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ABSTRACT
All classic, non-surgical anticancer approaches like chemotherapy, radiotherapy 

or photodynamic therapy kill cancer cells by inducing severe oxidative stress. Even 
tough chemo- and radiotherapy are still a gold standard in cancer treatment, the 
identification of non-toxic compounds that enhance their selectivity, would allow for 
lowering their doses, reduce side effects and risk of second cancers. Many natural 
products have the ability to sensitize cancer cells to oxidative stress induced by 
chemo- and radiotherapy by limiting antioxidant capacity of cancer cells. Blocking 
antioxidant defense in tumors decreases their ability to balance oxidative insult and 
results in cell death. Though one should bear in mind that the same natural compound 
often exerts both anti-oxidant and pro-oxidant properties, depending on concentration 
used, cell type, exposure time and environmental conditions. Here we present a 
comprehensive overview of natural products that inhibit major antioxidant defense 
mechanisms in cancer cells and discuss their potential in clinical application.

INTRODUCTION

Over 60% of currently used antitumor drugs 
come fromatural sources such as plants, fungi and 
microorganisms. The large scale screening programs 
foratural products with anticancer activities,.g.hose 
launched in 1950s bytalianesearch company or in 
1960s byhe National Cancernstitute (NCI), allowed for 
identification of bacteria-produced doxorubicin andaxol 
(paclitaxel), derived fromhe bark ofhe yewree. Both ofhese 
compounds are widely used in chemotherapyegimens in 
different cancerypes. Thoughheir mechanism of action 
is different as doxorubicin intercalates into DNA and 
abrogateseplication [1] andaxol inhibits microtubules 
depolymerization during mitosis [2],hey both induce 
strong oxidative stress,hough by different means [3-5]. 
Total cellular antioxidant capacity is a known determinant 
of cancer susceptibilityohese drugs [6-8]. Oxidative stress 
induced by chemotherapeutics is crucial forheirfficacy, 
but, onhe other hand, contributesohe cumulative and 
irreversible cardiotoxicity observed clinically [9, 10]. 
These sideffects highlighthe lack of selectivity of 
chemotherapy [11]. Therefore,on-toxicatural substanceshat 
potentiate action of chemotherapeutics and allow for 
loweringheir concentration are of a particular interestohe 

anticancer drug field. 

ROS IN CELLULARRANSFORMATION

Majority of cellulareactive oxygen species (ROS) 
is produced during aerobicespiration bylectronseleased 
fromhelectronransport chain (ETC) in mitochondria.
ncomplete oxygeneduction creates superoxide anion (O2.

-

),he precursor ofhreeemaining species: hydroxyladical 
(OH.), hydrogen peroxide (H2O2) and peroxynitrite 
(OONO-) [12] (Figure 1). Mitochondriallectron leakage 
increases with age pointingohe imbalance between 
mitochondrial biogenesis and degradation - aoot cause 
ofeurodegenerative and cardiovascular diseases, diabetes 
and cancer [13]. The second largest contributoro cellular 
ROS are NADPH oxidases (NOX)esiding in cytoplasm, 
catalyzinghe production of superoxide from O2 and 
NADPH [14, 15]. At low concentrations, superoxide 
production may be involved in cellular signalransduction, 
but high concentrations ofadicals cause oxidative damage 
dueoheir higheactivityowards other cellular compounds 
[16].

Higher steady-state levels of ROS in cancer 
cellselativeoormal cells have been known for around 
35 years [17].ncreased ROS are crucial inhe initiation 

Review

mailto:alicja.sznarkowska@biotech.ug.edu.pl


Oncotarget15997www.impactjournals.com/oncotarget

of carcinogenesis when acquiringew mutations and 
clonalxpansion of initiated cells areeededostablish 
aumor. Thisendershem bothhe cause andheesult of 
cellularransformation: ROS-induced oxidative damage 
favors production of moreadicals andstablishes a 
feed-in loop, increasing mutationsate, activating 
oncogenes,nhancing metaboliceprogramming and 
progression ofumors. Thenhanced ROS generation 
is induced by oncogenic signaling with main drivers: 
V-Ras, K-Ras, mtp53 and c-Myc [18, 19] and involves 
both mitochondrial and cytoplasmic ROS. K-Ras-
induced cellularransformation was shownoequire NOX1 
activationhrough p38/PDPK1/PKCδ/p47phox cascade 
[20], whilexpression of Myr-Akt, H-RasG12V and 
K-RasG12D in murinembryonic fibroblasts (MEFs) 
conferred increased mitochondrial ROS-dependent soft 
agar colony formation [21]. Mutations inumor suppressors 
genes are often associated withhe induction of strong 
oxidative stress and promotehe survival of cells with 
high ROS levels. Mutant BRCA1 and p53 were showno 

attenuate antioxidant signaling driven byheuclear factor 
(erythroid-derived 2)-like 2 (Nrf2), contributingo cancer 
initiation [22, 23]

One ofhe consequences ofhexcessive damage 
caused by ROS are changes in mitochondrial membrane 
permeabilityhatesult in cytochrome Celease and 
apoptotic death [24-29].n defense, cancer cells boostheir 
antiapoptotic mechanisms likeuclear factor kappa-light-
chain-enhancer of activated B cells (NFĸB) pathwayoscape 
cell death [30, 31]. Decreased mitochondrial 
activityriggershe glycolytic switch and upregulates 
glycolytic pathway in ordero produce morenergy and 
biomass (ribose, amino acids, fatty acids) forapidly 
proliferating cancer cells [32]. Moreover,xposureo 
oxidative stress induces mutations in mitochondrial 
DNA as well as in VEGF (Vascular Endothelial Growth 
Factor) and HIF-1α (Hypoxianducible Factor-1α) 
genes, promoting angiogenesis and furthernhancing 
metaboliceprogramming of cells [33]. Oxidative stress 
also changesheumor microenvironmento support growth 

Figure 1: Generation and scavenging of reactive oxygen species (ROS). Electrons released from the mitochondrial electron 
transport chain (Mito-ETC) and produced by NADPH oxidases (NOX) are the major source of endogenous reactive oxygen species. 
Coupled to molecular oxygen they give rise to the primary free radical and the precursor of remaining species - superoxide (·O2

