 
Supplementary Figure S4A–4B.

Agent-based model of myeloma development

We defined five types of agents in the ABM 
model to represent BMSC, MIC, MM, CD8+, and Treg, 
respectively (Figure 1). ABM a simplified model used 
for predict the effects of cell-cell interactions on growth 
and drug response of myeloma cells in a simulated bone 
marrow microenvironment. We initialized the bone marrow 
microenvironment as a cylinder 3D rectangular framework 
with evenly scattered BMSCs in the 3D extracellular matrix 
and central distribution of mixed MIC, MM, CD8+, and 
Treg compartments as a sphere. This multi-scale modeling 
includes intracellular, intercellular and tissue scales, which 
are illustrated in the Figure 1, and described into details in 
the following sections. Detailed flowcharts of each agent 
are illustrated in the Supplementary Information.

Stochastic simulation of cell behaviors 

The Markov Chain Monte Carlo approach in 
the ABM model was used to simulate individual cell 

behaviors. As shown in the Figure 10, cell behaviors are 
simulated by probability-based rule implementation. A 
cell senses the hints in its neighborhood such as stiffness, 
local cytokines (SDF-1, or TGFβ) and drugs (Bortezomib, 
Lenalidomide, and Thalidomide) and  adjusts itself 
with the imbedded signaling pathways, and outputs the 
corresponding changes in its cell behaviors, including 
proliferation, survival, differentiation, migration, and 
cytokine secretion rate. Cell decision is then determined by 
rolling a dice and compared with the probability threshold 
of a cell behavior. Details of each cell behavior for each 
agent as well as the corresponding rule are discussed 
in the following sections as well as the Supplementary 
Information.

Intracellular scale

The biomechanical phenotype for each BMSC 
agent is determined using our developed ODE system to 
describe the effect of SDF-1/CXCR4 signaling pathway 
on local stiffness in response to the changes of in-situ 
SDF-1 concentration. SDF1-triggerred BMSC stiffness is 
described into details the following section.

The survival rate of MIC cells is determined by 
both the local ECM stiffness and the local doses of BTZ 
via a developed ODE system. Adhesion rate represents 
the probability of a MIC cell attaching on a BMSC agent 
with various stiffness. The ODE system for adhesion and 
survival of MIC cells has been described into details the 
following section. 

The response of MM cells to local stiffness in terms of 
the possibilities of cells to enter the proliferation, apoptosis, 
and migration status are calculated using Hill functions. 
Similarly, Hill functions are also applied for denmondtration 
of the probabilities of proliferation, apoptosis, and migration 
for immune-related cell agents (CD8+ and Treg). Cell 
decision making process is defined by the agent rules with 
such probabilities as the major inputs. 

Cell fate determination

Once a MIC has decided to re-enter cell cycle, its 
microenvironment will be a key determinor for its fate. 
A MIC can either devide into two daughter cells, known 

Figure 10: The stochastic simulation of cell behaviors.



Oncotarget7661www.impactjournals.com/oncotarget

as self-renewal, or differentiate into two MM cells. 
The probability of each fate is calculated using the Hill 
functions, and the decision making is realized by the die 
casting simulation.

Intercellular scale

In response to the changes in the biomechanical 
properties of its microenvironment, a myeloma cell (MIC 
or MM) will proliferate, migrate, become quiescent, or 
undergo death process. We described those responses 
at the intercellular scale. In addition, a myeloma cell 
might be killed by CD8+ T cell in the neighborhood. 
Furthermore, when the Treg cells migrate towards CD8+ T 
cells, the proliferation of CD8+ T cells will be suppressed, 
due to cell cycle arrest or apoptosis of these cells. 

Migration

A non-M-phase cell will migrate if it can find a 
free space nearby. In the BM, MIC cells tend to migrate 
to the surface of the BMSC cells and attach on it. Their 
proliferation will be promoted with the increased stiffness 
of BMSCs. CD8+ T cells are apt to move towards the 
places of where myeloma cells reside. Treg cells migrate to 
CD8+ T cells and affect the proliferation of these effector 
cells in a manner of cell cycle arrest or apoptosis. The 
migration was governed by space availability, migration 
speed, and stochastic effects using Hill functions and die-
casting simulation.

Division of MIC and MM agents 

If M-phase cells are found at least at one free 
location within the searching distance, there cells will 
divide. It follows the same migration rules, but has a much 
smaller migration distance. Thus, the de novo daughter 
cells will always be next to the parental cells. If no space 
is available, the cells will remain in M-phase and obtain 
entrance in the next cycle. 

