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ABSTRACT
Catalyzed by adenosine deaminase (ADAR), the adenosine to inosine (A-to-I) 

editing in RNA is not only involved in various important biological processes, but 
also closely associated with a series of major diseases. Therefore, knowledge about 
the A-to-I editing sites in RNA is crucially important for both basic research and 
drug development. Given an uncharacterized RNA sequence that contains many 
adenosine (A) residues, can we identify which one of them can be of A-to-I editing, 
and which one cannot? Unfortunately, so far no computational method whatsoever 
has been developed to address such an important problem based on the RNA sequence 
information alone. To fill this empty area, we have proposed a predictor called 
iRNA-AI by incorporating the chemical properties of nucleotides and their sliding 
occurrence density distribution along a RNA sequence into the general form of pseudo 
nucleotide composition (PseKNC). It has been shown by the rigorous jackknife test 
and independent dataset test that the performance of the proposed predictor is quite 
promising. For the convenience of most experimental scientists, a user-friendly web-
server for iRNA-AI has been established at http://lin.uestc.edu.cn/server/iRNA-AI/, 
by which users can easily get their desired results without the need to go through 
the mathematical details.

INTRODUCTION

RNA editing is a post-transcriptional modification 
that changes the genomic template through the insertion, 
deletion, deamination or substitution of nucleotides within 
the edited RNA molecule. Among the five types of RNA 
editing reported so far, the modification from adenosine 
to inosine, the so-called “A-to-I” editing, is the most 
common one [1, 2]. This type of editing is catalyzed by 
the enzyme called “adenosine deaminase” (ADAR) [3] as 
shown in Figure 1. The concrete process is: adenosine is 
deaminated to inosine, followed by decoding to become 
guanosine (G) due to the polymerase enzyme and 
translational machinery [4]. 

Besides altering the genetic code that can expand the 
transcriptome and proteome, the A-to-I editing may also 
involve in various important biological processes ranging 
from alternative splicing [5], nonsense-mediated mRNA decay 
[6] to gene expression and translation [7]. RNA secondary and 
teritary structures may also be affected by A-to-I editing [8]. 
In addition, RNA A-to-I editing was also found to be closely 
associated with the formation of cancers [9–11] and a series 
of major diseases by editing of glutamate receptors, editing of 
serotonin receptors and by other mechanisms [12]. Therefore, 
knowledge about the A-to-I editing sites in RNA is crucially 
important for both basic research and drug development.

Although the experimental method called “RNA-
Seq” is a powerful tool for determining the RNA editing 
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candidates [13, 14], it is time-consuming. Besides, since 
the A-to-I editing sites determined by the RNA-Seq tool 
are derived indirectly from the A-to-G sites rather than 
directly from the original A-to-I sites themselves, it is very 
difficult to discriminate RNA editing events from the case 
of A-to-G mutations in the single-nucleotide polymorphism 
(SNP) [15] that simply does not exist in the reference 
genome. And hence the A-to-I editing sites obtained by 
RNA-Seq often include many false positive ones.

Therefore, it would be very useful for in-depth 
genome analysis or drug development to develop a 
sequence-based computational method that can effectively 
predict which adenosine sites in a RNA sequence can be 
“A-to-I” edited, and which ones cannot. 

The present study was devoted to address this 
problem.

RESULTS AND DISCUSSION

A computational method called “iRNA-AI” has been 
developed. It is the first predictor ever established by using 
the computational approach and sequence information 
alone to identify human A-to-I editing sites. 

Rigorous cross-validations on a well-established 
benchmark dataset (Supporting Information S1) have 
shown that the iRNA-AI predictor can achieve very high 
scores in sensitivity (Sn), specificity (Sp), overall accuracy 
(Acc), and stability (MCC); i.e.,

n

p

S 86.18%
S 95.23%

  Acc 90.71%
MCC 0.82   

=
 =
 =
 =

 (1)

For the rigorous but intuitive definitions about Sn, 
Sp, Acc, and MCC, see Eq.16 given later.   