-). In the 
reaction with a short-lived nitric oxide (·NO), superoxide forms a highly reactive peroxynitrate (ONOO-) able to modify structure and 
function of proteins. Alternatively, superoxide dismutase (SOD) converts superoxide to hydrogen peroxide (H2O2), which can be further 
transformed in several ways. In the presence of transition metal ions like Fe2+ (Fenton’s reaction) or in reaction with superoxide, H2O2 forms 
highly reactive hydroxyl radical (·OH) which damages lipids, proteins and DNA. Peroxysomal enzyme catalase (CAT) neutralizes H2O2 
to water and oxygen. H2O2 might be also utilized in the reaction of oxidation of monomeric glutathione (GSH) to the glutathione disulfide 
(GSSG) or reduced thioredoxin (Trxred) to the oxidized thioredoxin (Trxox) catalyzed by glutathione peroxidase (GPX) or peroxidases 
involved in the thioredoxin turnover (PRX). Reduced glutathione pool is restored by glutathione reductase (GR) which reduces oxidized 
glutathione with the use of NADPH. Similarly, thioredoxin reductase (TrxR) balances the amount of reduced Trx by transferring electrons 
from NADPH to oxidized catalytic sites. Thanks to the thiol groups in the Cys residues both glutathione and thioredoxin participate in the 
reduction of oxidized proteins. Their synthesis as well as the turnover are under tight homeostatic control creating a system responsible for 
reduction of redox-sensitive proteins upon oxidative stress.
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and cell spread. Hydrogen peroxide produced byumorissue 
can initiate destruction ofon-tumor surroundingissueo 
obtainutrients and promote growth [34]. Thisxplains 
whyumors are saido be “addictedo ROS signaling”. 

ROS ADAPTATIONS INUMORS

Distinctedox homeostasis and higher intracellular 
ROS levels in cancer cells driveheir growth and metastasis 
but might also pose ahreat of oxidative damage and 
death. Moderatexpression of NADPH oxidase NOX5-L 
induced cancer cells proliferation accompanied by 
AKT and ERK phosphorylation, whereas an increase in 
NOX5-L above a certainhreshold promoted apoptosis 
[35]. Tumorseedo adaptohe oxidative stress conditions 
andhey dohat bynhancingheir antioxidative defenseo 

lower ROS levels and by inducing autophagyoeducehe 
oxidative damageo biomolecules and organelles [36-
39]. Thesewo mechanisms constitute finely orchestrated 
and interconnectedepair system in oxidatively stressed 
cells seeking homeostasis [36].nterestingly,he same 
oncogene signalshat boost ROS signaling, promote 
antioxidant adaptive mechanismso standhis constant 
stress and minimize oxidative damage. Activation 
ofndogenous K-Ras(G12D), B-Raf(V619E) and 
Myc(ERT2) ledo lowering of intracellular ROS dueohe 
increasedranscription of Nrf2 andlevation ofhe basal Nrf2 
antioxidant program [40]. Furthermore, geneticargeting 
ofhe Nrf2 pathway impaired K-Ras(G12D)-induced 
proliferation andumorigenesis in vivo pointinghathe Nrf2 
pathwayepresents a previously unappreciated mediator 
of oncogenesis [40]. Accordingly, it waseportedhat 

Figure 2: Regulation of Keap1-Nrf2 pathway. Under basal conditions, cytosolic repressor Kelch-like ECH-associated protein 1 
(Keap1), a substrate adaptor protein for Cullin 3 (Cul3)/Rbx1 ubiquitin ligase, holds Nrf2 in the cytoplasm and promotes its ubiquitination 
followed by 26S proteasomal degradation [58,59]. In the presence of electrophilic and/or oxidative stimulus, Nrf2 is released from Keap1 
and translocates to the nucleus where it recruits small Maf protein (sMaf) and binds with response element (ARE) in the promoter regions 
of its target genes, inducing their expression. Activation of Nrf2 pathway allows for cell adaptation and survival by regulating expression of 
antioxidans, anti-inflammatory and phase II detoxification enzymes such as superoxide dismutase (SOD), gluthatione S-transferase (GST), 
heme oxygenase-1 (HO-1), NAD(P)H-quinone oxidoreductase (NQO1), UDP-glucuronosyl transferases (UGT), γ-glutamylcysteine 
synthetase (γGCS) and efflux pumps like multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). 
Proteins transcriptionally controlled by Nrf2 take part in biosynthesis, utilization and regeneration of glutathione, thioredoxin, and NADPH 
resulting in restoration of cellular redox homeostasis. 
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genetic mutationshat occur in cancer cells ledo constant 
Nrf2 activity andnhanced antioxidant capacity [41]. 
Harrist al. (2015) showedhat synthesis ofhe antioxidant 
glutathione (GSH) wasequired for cancer initiation in 
vivo [42]. Genetic loss ofhenzyme driving GSH synthesis, 
glutamate-cysteine ligase modifier subunit (GCLM), 
prevented aumor’s abilityo drive malignantransformation.
nterestingly, at later stages ofumor progression GSH 
became dispensable potentially dueohe compensation from 
an alternative antioxidant pathway -hioredoxin pathway, 
demonstratinghe importance of GSH andhioredoxinoumor 
progression and indicatinghem as potentialargets 
forherapeutic intervention.

Mitochondrial ROS arehe major inducers of 
autophagy, however, upon chronic impairment of 
mitochondrial function, highxtent ofadicals shifts 
signaling into self-removal of mitochondriahrough a 
selective process called mitophagy [43, 44]. This fine 
mechanism allows autophagyoliminatehe source of 
oxidative stress and protecthe cell from oxidative damage. 

Recently, autophagy was showno preventhe initiation of 
hepatocarcinogenesis and metastasis of gastric cancer by 
maintaining healthy mitochondria andeducing oxidative 
stress and DNA damage [45-47]. Onhe other hand, 
oncehe cellularransformation was initiated, autophagy 
wasequiredo promote cancer progression by limitingumor 
suppressors [45]. 

TARGETING ROS ADAPTATIONS IN 
CANCER

Because ofhis sharpeliance on ROS production, 
cancer cells are more vulnerableo further disturbance 
ofheired-ox statushanormal cells. This differencestablishes 
aherapeutic window allowing for anmergence ofhe 
selective anticancer strategy based on modulation of 
cancer cellsedox potential. Dueohenhanced antioxidant 
capacity ofumors, just inducing ROS generation isot 
sufficient for a successfulradication of cancer. The drug 

Figure 3: Natural products action on cellular antioxidants is concentration-dependent. Many natural compounds display 
opposing properties in cancer cells, depending on their concentration. At lower concentrations they often boost cells’ antioxidant capacity 
by activating Nrf2-dependent signaling and enhancing expression of ROS scavengers, lowering ROS burden. These properties allow for 
using natural compounds in chemoprevention and as agents decreasing side effects of standard anticancer regimens. On the other hand, 
same compounds used at higher concentrations inhibit antioxidant defense and induce oxidative stress. By doing that they enhance the 
effectiveness of chemo- and radiotherapy and allow for lowering their doses.
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Table 1: Natural products inhibiting antioxidant capacity of cancer cells.