Lysis of MIC and MM

Once recognizing the location of myeloma cells 
(MIC and MM) in its neighborhood, the CD8+ T cell will 
migrate towards them. When a CD8+ cell is adjacent to a 
certain myeloma cell, the lysis will occur. The myeloma-
BMSC interactions can promote the myeloma cells escape 
from the immune system, therefore, we also defined the 
corresponding rules to reflect a fact that CD8+ cells prefer 
to kill the target tumor cells which are not attaching on 
the BMSCs.  

Suppression of CD8+ T cell proliferation

 Tregs suppresses the proliferation of CD8+ T cells 
to balance the immune response in a system by including 

cell cycle arrest or apoptosis. Therefore, we defined the 
corresponding rules to implement Treg-induced inhibition 
of CD8+ T cell proliferation. If a CD8+ T cell is in a 
certain phase of cycle, our rules would be paused once. In 
addition, a Treg cell may directly induce apoptosis of the 
adjacent CD8+ T cell. The selection of cell cycle arrest or 
apoptosis will be determined by dice rolling. 

Tissue scale

In the tissue scale of this HABM model, the 
secretion of SDF-1 from MICs and the diffusion of SDF-
1 in the 3D ECM defined the dynamic 3D distribution 
of SDF-1 concentration. TGFβ can be secreted from 
both BMSC and MM, and the diffusion of TGFβ in the 
ECM also defined the dynamic 3D distribution of TGFβ, 
which involved in the regulation of the immune system.  
SDF-1 and TGFβ are uniformly initialized at the start with 
Dirichlet boundary. The drug concentration determined 
the chemical microenvironment in bone marrow. In 
addition, the tissue stiffness defined by BMSC contraction 
determined the biophysical microenvironment.

ODE-based models of intracellular signaling 
response

ODE system of SDF-1-triggerred BMSC stiffness

Each BMSC agent has encapsulated signaling 
transduction functions to determine its biomechanical 
phenotype switch. In response to the in-silu relative SDF-1 
concentration, the binding of SDF-1 to the CXCR4 results 
a SDF-1/CXCR4 signaling pathway activation, which 
regulates the local stiffness. To describe this dynamic 
process, we developed an ODE-based dynamic model to 
predict the biomechanical properties of BMSCs based on 
the local concentration of SDF-1.

The ODE system of SDF-1/CXCR4 signaling 
pathways has the following form: 
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As mentioned above, our phosphor-proteomics data 
covered the key signaling proteins (pMEK, pFAK, pRhoA, 
pERK, and pMYL2), which were involved in this SDF-
1/CXCR4 signaling network. The value of the unique 
input node  for SDF-1 is a conditional variable, which is 
un-changed from 0 to 60 min. The node “stiffness” is the 
output variable of this ODE system. Choi et al reported that 
the average stiffness of myeloma BMSC will increase from 
400 pa to 530pa after treatment with SDF-1 (100 ng/ml) 
in vitro. However, the real concentration of local SDF-1 in 
bone marrow is lower; therefore, we considered that 530pa 
is the maximum output value in our ODE system at 60 min 
after SDF-1 stimulation. All above parameters involved in 
this ODE system were estimated by optimizing formula (8) 
via GA algorithm:
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Where t
iX  and ˆ ( )t

iX Θ  denote the measurement 
from the experiments and the theoretical results obtained 
from ODEs model of protein i at time point t. The 
parameter vector 101 10 71 1{ , ,...., , , },dk k dHHΘ =
in above formulas (1–7) can be obtained by formula 
(8). The set I1is the indexes of observed proteins in 
the signaling network of BMSCs, and time series set 

{ }1 0,  5 min,  10 min,  15 min,  60 minT =  includes all the time  
points in experimental data (Table S2 in Supplementary 
Data File). Supplementary Table S2 represents the 
estimated values of all parameters. The fitting accuracy 
of the predicted and measured values of key proteins is 
shown in Supplementary Figure S7. 

ODE system of MIC adhesion and survival 

The adhesion and survival of MIC agents were 
also simulated using an ODE model. As the population 
data shown in Supplementary Figures S3–S4, we can see 
that (1) increase of stiffness promotes the survival rate of 
MIC cells; (2) MICs tend to adhere on the stiffer BMSCs 
rather than the softer ones or non-BMSC positions. Here, 
we assumed that each cell has the same probabilities for 
survival and adhension as the total population. Therefore, 
we developed an ODE dynamic model to predict the 
probabilities of survival and adhesion of MIC cell based 
on the local stiffness. The maximal value of input node 
“stiffness” was 530pa. Adhesion and survival rate of MICs 
were both predicted at 24 and 96 hours. The states (at 0.5 
and 1 hours) of other proteins involved in this signaling 
network were normalized against its expression in 0 hour 
level. The ODE system has the following form:
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k d FAK
dt H stiffness