Since so far there is no other existing computational 
method whatsoever for predicting the A-to-I editing sites 
in RNA of human transcriptome, it is not possible to show 
the predictor’s power by the comparison manner between 
counterparts. Nevertheless, the power of iRNA-AI and 
its quality can be examined via a practical application 
on a set of experiment-confirmed independent dataset 
(Supporting Information S2), which contains 3,243 true 
A-to-I editing sites and 3,243 false A-to-I editing sites. The 
corresponding success rates thus obtained are given by

n

p

S 84.19%
S 89.36%

  Acc 93.81%
MCC 0.80   

=
 =
 =
 =

 (2)

The above results indicate that the success rates 
achieved by the predictor iRNA-AI on the independent 
dataset of Supporting Information S2 are quite consistent 
with those via the jackknife test on the benchmark dataset 
of Supporting Information S1.  

For the convenience of most experimental scientists, 
the web-server of iRNA-AI has been established at http://
lin.uestc.edu.cn/server/iRNA-AI/. 

Moreover, to maximize the users’ convenience, 
a step-by-step guide has been provided in Supporting 
Information S3, by which users can easily get their desired 
results. 

Because knowledge about the positions of 
A-to-I editing sites would be of great help for in-depth 
understanding the biological functions and processes 
concerned. It is anticipated that iRNA-AI will become a 
useful high throughput tool for understanding the biological 
significance of A-to-I RNA editing, or at the very least, a 
complementary tool to the existing experimental methods in 
this regard. 

Figure 1: An illustration to show the most common type of RNA editing, a modification from adenosine (A) to inosine 
(I) or the “A-to-I editing” that is catalyzed by the adenosine deaminase (ADAR). See the text for further explanation. 
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Although the detailed ADAR’s action mechanism is not 
well understood yet, the crystal structure of human ADAR has 
been solved (PDB code: 3IAR) that provides structural basis 
for the elucidation of its catalytic mechanisms and its specific 
recognition of the target sequence. Since both computational 
biology and structural biology have made great contributions to 
understand enzyme activities and catalytic mechanisms [16, 17], 
it is anticipated that the current iRNA-AI predictor will become 
a useful tool for revealing the catalytic mechanism of ADAR.  

MATERIALS AND METHODS

Prediction is always difficult, particularly in dealing 
with a complicated biological system as studied here. 
Nevertheless, a prediction method would be deemed 
rewarding or successful if it could timely help getting 
some useful information or stimulate and inspire some 
other relevant methods. To realize this, we should make 
the following five procedures very clear as done in a 
series of recent publications [18–29] according to the 
Chou’s 5-step rules [30]: (1) how to construct or select a 
valid benchmark dataset to train and test the model; (2) 
how to formulate the biological sequence samples with 
an effective mathematical expression that can truly reflect 
their essential correlation with the target concerned; (3) 
how to introduce or develop a powerful algorithm (or 
engine) to run the prediction; (4) how to properly conduct 
cross-validation tests to objectively evaluate the anticipated 
accuracy; (5) how to provide a web-server and user guide 
to make people very easily to get their desired results. 
Since the content about the web-server has already been 
described in the RESULTS AND DISCUSSION section, 
below let us address the other four procedures one-by-one. 

Benchmark dataset 

For facilitating formulation, the Chou’s sequential 
scheme [31] was adopted. It was successfully used to study 
signal peptide cleavage sites [32, 33], hydroxyproline and 
hydroxylysine sites [22, 34], methylation sites [35–37], 
nitrotyrosine sites [38, 39], carbonylation sites [19], 
phosphorylation sites [24], sumoylation sites [29], and 
protein-protein binding sites [40, 41]. According to Chou’s 
scheme, a potential RNA A-I editing site sample can be 
generally expressed by

( ) ( ) ( )2 1 1 21 1N N N N N N N Nξ −ξ − − + + +ξ− ξ− + ξ−=R     (3)

where the symbol  denotes the single nucleic acid code 
A (adenine), the subscript ξ is an integer, N– ξ  represents 
the ξ-th upstream nucleotide from the center, the N+ ξ the 
ξ-th downstream nucleotide, and so forth. The  (2ξ + 
1)-tuple RNA sample ( )ξR   can be further classified into 
the following two categories:

( ) ( )
( )