BIOACTIVE 
COMPOUND TYPE SOURCE MECHANISM OF ACTION

Apigenin
Polyphenol
Flavonoid
Flavone

Fruits and vegetables

Reduces Nrf2 expression through down-regulation of  
PI3K/Akt pathway [67]
Sensitizes tumor xenografts to doxorubicin [67]
Induces glutathione depletion [94] and inhibits 
mitochondrial complex I activity in rats [151] 

Chaetocin Polyphenol
thiodioxopiperazine

Chaetomium spp. 
fungi

Inhibits TrxR in vitro [117]; induces oxidative stress-
mediated death of myeloma [152] and glioma cells [118]

Chrysin
Polyphenol
Flavonoid
Flavone

Passion flowers, 
chamomile, 
honeycombs,
oyster mushrooms 

Reduces Nrf2 expression in hepatocellular carcinoma 
through down-regulation of PI3K-Akt and ERK pathways 
re-sensitizing cells to doxorubicin [153]
Depletes glutathione and enhances doxorubicin-induced 
cytotoxicity in epithelial cancer cells [69,94]

Curcumin Polyphenol
Curcuminoid

Rhizomes
of Curcuma longa

Inhibits TrxR required for curcumin-induced 
radiosensitization [107,119]
Inhibits NFκB signaling in different cancer types [154–157]

Epigallocatechin 
gallate (EGCG)

Polyphenol
Flavonoid
Falvon-3-ol
Catechin

White, green and 
black tea (buds and 
leaves of  Camellia 
sinensis)

Inhibits TrxR and induces cancer cells death [158]
Inhibits catalase, leads to elevated ROS [129] 
Degrades catalase via JNK in endothelial cells [159]
Synergize with luteolin to induce apoptosis and p53 
activation in cancer cells, reducing growth of xenografts 
[113]

Luteolin
Polyphenol
Flavonoid
Flavonol

Celery, green pepper, 
parsley, perilla leaf, 
and chamomile tea

Reduces Nrf2 expression in non-small-cell lung cancer 
cells, leading to GSH depletion [160]
Sensitizes cells to oxaliplatin, bleomycin, doxorubicin 
[160,161]. Re-sensitizes oxaliplatin-resistant colorectal cancer 
cells [68] 
Inhibits Nrf2 in xenografts [162]

Myricetin Polyphenol
Flavonoid
Flavonol

Citrus spp. Blocks GST activity in melanoma cells [160]
Inhibits TrxR leading to death of lung carcinomas [114]

Quercetin
Polyphenol
Flavonoid
Flavonol

Citrus spp. Inhibits TrxR leading to death of lung carcinomas [114]
Inhibits mitochondrial complex I activity in rats [151]

Resveratrol Polyphenol
Stilbenoid

grapes, raspberries, 
blueberries, 
mulberries

Directly binds and inhibits NQO2 and GSTP1 [163–165]
Blocks mitochondrial I and III complex activity in colon 
cancer [166]

Wogonin
Polyphenol
O-methylated 
flavone

roots of Scutellaria 
baicalensis Georgi

Down-regulates Nrf2 in resistant myelogenous leukemia 
cells by modulating PI3K/Akt and DNA-PKcs [167]
Inhibits catalase, increasing H2O2. Synergistically 
sensitizes cancer cells derived from cervix, ovary and lung 
to TNF-induced apoptosis by blocking TNF-induced NF-
κB activation [127] 

Brusatol
Alkaloid
Triterpenoid
Quassinoid

Brucea javanica

Reduces Nrf2 via Nrf2 ubiquitination and degradation [73]
Sensitizes xenografts to cisplatin via Nrf2 inhibition [73]
Down-regulates Nrf2, leading to ROS accumulation. 
Sensitizes mammospheres to taxol and reduces the 
anchorage-independent growth [75]
Inhibits Nrf2 in freshly isolated primary human hepatocytes 
[74]
Enhances efficacy of cisplatin [64]

Piperlongumine Alkaloid
Pyridine group

Fruits and roots of 
long pepper

Binds GSH and inhibits its metabolism in leukemias [92]
Increases IκBα and suppresses NFκB in human gliomas 
resulting in ROS-induced apoptosis [93]

Trigonelline
Alkaloid
Pyridine and 
piperidine group

coffee
Reduces nuclear accumulation of Nrf2 in pancreatic cancer 
cells and sensitizes them to anticancer drugs and TRAIL via 
Nrf2 inhibition [76]. Enhances response to chemotherapy 
in vivo [76]
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should also inhibithe antioxidant defense system [48]. 
Many compounds ofatural origin block Nrf2 pathway or 
directly inhibitndogenous antioxidants leadingohelevated 
ROS production. Moreover, Nrf2 inhibitionesults in a 
decrease of drugffluxransporters and a consequent increase 
inetention of anticancer drugs in cells. Therefore Nrf2 
or cellular antioxidant inhibitors synergize with classic 
chemotherapeutics and decreaseheiroxicity. Surprisingly, 
amonghemhere are polyphenols likeesveratrol, 
quercetin, EGCG, apigenin, luteolin or chrysin which 
were initiallyeportedo have ROS scavenging properties 
and are generallyecognized as antioxidants. Therefore 
a considerable caution should bexercised when 
applyingatural products as adjuvants sinceheirffects 
strongly depend on concentration, cellype,xposureime 
andnvironmental conditions [49-55].

THE NRF2 PATHWAY

Disruption ofedox balance in cellsesults in 
activation ofedox sensitiveranscription factors like Nrf2, 
NFĸB and activator protein 1 (AP-1) [56]. The major 
driver of antioxidantsxpressionhat confers protection 
againstndogenous andxogenous hazards, DNA damage 
and consequent cancer initiation is Nrf2ranscription 
factor [41, 57]. Activation of Nrf2 pathway allows 
for cell adaptation and survival byegulatingxpression 
of antioxidans, anti-inflammatory and phaseI 
detoxificationnzymes (Figure 2). Majoregulator of Nrf2 

activity in cells ishe cytosolic inhibitor Keap1,esponsible 
for its ubiquitination and proteasomal degradation [58, 
59]. Apart from Keap 1, oncogenes like K-Ras(G12D), 
B-Raf(V619E) and Myc(ERT2) have been showno 
stabilize Nrf2 and antioxidant proteins leadingo 
drugesistance inumors [40]. Nrf2 is overexpressed in 
severalypes of human cancer, including cancer ofhe 
lung, breast, oesophagus, ovary, prostate, pancreatic, 
colorectal, head andeck squamous cell carcinoma, 
gallbladder and skin which indicateshathe cytoprotective 
properties ofhe Nrf2 pathway can bexploited byumor 
cellso promoteheir survival [60, 61]. Constitutive Nrf2 
activation has beeneportedo mediate chemoresistance 
in manyumorypes [62, 63]. Suppression of Nrf2 
activity inhibitedumor growth andnhancedhefficacy 
of chemotherapeutic agents. Disruption ofhe 
Nrf2 pathway in a mouse model of K-RasG12D-
induced lung cancernhancedhe antitumorfficacy of 
cisplatin [64]. Temporal blockage of Nrf2-dependent 
cytoprotection using Nrf2 inhibitors is importantonhance 
a patient’sesponseo chemo- andadiotherapy but onhe 
other hand, activation of Nrf2 pathway supportsreatment 
ofeurodegenerative diseases, multiple sclerosis and 
prevents cancer initiation by counteracting oxidative 
andlectrophilic stress [60].t meanshat in case of cancer,he 
Nrf2 pathway is a doubledge sword: activatinghis 
pathway is crucial for chemoprevention but oncehe 
control is lost, it provides growth advantageo cancer cells 
allowing forapid proliferation,scape from apoptosis or 
senescence andesistanceo chemo- andadiotherapy. Thus, 