= −
+

 (9)
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+ +
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[ ] [ ]
[ ] [ ]4 3

4

3
3

d PI K FAK
k d PI K

dt H FAK
= −

+
 (11)
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3
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d AKT PI K
k d AKT

dt H PI K
= −

+
 (12)

[ ] [ ]
[ ] [ ]6 5
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d JNK Rac
k d JNK

dt H Rac
= −

+  (13)

[ ] [ ]
[ ] [ ]7 6
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d cJUN JNK
k d cJUN

dt H JNK
= −

+
 (14)
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[ ] [ ]8 9 7

8 9

d NFKB Rac AKT
k k d NFKB

dt H Rac H AKT
= + −

+ +
 (15)

[ ] [ ]
[ ] [ ]10 8

10

d Adhesion cJUN
k d Adhesion

dt H cJUN
= −

+
 (16)

[ ] [ ]
[ ] [ ]1

11 9
11 1

BTZ
BTZ

d Survial NFKB Dk K d Survival
dt H NFKB H D

= − −
+ +

 (17)

All above parameters involved in this ODE system 
were estimated by optimizing formula (8) via GA 
algorithm.



*

2, 2
( )arg min tt

i i
i I t T

Y Y
ϒ ∈ ∈

= − ϒϒ ∑  (18)

Where t
iY  and ˆ ( )t

iY ϒ  denote the measurement from 
the experiments and the theoretical results obtained from 
ODEs model of protein i at time point t. The parameter 
vector 11 1 9{ , , ,..., , , }BTZBTZk d k dH Hϒ =  in above 
formula (9–17) can be obtained by  formula (18). The 
set  I2is the indexes of observed proteins in the signaling 
network of MICs, and { }0,  0.5 hr,  1hr,  24hr,  96hrT2 =
includes all the time points in experimental data (Table S1 
in Supplementary Data File). Supplementary Table S3 
represents the estimated values of all parameters. The 
prediction of growth and drug resistance of SP U226 cells 
with different stiffness were shown in Supplementary 
Figure S3. Similarly, the adhesion of SP U226 cells 
towards different stiffness was inferred by ODEs 
(Supplementary Figure S4).

Using hill functions in the intracellular scale

Except the ODE systems were applied to model the 
intracellular signaling networks in BMSC and MIC cells 
(Figure 2), Hill functions were used to simulate the signal 
transduction of other cells and further determine the cell 
behaviors (Supplementary Text).

Stem cell fate determination

Once a MIC decided to enter cell cycle, it either 
generates two daughter cells, known as self-renewal, or to 
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two MM cells, known as differentiation. The probability 
of cell fate was determined by stiffness-triggered MIC 
proliferation pathways via hill function, and the decision 
of each MIC cell was also realized by die casting 
simulation as mentioned above.

Proliferation fates of MM 

The fates of intermediate cell agents were 
determined by the probabilities of proliferation, which 
reflected the effects of cell neighborhood characters such 
as stiffness and cytokine concentration, and the current 
cell cycle status. When maximum renewal limit reached, 
a MM cell will die. According to the myeloma initiating 
cell hypothesis, only MIC can self-renew and proliferate 
without limits, however, the defined constant LGN is the 
maximum passage number of MM cells. 

Proliferation and survival fates of CD8+ T cells 
and Treg 

The proliferation rate of CD8+ T cell depends 
on Treg population and the local concentration of 
TGFβ, which was also simulated by Hill Function. The 
proliferation and survival fates of a Treg agent were both 
determined by the local concentration of TGFβ via Hill 
Functions. When an immunomodulatory drug, such as 
LEN, was applied to treat MM/MIC, it would lead to 
a suppression of Tregs and stimulation of CD8+ T cells 
prolifeartion.

Model implementation

The main components of ABM model were designed 
using the conception of “Object-Oriented Programming” 
and were achieved with C++. The ODEs modules of 
intracellular signaling pathways (in BMSC and MIC) were 
implemented by Fortran ODE Solver (DLSODE [42]) and 
were called in the ABM model. The proposed model was 
debugged and implemented under Linux environment 
on the platform of Texas Advanced Computing Center 
(TACC). All of the parameters in ABM model were tuned 
after running the system 200 times to fit the training data.

Abbreviations

BM: Bone Marrow, MM: Multiple Myeloma, 
ABM: Agent-based Model, ODE: Ordinary Differential 
Equation, HABM: Hybrid multi-scale Agent-based Model, 
MIC: Myeloma Initiating Cell, BTZ: Bortezomib, LEN: 
Lenalidomide, Thal: Thalidomide.
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