,     if its center can be of A-to-I editing 
,     otherwise                                                            

+
ξ

ξ −
ξ

∈


R
R

R





 (4)

where ( )+
ξR   denotes a true A-to-I editing segment with 

A at its center, ( )−
ξP   a false one with A at its center, and 

the symbol ∈ means “a member of” in the set theory.
The benchmark dataset is derived from DARNED 

database [42] that contains 333,216 A-to-I editing sites 
confirmed by experiments. The detailed procedures to 
construct the benchmark dataset are as follows. (1) As 
done in [43], by sliding the (2ξ + 1)-tuple nucleotide 
window (Figure 2) along each of the RNA sequences taken 
from DARNED database, collected were only those RNA 
segments with A=  at the center. (2) The RNA segment 
samples thus obtained were marked with a positive label if 
their centers were experimentally annotated as the A-to-I 
editing sites, while those with a negative label if their 
centered adenosine could not be edited to inosine as 
confirmed by experiments. (3) To reduce redundancy or 
homology bias, we used the CD-HIT program [44] to 
remove those RNA segments that had 60% pairwise 
sequence identity with any other in a same-labeled group. 
By strictly following the above procedures, we obtained 
an array of benchmark datasets with different ξ values, and 
hence different lengths of RNA samples as well (see Eq.3), 
as illustrated below

37 nucleotides, when 18 
39 nucleotides, when 19 
41 nucleotides, when 20 

49 nucleotides, when 24 
51 nucleotides, when 25 
43 nucleotides, when 26 

ξ

ξ =
 ξ =

ξ =


 ξ =

ξ =
 ξ =

   (5)

Figure 2: Illustration to show the sequence segments highlighted by sliding the scaled window [ ],−ξ +ξ  along a RNA 
sequence. During the sliding process, the scales on the window are aligned with different nucleotides so as to define different (2ξ + 1) -nt 
RNA samples. Adapted from Chou [43] with permission. See the text for further explanation.
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In Eq.5 the symbol  means “formed by”. But it was 
observed via preliminary tests that when 25ξ =  (i.e., the 
RNA samples formed by 51 nucleotides), the corresponding 
successful scores (see Eq.16 later) were most promising. 
Accordingly, hereafter we only consider the 51-tuple 
nucleotide samples. 

After going through the above procedures, we 
obtained 6,243 positive label samples, from which we 
randomly picked out 3,000 to form the positive subset 
for the benchmark dataset. But keep it in mind that the 
remaining 3,243 samples would be used later for other 
purpose.  

The corresponding negative label samples were 
substantially more than the positive ones. Although this 
reflects the fact that in the real world most adenosine 
nucleotides in RNA cannot be edited to inosine, a machine 
learning predictor trained by an imbalanced or highly 
skewing benchmark dataset may negatively affect its 
performance [36, 45]. To balance out the numbers between 
positive and negative samples for model training, we also 
randomly picked out 3,000 negative label samples to form 
the negative subset for the benchmark dataset. Thus, the 
benchmark dataset   can be formulated as

  + −=     (6)

where the positive subset +  contains 3,000 true A-to-I 
editing site-containing RNA sequences, while the negative 
subset −  contains 3,000 false A-to-I editing site-
containing RNA sequences, and  denotes the symbol of 
“union” in the set theory [46].

The detailed sequences for the samples in the 
benchmark dataset are given in Supporting Information S1. 

In literature the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is for 
the usage of training a model, while the latter for testing 
the model. But as elucidated in a comprehensive review 
[46], there is no need to artificially separate a benchmark 
dataset into the two parts if the prediction model is 
examined by the jackknife test or subsampling (K-fold) 
cross-validation since the outcome thus obtained is 
actually from a combination of many different independent 
dataset tests. According to such a point of view, it is 
enough to use the benchmark dataset of Eq.6 alone for the 
current study. It is instructive, however, to use the 
proposed predictor on an independent dataset for 
demonstrating its practical application. The independent 
dataset Ind  can be formulated as 

Ind Ind Ind  + −=     (7)

where the positive independent subset Ind
+  contains the 

remaining 3,243 samples mentioned above, while the 
negative independent subset Ind

−  also contains 3,243 
samples constructed in a way similar to that of −  in Eq.6. 
None of the samples in the independent dataset Ind  occurs 
in the benchmark dataset  .  

The detailed sequences for the samples in the 
independent dataset are given in Supporting Information S2.