Pentyl 
isothiocyanate 
(PEITC)

Glucoside
Glucosinolate

Cruciferous 
vegetables

Reacts with glutathione; lowers GSH [168]; inhibits GPX, 
depletes GSH, disrupts GSSG/GSH ratio [169,170]
Decreases SOD in gliomas [171]
Inhibits mitochondrial respiratory chain I in leukemias 
[172]

Pleurotin Quinone mushrooms from 
Pleurotus spp.,

Inhibits TrxR in breast cancer and colon carcinoma lines, 
leading to HIF-1α downregulation and growth inhibition 
[173,174]

Allicin Organosulfur 
compound garlic Induces GSH depletion in pancreatic cancer cells [96]

Inhibits NFκB signaling activation [175]

Plumbagin Naphthoquinone Plumbago sp.

Inhibits Nrf2 signaling in human squamous carcinoma cells 
[77]
Depletes intracellular GSH level and SOD2 in prostate 
cancer cells [97]
Inhibits NFκB activation in human non-small lung cancer 
cells [176], pancreatic [177] and gastric cancer cells [178]

EM23
Terpene
Sesquiterpene 
lactone

Elephantopus mollis

Attenuates TrxR by alkylation of C-terminal redox-active 
site Ser498; inhibits Trx/TrxR expression facilitating ROS 
accumulation in human cervical cancer cells [179]
Suppresses TNF-α-mediated activation of NFκB in CML 
cells and AML leukemia cells [180] 

Parthenolide
Terpene
Sesquiterpene 
lactone

Tanacetum 
parthenium

Downregulates Nrf2 expression in spheroids cultures [78]
Activates NADPH oxidase, decreasing reduced 
thioredoxin and activating PI3K/Akt, inducing FOXO3a 
phosphorylation and resulting in downregulation of 
FOXO3a-regulated antioxidants (SOD, CAT) [78]
Inhibits NFκB activity by binding and suppressing IκB 
kinase β [180]
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both activation and inhibition of Nrf2 activity could be 
beneficial, although in different patient cohorts (Figure 3). 

NATURAL PRODUCTSARGETING NRF2 
PATHWAY

Natural product-derived inhibitors of Nrf2 
pathway induce ROS insult in ROS-sensitive cancer 
cells which mightesult in cell death.mportantly,hey 
often sensitize cancersoheffects of chemotherapeutics 
oradiotherapyhroughhe down-regulation of 
detoxificationnzymes and drugxcretionransporters 
[65, 66]. A significant group of Nrf2 inhibitors 
belongso polyphenols (see Table 1). Polyphenols are 
generallyecognised as antioxidants and anti-inflammatory 
agents. At lowo micromolar concentrations polyphenols 
like quercetin, EGCG,esveratrol or curcuminxhibit 
antioxidant and chemopreventive properties. They can 
scavenge freeadicalsither directly, dueohe presence of 
OH groups donating a hydrogen atomo a freeadical, or 
by indirect actionshroughhe induction of Nrf2 pathway 
or inhibition of ROS generation. Higher doses of 
polyphenols (>50 µM) and a presence ofransition metal 
ions promoteheir pro-oxidant actions like suppression 
of antioxiant systems and inhibition of Nrf2 pathway 
[49]. Antitumorffects of flavones like apigenin, chrysin, 
luteolin and wogonin waselatedohe downregulation of 
Nrf2xpression mainly by disturbing PI3K/Akt pathway in 
cell lines and in in vivo mouse models. Nrf2 inhibition 
sensitized cancer cellso classic chemotherapeutic drugs 
like doxorubicin, oxaliplatin or paclitaxel both in in vitro 
and in vivo studies [67-70].nterestingly, also opposite 
activity of apigenin, luteolin and chrysin waseported.nat 
primary hepatocytes and skinpidermal JB6 P+ cellshese 
flavones induced Nrf2/AREesponse and protected against 
oxidative stress [71, 72]. Differences inheir activity 
betweenormal and cancer cells andncourage further 
investigation ofheir potential in in vivo studies and 
clinicalrials. So far,one ofhese flavones has beenested 
clinically forhe anticancer activity in combination 
with chemo- oradiotherapy. Brusatol, ariterpenoid 
from Brucea javanica - anvergreen shrub grown in 
Southeast Asia and Northern Australia, was describedo 
inhibit Nrf2 signaling bynhancing ubiquitination and 
subsequent degradation of Nrf2 in different cancer 
cell lines and mouse xenograft models [73]. Brusatol 
sensitizedumorso cisplatin andaxol [73-75]. The bitter 
coffee alkaloid,rigonelline, inhibiteduclear accumulation 
of Nrf2 in pancreatic cell lines (Panc1, Colo357 and 
MiaPaca2) and H6c7 pancreatic duct cells andnhancedheir 
sensitivityo anticancer drugs and TRAIL-induced 
apoptosis [76]. Aaphthoquinone derived from Plumbago 
species, plumbagin, inhibiteduclearranslocation of Nrf2 
in humanongue squamous cell carcinoma cells which 
suppressedhexpression of Nrf2 downstreamargetsesulting 
in inhibition ofpidermalo mesenchymalransition (EMT) 

and stemness [77]. Parthenolide, a sesquiterpene lactone 
found in feverfew products, wasecentlyeportedo inhibit 
Nrf2 protein level in breast cancer stem-like cells, derived 
from dissociation of mammospheres which correlated with 
an increased ROS production and ledoecrosis [78]. 

THE CELLULAR ANTIOXIDANT 
DEFENSE

Increased levels of freeadicalsnableumor cellso 
activate pathways driving proliferation, angiogenesis, 
metastasis andhrive under hypoxic conditions [79-81]. 
High levels of ROS createheisk of damage linkedo 
oxidative stress,herefore cancer cellsendo overexpress 
detoxifying proteinshatlevateheir antioxidant capacity. 
Hyper-activation of Nrf2 pathway increaseshe amount 
of cellular ROS scavengers. Lowering stress burden by 
means ofnhancing detoxifying force further affects certain 
pathwayshat promote growth and proliferation [82-84]. 
Blocking antioxidant activity in cancer cells decreasesheir 
abilityo balance oxidative insult and mightesult in cell 
death [85]. Below are presented key cellular antioxidant 
systems andatural compounds disturbingheir activity 

GSH

One ofhe major systems involved inesponseo 
freeadicalselies on aripeptide - glutathione. The 
sulfhydryl (SH) group ofeduced glutathione accounts 
for its stronglectron-donating properties (Figure 1). 
Once oxidized,wo glutathione molecules form a 
dimer linked by a disulfide bridge (GSSG). GSHeacts 
with proteinso form S-glutathionylated proteins, 
protectinghem from further oxidation. Glutathioneot 
only directly scavenges freeadicals (hydroxyladical, 
singlet oxygen), but also serves as a cofactor of several 
detoxifyingnzymeshatequirehiol-reducingquivalents 
(glutathione peroxidase, glutathioneransferase). GSH is 
also involved inecycling other antioxidants byeducing 
vitamins C and E [86]. Most of cellular GSH contentemains 
inhe cytosol, however it can also be found in organelles, 
including mitochondria, peroxisomes,ndoplasmiceticulum 
andheucleus [87]. Givenhe prominentole in keeping 
cells’edox homeostasis in check, glutathione metabolism 
is accelerated in manyypes of cancero alleviate oxidative 
stress and promote proliferation and metastasis [88]. High 
levels of GSH are associated with apoptosis-resistant 
phenotypes and its depletion is linkedohearly stages of cell 
death initiation [89-91]. Nuclear and mitochondrial pool 
of glutathione plays an importantole in protecting DNA 
from oxidative stress-driven lesions. Cell death induced 
by an intercalating drug doxorubicin was potentiated upon 
glutathione depletion [89]. This might serve as aationaleo 
designreatment and boostherapeuticffect of anticancer 
agents.
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Table 2: Representative clinical trials on natural compounds modifying antioxidant response (from www.clinicaltrials.
gov)

Compound/dose Clinical trial 
number/phase Purpose Results/Status

EGCG
40 to 440 µmol/l  
3 times a day in 
combination with 
etoposide, cisplatin, and 
radiotherapy

NCT01481818
Phase I

To evaluate safety and efficiency of 
EGCG in eosophagus protection in 
patients with locally advanced stage III 
non-small-cell lung cancer 

No dose-limiting toxicity of 
EGCG was reported. Regression 
of esophagitis to grade 0/1 was 
observed in 22 of 24 patients at the 
end of radiotherapy. The pain score 
was reduced [143]

EGCG
40 to 660 μmol/l spray in 
the radiation field

NCT01481818
Phase I

To assess safety, tolerability and 
preliminary effectiveness of topical 
EGCG for radiation dermatitis in 
patients with breast cancer receiving 
adjuvant radiotherapy

The topical administration of 
EGCG was well tolerated and 
the maximum tolerated dose 
was not found. Patient-reported 
symptom scores were significantly 
decreased at 2 weeks after the end 
of radiotherapy in pain, burning, 
itching and tenderness [144]

EGCG 
10 ml solution/day (440 
µmol/l)

NCT02577393
Phase II

To evaluate the protection of the 
esophagus from damage induced by 
radiotherapy in patients with lung 
cancer

enrolling participants

Polyphenon E (PolyE, 
a defined green tea 
polyphenol extract with 
high EGCG content)
4 x 200 mg/day

NCT00676793
Phase II

To evaluate the short-term effects of 
PolyE administered during the interval 
between breast biopsy and surgery in 
women with recently diagnosed breast 
cancer: determination if EGCG inhibits 
c-Met signaling and activation of 
pathways contributing to breast cancer 
progression

completed, no results published

Polyphenon E, 
4 x 200 mg/day

NCT00676780
Phase II

To evaluate the short-term effects of 
PolyE administered during the interval 
between prostate biopsy and radical 
prostatectomy in men with recently 
diagnosed prostate cancer

A significant reduction in serum 
levels of prostate-specific antigen 
(PSA), hepatocyte growth factor 
(HGF) and vascular endothelial 
growth factor (VEGF) was observed 
[181]

Polyphenon E, 
2 x 200 mg/day

NCT00596011
Phase II

To determine if PolyE reduces the 
rate of progression to prostate cancer 
(PCa) in men diagnosed with high-
grade prostatic intraepithelial neoplasia 
(HGPIN) or atypical small acinar 
proliferation (ASAP)

No differences in the number of 
prostate cancer (PCa) cases were 
observed but there was a decrease 
in a cumulative rate of progression 
to PCa or ASAP in a PolyE group 
vs. placebo group [182]

curcumin, 
6 g/day during 
radiotherapy

NCT01246973
Phase II/III

To determine whether curcumin can 
prevent or reduce the severity of 
dermatitis caused by radiation therapy 
in breast cancer patients

Curcumin reduced the severity of 
radiation dermatitis in breast cancer 
patients [145].

curcumin 
2 or 4 g/day for 30 days

NCT00365209
Phase IIa

To evaluate how well curcumin works 
in preventing colon cancer in smokers 
with aberrant crypt foci (ACF)

A significant 40% reduction in ACF 
number was observed with the 4 g 
dose, whereas in the 2 g group ACF 
were not reduced. Curcumin was 
well tolerated at both doses [146]

nanostructured lipid 
curcumin particle 
2 x 100 mg/day

NCT02439385
Phase II

To evaluate progression-free 
survival in colorectal cancer patients 
with unresectable metastasis after 
treatment with Avastin/FOLFIRI in 
combination with a nanostructured 
lipid curcumin particle which improved 
biotransformation and bioavailability 
of curcumin.

This study is not yet open for 
participant recruitment.

Meriva 
(lecithinized curcumin 
delivery system)
2 x 500 mg/day

NCT01740323
Phase II

To determine if curcumin reduces NF-
ĸB DNA binding in patients receiving 
radiotherapy for their breast cancer 
after having completed chemotherapy