Formulation of RNA samples

With the avalanche of biological sequences 
emerging in the post-genomic era, one of the most 
challenging problems in computational biology is how 
to formulate a biological sequence with a discrete model 
or vector that can, however, reflect its essential sequence 
pattern or feature. This is indeed indispensible since nearly 
all the existing machine-learning algorithms were devised 
to handle vectors but not sequences, as elucidated in a 
recent review [47]. Unfortunately, a biological sequence 
expressed with a vector might totally lose its sequence-
order information [48] and sequence pattern features as 
well. To deal with such a problem for protein/peptide 
sequences, the pseudo amino acid composition (PseAAC) 
[49–51] was proposed. Ever since the concept of PseAAC 
was proposed in 2001 [48], it has been widely used in 
nearly all the areas of computational proteomics (see the 
long lists of papers cited in two review papers [51, 52]. 
Inspired by its great successes, the concept of PseAAC 
has been extended to cover DNA/RNA sequences as well 
by introducing the pseudo K-tuple nucleotide composition 
(PseKNC) [53, 54], which has been proved very useful 
in computational genetics/genomics [55, 56] as well 
as conducting various genome analyses (see, e.g., [26, 
28, 57–64] and a review article [65]). Also, because the 
approach of pseudo components has been increasingly 
used in both computational proteomics and genomics, a 
very powerful web-server called “Pse-in-One” [66] has 
been established that can be used to generate various 
modes of pseudo components for both protein/peptide and 
DNA/RNA sequences. 

According to [65], the general form of PseKNC for 
an RNA sequence sample can be expressed as

[ ]1 2                u Z= φ φ φ φ TR    (8)

where T is a transpose operator, while the subscript Z is an 
integer and its value as well as the components uφ  
( )1, 2, , u Z=   will depend on how to extract the desired 
information from the RNA sequence sample concerned. To 
enable Eq.8 to reflect both the short- and long-range 
sequence coupling information within the RNA sample, 
we are to use the nucleotide chemical property and 
nucleotide density to define its components as described 
below.

Physicochemical properties of nucleotides

RNA is formed by four types of nucleotides: A 
(adenosine), C (cytidine), G (guanosine), and U (uridine). 
Among the four types: (1) A and G have two rings, 
whereas C and U only one; (2) from the angle of chemical 
functionality, A and C can be categorized as amino 
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group, while G and U as keto group; (3) in forming the 
secondary or tertiary structure, there are three hydrogen 
bonds between C and G but only two between A and U 
(Figure 3), and hence, the former is stronger than the latter 
in hydrogen bonding, which would play different roles for 
the low-frequency vibration [67, 68] and its biological 
function accordingly [69, 70]. Therefore, the four types of 
nucleotides can be classified into three different groups as 
shown in Table 1.

Similar to the approach used in analyzing the codon 
usage for HIV proteins [71] and E. Coli proteins [72], to 
reflect the aforementioned features, let us formulate the 
i-th nucleotide of Eq.3 by 

( ), , i i i ix y zΝ =  (9)

where xi, yi, and zi refer to the “ring structure”, “functional 
group”, and “hydrogen bonding” in Table 1, respectively; 
i.e., 

{ }
{ }

{ }
{ }

{ }
{ }

,   if  A, G 1,   if  A, C
; ;

,   if  C, U 0,   if  G, U

1,   if  A, U
(10)

0,   if  C, G

 1 Ν ∈ Ν ∈ = = 0 Ν ∈ Ν ∈  
 Ν ∈=  Ν ∈

i i
i i

i i

i
i

i

x y

z

Thus, the nucleotide A can be formulated as (1, 1, 
1), C as (0, 1, 0), G as (1, 0, 0), and U as (0, 0, 1).

Distribution density of nucleotides

To reflect the occurrence frequency of a nucleotide 
and its distribution along the sequence of a RNA sample, 
we use the following equations

( )
@

1

1 N
Li j

ji

D f
=

= ∑  (11)

where Di is the density of the nucleotide Ni at the site i 
of a RNA sequence, Li the length of the sliding substring 
concerned, @ denotes each of the site locations counted 
in the substring, and

1,     if   N the nucleotide concerned 
(N )

0,     otherwise                                      
j

jf
=

= 


 (12)

For instance, suppose a RNA sequence “ACGUA”. 
The density of “A” at the sequence position 1, 2, 3, 4, or 5 
is 1 1/1= , 0.5 1/ 2= , 0.33 1/ 3≈ , 0.25 1/ 4= , or 0.4 2 / 5= , 
respectively; that of “C” is 0 0 /1= , 0.5 1/ 2= , 0.33 1/ 3≈ , 
0.25 1/ 4= , or 0.2 1/ 5= , respectively; and so forth. 