This study is currently recruiting 
participants



Oncotarget16004www.impactjournals.com/oncotarget

NATURAL PRODUCTS DISTURBING GSH 
METABOLISM

Piperlongumine (PL), an alkaloid derived from long 
pepper was describedo induce ROS in cancer butot inormal 
cells [92, 93]. Further studiesevealedhat PLreatment ledo a 
depletion of cellular GSH and promoted ROS. The activity 
of chrysin and apigeninowards GSH wasested in aumber 
of cancer cell lines, including prostate (PC-3), myeloid 
(HL-60) and lung (A549) cells. Both flavones provedo 
beffective glutathione depleting agents. Additionally, 
chrysin potentiated curcumin cytotoxicffect in PC-3 and 
HL-60 cells [94]. Doxorubicin and cisplatin cytotoxicity 
was also strongly induced upon chrysinreatment, which 
promoted GSHfflux and depletion [69, 94]. Another 

flavone luteolin attenuated Nrf2 signaling leadingo a 
decreasedxpression of itsarget genes and GSH depletion in 
wildype mouse small intestinal cells. Luteolin sensitizied 
oxiplatin-resistant colorectal cancer cell lineso cisplatin, 
doxorubicin and oxiplatin [68] andfficiently inhibited 
GST leadingo GSH depletion in melanoma cells [95]. 
Allicin, aatural compound derived from garlic, was 
foundo induce ROS in PaCa-2 cells. Oxidative insult was 
concomitant with depletion of GSH, which facilitated 
apoptosis [96]. Plumbagin, a ROS-inducingaphthoquinone 
originally derived from Plumbago plants, waseportedo 
cause GSH depletion and induce death of human 
prostate cancer cells (PC-3, LNCaP and C4-2) [97]. 
Phenylethyl iosothiocyanate (PEITC),aturally occurring 
in cruciferous vegetables, has been widely studied 

curcumin 
8 g/day along the 
chemotherapeutic 
protocol of weekly 
gemcitabine

NCT00192842
Phase II

To assess if curcumin can improve the 
efficacy of the standard chemotherapy 
gemcitabine in patients with advanced 
pancreatic cancer.

5 out of 17 patients (29%) 
discontinued curcumin due to 
intractable abdominal fullness or 
pain, and the dose of curcumin 
was reduced to 4 mg/day because 
of abdominal complaints in 2 
other patients. One of 11 evaluable 
patients (9%) had partial response, 
4 (36%) had stable disease, and 6 
(55%) had tumor progression. [183]

curcumin,
dosage not provided

NCT02095717
Phase II

To assess taxotere plus curcumin 
combination in first-line treatment of 
prostate cancer metastatic castration 
resistant.

study is ongoing

nanocurcumin 
SinaCurcumin®

3 x 40 mg/day 3 days 
before and during 
radiotherapy

NCT02724618
Phase II

To determine the role of curcumin as 
a radioprotector against radiation-
induced injury in normal tissues as 
well as a radiosensitizer in tumor in 
prostate cancer patients undergoing 
radiotherapy 

recruiting participants

curcumin capsules
dosage not provided

NCT00852332
phase II

To study how well giving docetaxel 
together with a curcumin works 
compared with giving docetaxel alone 
as first- or second-line therapy in 
treating patients with breast cancer.

recruiting participants

Isoquercetin
2 x 225 or 2 x: 450 
mg/day along the 
chemotherapy with 
Sunitinib

NCT02446795
Phase I/II

A trial of isoquercetin as an adjunct 
therapy in patients with kidney cancer 
receiving first-line Sunitinib

This study is not yet open for 
participant recruitment.

Quercetin 
2 x 250 mg / day for 3 
weeks 

NCT01732393
To evaluate the effect of quercetin 
on prevention and treatment of 
chemotherapy-induced oral mucositis 
in patients with blood malignancies.

This study has been completed,  
no results published

SRT501 (micronized 
resveratrol)
5 g/day for 14 days

NCT00920803
Phase I

To determine safety and tolerability 
of  SRT501  in subjects with colorectal 
cancer and hepatic metastases 

SRT501 was well tolerated. 
Mean plasma resveratrol levels 
following a single dose of SRT501 
administration were exceeding 
those for equivalent doses of non-
micronized resveratrol by 3.6-
fold. Resveratrol was detectable in 
hepatic tissue. Cleaved caspase-3 
was significantly increased [184].

PEITC
(dosage not provided)

NCT00691132
Phase II

PEITC in preventing lung cancer in 
people who smoke The recruitment status unknown
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for its biological activity and provedoxert anti-cancer 
properties. PEITC strongly induced oxidative damage 
dueohe depletion of glutathione and inhibition of GPX in 
H-Rasransformed ovarianpithelial cells [98]. Depletion of 
cellular glutathione after PEITCreatment was observed 
in cancer cells of different origin, including glioma, oral 
cavity cancer, leukemia, prostate and breast [99-103]. 
Recent data demonstratehat PEITC caused inhibition of 
GST in glioma GBM 8401cells, leadingo massive ROS 
induction and causing cell death [104]. PEITC sensitized 
cancer cellso cisplatin in biliaryracthrough PEITC-
induced depletion of overall GSH, which facilitated 
Mcl-1 glutathionylation, promoted Mcl-1 degradation 
andesensitized cellso cisplatin [105]. This data indicatehat 
combined anticancerherapy based on synergisticffect 
of GSH depletion and strong oxidative stress induction 
leadso anffective cancer cell killing.

THEHIOREDOXIN SYSTEM

Thioredoxin system includeshioredoxin 
(Trx),hioredoxineductase (TrxR) andicotinamide 
adenine dinucleotide phosphate (NADPH) (Figure 
1). Thioredoxins have a conserved dithiol Cys-Gly-
Pro-Cys motif inheir catalytic site and participate 
inheeduction of oxidized proteins. Thioredoxineductases 
balancehe amount ofeduced Trx byransferringlectrons 
from NADPHo oxidized catalytic sites. 
Humansxpresshreehioredoxineductase isozymes: TrxR1 
(cytosolic), TrxR2 (mitochondrial), TrxR3 (testis specific). 
Thanksohe oxidoreductase activity ofhioredoxinshey 
act aslectron carriers for catalytic cycles ofnzymes and 
protect proteins from aggregation or inactivationesulting 
fromheir oxidation [106]. Thioredoxins were described 
asedoxegulators of aumber ofranscription factors like NF-
ĸB, HIF1-α, VEGF, modulates matrix metalloproteinase-9 
(MMP-9),herefore promoting proliferation, angiogenesis 
and metastasis. Apart from balancing celledox state, 
Trx1 can inhibit apoptosis by binding and blockinghe 
activity of Apoptosis Signal-Regulating Kinase 1 (ASK1), 
decreasing cellesponseo anti-cancer drugs [107-110]. Both 
Trx1 and TrxR1 are highlyxpressed in malignant cells, 
maintaining cell viability and protecting from apoptosis 
[111]. Blockinghe activity ofhioredoxin system lowershe 
cell’s detoxifying potential andnhances oxidative insult. 
Many compounds have been studied forheir activityo 
modulatehioredoxin system inumor cells.

NATURAL 
PRODUCTSARGETINGHIOREDOXIN 
SYSTEM

A studyestingea catechins forheir potentialo inhibit 
TrxR1 foundhat a polyphenol abundant in dried leaves of 
white, green and blackea,pigallocatechin gallate (EGCG), 

abrogated TrxR1 activity by directargeting TrxR1hiol 
groups. EGCG ledo a significant decrease in HeLa cells 
viability [112]. EGCG anti-cancerffect was also studied 
in combination with luteolin in head andeck and lung 
cancer cell lines and in xenograft models, wherehey 
synergistically promoted p53 activation and apoptosis 
induction, leadingohe growth inhibition andeduction 
ofumor volume [113]. 3-hydroxyl containing flavonoids 
quercetin and myricetin suppressed growth of A549 
cells dueohe inhibition of cellularhioredoxins. The 
observedffect correlated withlevated oxidizedhioredoxin 
levels andeduced TrxR activity [114]. Pleurotin, an 
irreversible TrxR inhibitor displayed anti-cancer properties 
in MCF-7 breast cancer and HT-29 colon cancer cell lines.
nhibition of TrxR by pleurotin correlated with decreased 
protein levels of VEGF, HIF-1α and HIF-1αarget genes 
in studied cell lines and in MCF-7 mouse xenografts 
[115]. EM23, aatural sesquiterpene lactone isolated from 
Elephantopus mollis was foundo attenuate TrxR activity in 
CaSki and SiHa cells by direct bindingo its selenocysteine 
site. EM23-mediated inhibition of TrxR was followed by 
induction of ROS and apoptosis

 [116]. Chaetocin, a competitive substrate and 
inhibitor of TrxR, induced apoptosis in HeLa and 
glioma cells dueo ROS induction [117, 118]. Curcumin, 
a polyphenol derived from Curcuma longa inhibited 
TrxR activity, leadingo ROS generation in HeLa 
cells [107]. Javvadit al. (2010)xploitedhe potential of 
curcumin inadiosensitization of squamous carcinoma 
cells. Thanksohe ability of curcumino covalently 
bindoheucleophilicesidues inhe C-terminalegion of 
TrxR1, curcumin strongly inhibited its function,nhanced 
freeadicals burst and sensitized cellsoadiotherapy [119]. 
Clinically used inhibitor ofhioredoxineductase, auranofin, 
displayed synergistic lethality with GSH inhibitor 
piperlongumine in gastric cancer (GC) suggestinghat 
combined inhibition of different antioxidant systems is 
moreffective in killing cancer cellshan abrogation ofhe 
activity of single ones.t againmphasizesheole of ROS 
scavengers as potent anticancer drugargets [120]. 

SUPEROXIDE DISMUTASE

Superoxide dismutase (SOD) drivesheeaction 
of dismutation of superoxide into hydrogen peroxide 
(Figure 1). There arehreeypes of SOD in cells: CuZnSOD 
(SOD1) abundant inhe cytosol, mitochondrial manganese 
superoxide dismutase MnSOD (SOD2) andxtracellular 
ECSOD (SOD3). All superoxide dismutases carry metal 
ions inheir active sites: SOD1 and SOD3 have zinc and 
copper and SOD2 carries manganese. SOD1 is mainly 
localized inhe cytosol, but it has also been found inhe outer 
mitochondrial membrane, where iteutralizes O2.

¯eleased 
from ComplexII. SOD2 is located inhe mitochondria 
while SOD3emains inhextracellular matrix and prevents 
oxidativeissue damage [121]. MnSOD overexpression 
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is common inumors and contributesoherapyesistance. 
SODeutralizesoxic superoxide, but as a consequence 
creates hydrogen peroxide, which can be furthereutralized 
by catalase and glutathioneedox cycle [122].

NATURAL PRODUCTS BLOCKING SOD 
ACTIVITY

Since mitochondria arehe primary source of cellular 
freeadicals, decreasingheir detoxifying ability by means 
of blocking SOD2 activity inumors might contributeohe 
apoptosis activation. Plumbagin provedofficiently 
induce apoptosis inffect in prostate cancer cell lines, 
partiallyhrough decreasing SOD2xpression [97]. PEITC 
was foundo inhibitxpression of SOD in LN229 glioma cell 
line, weakening cellular antioxidant defense and causing 
apoptosis [99]. Suppression of SODnzymatic activity by 
apigenin in combination with ROS-inducing paclitaxel 
was foundo sensitize HeLa cellso apoptosis and allowedo 
lower paclitaxel doses [123].

CATALASE (CAT)

Catalase is a peroxisomalnzymehateutralizes 
hydrogen peroxide by its decompositiono water and 
oxygen (Figure 1). High levels of hydrogen peroxide 
facilitate DNA mutagenesis,herefore under physiological 
conditions catalase protects cells from oxidative damage. 
H2O2 also serves as mediator of apoptosis and can 
modifyegulatory protein complexes, such as Nrf2/Keap1 
system. Apart from peroxisomal CAT, malignant cells 
acquire membrane-associated catalaseo survive under 
oxidative stress [124-126]. Blocking catalase activity can 
significantly increase oxidative burdenhrough hydrogen 
peroxide accumulation whichriggeredumor cells death.

NATURAL PRODUCTS INHIBITING 
CATALASE

Wogonin, a flavonoid isolated from Scutellaria 
baicalensis was showno induce cell death in cervix, 
ovary and lung cancer cellshrough catalase inhibitionhat 
increased hydrogen peroxide levels and facilitated TNF-
induced apoptotic signaling [127]. Human hepatoma 
HepG2 cells subjectedo apigenin accumulated H2O2, 
which correlated with a decrease of catalase mRNA and 
catalase activity and ledo cell death [128]. PEITCreatment 
lowered catalase protein levels and induced ROS in 
GBM 8401 glioma cells [104]. EGCG inhibited catalase 
activity both in vitro and in K562 cells [129] and 
sensitized cellso arsenite (As)reatment. The proposed 
mechanismxplainedhathe inhibition of catalase activity 
uponreatment with As/EGCG occurred via JNK (c-Jun 
N-terminal kinase) signaling pathway. Genotoxic stresshat 
activated JNK, promoted catalase phosphorylation by 

c-Abl kinase, marking it for proteasomal degradation. 
Blocking catalase activity ledo high amount of H2O2 and 
promoted death ofpithelial cells subjectedo As/EGCG 
[130]. 