By combing Eq.9 and Eq.11, the i-th nucleotide of 
Eq.3 can be uniquely defined by a set of four variables; 
i.e., 

( ), , , i i i i ix y z DΝ =  (13)

Figure 3: Illustration to show the structure of paired nucleic acid residues. The upper panel is the A-U pair bonded to each 
other with two hydrogen bonds; the lower panel is the G-C pair with three hydrogen bonds. It can also be seen from the figure that A and 
G have two rings, while C and U have one ring. Also, according to chemical functionality, A and C can be classified into the amino group, 
while G and U into the keto group. See the main text for further explanation. 
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Accordingly, the RNA sequence “ACGUA” can be 
successively expressed by the following five sets of digital 
numbers: (1, 1, 1, 1), (0, 1, 0, 0.5), (1, 0, 0, 0.33), (0, 0, 1, 
0.25) and (1, 1, 1, 0.4). Or, according to the general form 
of PseKNC (Eq.8), it can be expressed as

( ) [ ]ACGUA 1  1   1   1    0  1    0   0.5     1   1   1    0.4= TR   (14)

meaning that the 5-tuple nucleotide example can be 
defined by a 5 × 4 = 20-D (dimensional) PseKNC vector. 

Consequently, a 51-nt RNA sample in the current 
benchmark dataset can be formulated with a 51 × 4 = 204- D 
vector.  

Support vector machine (SVM) operation engine

Being a machine learning algorithm based on 
statistical learning theory, SVM has been widely and 
successfully used in the realm of bioinformatics [58, 62, 
73–75] and computational biology [18, 36, 59–61, 76]. 
The basic idea of SVM is to transform the input data into 
a high dimensional feature space and then determine the 
optimal separating hyperplane. For a brief formulation of 
SVM and how it works, see the papers [77, 78]; for more 
details about SVM, see a monograph [79].  

In the current study, the LibSVM package 3.18 was 
used to implement SVM, which can be freely downloaded 
from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Because 
of its effectiveness and fast speed in training process, the 
radial basis kernel function (RBF) was used to obtain the 
best classification hyperplane here. In the SVM operation 
engine, the regularization parameter C and the kernel 
width parameter γ were optimized via an optimization 
procedure using the grid search approach as described by

2          with step      
       with step 

C C−5 15

−15 −5 −1

2 ≤ ≤ ∆ = 2

2 ≤ γ ≤ 2 ∆γ = 2

 (15)

where C∆  and ∆γ  represent the step gaps for C and ,γ  
respectively.

The predictor obtained via the above process is 
called iRNA-AI, where ‘‘i’’ stands for ‘‘identify”, and 
‘‘AI’’ for ‘‘A-to-I editing” sites in RNA sequence. 

Prediction quality examination

How to objectively evaluate the anticipated success 
rates is an indispensible step in developing a new predictor 
[30]. To address this, we need to consider two issues: one 
is what metrics should be used to reflect the predictor’s 
success rates; the other is what test method should be 
adopted to derive the metrics rates. 

To quantitatively evaluate the quality of a binary 
classification predictor, four metrics are generally 
needed [80]. They are: (1) Acc for the predictor’s 
overall accuracy; (2) MCC for its stability; (3) Sn for its 
sensitivity; and (4) Sp for its specificity. Unfortunately, 
the conventional formulations for the four metrics are 
not quite intuitive and most experimental scientists feel 
difficult to understand them, particularly the stability of 
MCC. Fortunately, as elaborated in [59, 81], by using the 
Chou’s symbols and derivation in studying signal peptides 
[82], the conventional metrics can be converted into a set 
of four intuitive equations, as formulated below: 

Sn 1                                                            0 Sn 1

Sp 1                                                        0 Sp 1

Acc  1                                 

N

N

N

N

N N

N N

+
−= − ≤ ≤+

−
+= − ≤ ≤−

+ −+− += Λ = − + −+
   0 Acc 1    

1

MCC       1 MCC 1     

1  1

N N

N N

N N N N

N N

≤ ≤

+ −
− +− ++ −

= − ≤ ≤
− + + −− −+ − − ++ ++ −

 
 
 

  
  
 











 







 (16)

where N +  represents the total number of A-to-I editing 
samples investigated, while N +

−  is the number of true 
A-to-I eting samples incorrectly predicted to be of non-A-
to-I editing sample; N −  the total number of the non-A-to-I 
editing samples investigated, while N −

+  the number of the 
non-A-to-I editing samples incorrectly predicted to be of 
true A-to-I editing sample.

Now it is crystal clear to see the following from 
Eq.16. When 0N +

− =  meaning none of the true A-to-I editing 
samples are incorrectly predicted to be of non-A-to-I editing 

Table 1: Nucleotide chemical propertya

Physicochemical property Classification Nucleotides

Ring structure
Purine A, G
Pyrimidine C, U

Functional group
Amino A, C
Keto G, U

Hydrogen bonding
Stronger C, G
Weaker A, U

aSee the section of “Physicochemical Properties of Nucleotides” for further explanation.
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sample, we have the sensitivity Sn = 1. When N N+ +
− =  

meaning that all the true A-to-I editing samples are 
incorrectly predicted to be of non-A-to-I editing sample, we 
have the sensitivity Sn = 0. Likewise, when 0N −

+ =  meaning 
none of the non-A-to-I editing samples are incorrectly 
predicted to be of true-A-to-I editing sample, we have the 
specificity Sp = 1; whereas N N− −

+ =  meaning that all the 
non-A-to-I editing samples are incorrectly predicted to be of 
true A-to-I editing samples, we have the specificity Sn = 0. 
When 0N N+ −

− += =  meaning that none of true A-to-I editing 
samples in the positive dataset and none of the non-A-to-I 
editing samples in the negative dataset are incorrectly 
predicted, we have the overall accuracy Acc = 1 and 
MCC = 1; when N N+ +

− =  and N N− −
+ =  meaning that all 

the true A-to-I editing samples in the positive dataset and all 
the non-A-to-I editing samples in the negative dataset are 
incorrectly predicted, we have the overall accuracy Acc = 0 
and MCC = –1; whereas when / 2N N+ +

− =  and / 2N N− −
+ =  

we have Acc = 0.5 and MCC = 0 meaning no better than 
random guess. 

Accordingly, it has rendered the meanings of 
sensitivity, specificity, overall accuracy, and stability 
much more intuitive and easier-to-understand by using 
Eq.16, particularly for the meaning of MCC, as concurred 
recently by many investigators (see, e.g., [36, 38, 40, 45, 
61, 62, 75, 83–88]).

Note that, however, the set of metrics as defined in 
Eq.16 is valid only for the single-label systems. As for the 
multi-label systems whose emergence has become more 
frequent in system biology [89–91] and system medicine 
[92] or biomedicine [25], a completely different set of 
metrics are needed as elucidated in [93].

With a set of good metrics to measure the quality 
of a predictor, the next thing we need to consider is what 
validation approach should be adopted to score these 
metrics. In statistical prediction, the following three cross-
validation methods are usually applied: (1) independent 
dataset test, (2) subsampling (or K-fold cross-validation) 
test, and (3) jackknife test [94]. Of these three, however, 
the jackknife test is deemed the least arbitrary that can 
always yield a unique outcome for a given benchmark 
dataset as elucidated in [30]. Accordingly, the jackknife 
test has been widely recognized and increasingly used by 
investigators to examine the quality of various predictors 
(see, e.g., [63, 76, 78, 95–107]). In view of this, here we 
also used the jackknife test to examine the quality of 
iRNA-AI predictor. During the jackknifing process, both 
the training dataset and testing dataset are actually open, 
and each sample will be in turn moved between the two. 
The jackknife test can exclude the “memory” effect. Also, 
the arbitrariness problem as mentioned in [30] with the 
independent dataset and subsampling tests can be totally 
avoided since the outcome obtained by the jackknife cross-
validation is always unique for a given benchmark dataset.

Even though, however, in order to reduce the 
computational time, the K-fold cross-validation approach has 

still often been used, as done by many investigators with SVM 
as the prediction engine (see, e.g., [25, 28, 102, 107]). Also, 
for demonstrating the practical application of a predictor, the 
independent dataset test has often been used as well [18].
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