EXOGENOUS ANTIOXIDANTS

Theole of oxidative stress in initiating and 
promoting cancer onhe one hand and in causing 
oxidative damage onhe other justifieswo opposite ROS-
manipulating strategies against cancer. First is antioxidant 
approach functional in cancer prevention andherapy. 
The most important and widespreadxogenous dietary 
antioxidants are vitamins A and E,heir analogs carotenoids 
andocopherols, vitamin C and polyphenols. Though 
preventing ROS-induced mutations and subsequent cancer 
initiation with dietary antioxidants is well documented,heir 
use during anticancerherapyemains controversial. Since 
cancerherapy highlyelies onhe production of freeadicals, 
it has been speculatedhat supplying cells in antioxidants 
might decreasereatmentfficacy. Onhe other hand,he 
basic idea behind using antioxidants duringherapy 
isoliminatexcessive oxidative damage ando help alleviate 
adverseffects. Many patientseceivingherapy areaking 
antioxidants without consulting with a physician. 
Selenium and vitamin C are widely used in complementary 
oncology [131]. Radiotherapyrials in head andeck 
cancers showedhat vitamin Eeducedheoxicity, however 
overallecurrence and mortality wereaised [132, 133]. 
Trials onheffect of antioxidants on chemotherapyeported 
on some benefits of using vitamin E or selenium with 
cisplatin,axol and oxiplatin, buthe long-termffects 
wereot assessed [134-138]. Decreasedecurrence of 
some cancerypes in patientsoteceivingreatment or after 
chemotherapy has also beeneported [139, 140]. The 
main conclusion fromheserials ishat administration of 
antioxidantso cancer patients in combination withherapy 
should beaken with great care. Patient phenotype 
(smoking, alcohol uptake andutrition),umor localization 
(different partial pressures of oxygen amongissues) 
andype ofherapy should be considered in ordero choose 
a suitable antioxidant supplement [141].mportantly, 
adverseffects wereoteported with antioxidants derived 
from food. The Women’s Healthy Eating and Living 
Study (WHELS), where diet composed of high amount 
of fruit and vegetable,ich in beta-carotene and vitamin 
C, showedoffect on outcome in patients witharly breast 
cancer [142]. 

LESSONS FROM CLINICALRIALS

Anticancer properties of a fewatural products 
from Table 1 (EGCG, curcumin,esveratrol, PEITC, have 
beenested clinically mainly inhe context of decreasing 
sideffects caused by chemotherapy andadiationherapy 
or as chemopreventive dietary supplements (Table 2). 
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Theserials were basing on ROS scavenging properties 
ofatural compounds. The ability of orally administered 
EGCGoeducehe incidence and severity ofsophagitis 
wasested in patients with locally advanced stageIIon-
small-cell lung cancereceiving concurrent chemotherapy 
andhoracicadiotherapy (phase, NCT01481818). No dose-
limitingoxicity of EGCG waseported. Dramaticegression 
ofsophagitiso grade 0/1 was observed in 22 of 24 
patients andhe pain score was alsoeduced [143]. 
Currently,he EGCG-mediated protection ofhesophagus 
from damage induced byadiotherapy in patients with 
lung cancer is beingested in phaseI (NCT02577393). 
Alsoopically administered EGCG wason-toxic and 
provedffective in decreasingadiation dermatitis in 
patients with breast cancer after mastectomyeceiving 
adjuvantadiotherapy [144]. Orally administered 
curcumin significantlyeducedhe severity of skineactions 
(dermatitis) caused byadiationherapy breast cancer 
patients as shown in phaseI/IIIrial (NCT01246973) 
[145] and prevented colon cancer byeducinghe aberrant 
crypt foci (ACF)umber in smokers at dose 4 g/day [146]. 
Unfortunately, just a fewrials so far addressed a question 
whetheratural compounds could improvehefficacy ofhe 
standard chemotherapy oradiationherapy. One such 
arial (phaseI)ested curcumin abilityo potentiateheffect 
of gemcitabine in patients with advanced pancreatic 
cancer (NCT00192842).n one out ofwenty one 
patientsvaluable foresponse curcumin caused brief but 
markedumoregression (73%) and one patientemained 
stable for > 18 months. The problem wasxtremely 
limited bioavailability of curcumin as only 22o 41g/mL 
was detectable in plasma when 8 g curcumin/day was 
given orally. Curcumin levels inhe microgramange have 
been showno beecessaryo show antiproliferativeffects 
in in vitro studies. Therefore, it was suggestedo heat-
solubilize curcumin before administrationo increase its 
water solubility [147]. Moreover, bioactive compounds of 
curcumin degradation such as ferulic acid and vanillin also 
possess strong anticancer properties and can inhibit COX-
1, COX-2 and significantly suppress NFκB activation 
[148-150].nhis wayhey may contributeohe observed 
biological activities of curcumin. Awaited areesults 
of ongoing clinicalrials on improved formulations of 
curcuminonhance chemo- oradiotherapy (see Table 2). 
There is a strongeed for more studies on differentatural 
compounds as growingvidence ismerging forheir benefits 
in improvingesults of standard anticancerreatments.

CONCLUSIONS

The power ofatural products lies in usinghem as 
adjuvantso standard anticancerherapies buthe struggle 
ishathey oftenxhibit contrary actions, depending 
on concentration. At high doses ( > 50 µM)atural 
compounds presented inhis article have pro-oxidant 
properties by limiting antioxidant capacity of cancer 

cells (Figure 3). Direct inhibition of cellular antioxidants 
or suppression of pathways leadingoheirxpression 
can sensitize cancer cellso chemo- andadiotherapy. 
Normal cells areothat sensitiveohe manipulations 
inedox homeostasis asheir growth and proliferation 
areothat much ROS-dependent. Contrarily, cancer cells 
operate under constant oxidative stress and are very 
sensitiveohe disruption ofheirnhanced abilityo scavenge 
freeadicals. Therefore, impairing antioxidant capacity 
ofumorsmerges as a good strategyoargethem. Especially 
inhibition of Nrf2 pathway seems a very promising 
approach as Nrf2 controlsxpression of crucial cellular 
antioxidants, drugfflux pumps and detoxificationnzymes. 
Simultaneous inhibition of Nrf2 and prosurvival NFĸB 
signaling isven moreffective in promoting death ofumor 
cells. Therefore,atural productshat suppress Nrf2 and 
NFĸB pathways are promising candidates for adjuvantso 
chemo- andadiotherapy allowing for loweringheir doses.t 
iseverthelessssentialo bear in mindhatheffecthey induce 
in cells depends onhe applied dose, cellype,xposureime 
andnvironmental conditions. The sameatural product 
in different concentrations often possesses contrary 
properties. This is why it is so challengingoranslateesults 
from in vitro modelso in vivo conditions. Concentrations 
used in cell linesxperiments are often very hardo achieve 
in patients. Givenhe poor plasmatic bioavailability of 
active compounds and biotransformation processeshey 
undergo inhe body,he circulating concentration ofatural 
compounds administered orally areather low. Moreover,he 
biologicalffectshey produce dootecessarilyeedo 
be a consequence ofhe action of onlyhe parent 
compound, but might also be assignedo its metabolites. 
Therefore,heffectsatural products present in vivo might 
be different orven oppositeoxpected and instead of 
potentiatingheffect of chemo- oradiotherapy,hey might 
weakenheir action. The majority of clinicalrialsest ROS 
scavenging properties ofatural compounds inhe context 
of cancer chemoprevention orheir abilityo alleviate 
sideffects of chemo- andadiotherapy. Just a few addressed 
a question of synergisticffects ofatural products with 
classic anticancerherapies andheesults so far warrant 
further investigation. There is a strongeed for clinical 
studiesestinghese combinationreatments in defined 
cancerypes with special focus on bioavailability and 
stability ofatural products. 
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dismutase 2; SOD3, superoxide dismutase 3; STAT3, 
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