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ABSTRACT

Neuroblastoma is the most common extracranial solid tumor in children. The 
ErbB family of proteins is a group of receptor tyrosine kinases that promote the 
progression of various malignant cancers including neuroblastoma. Thus, targeting 
them with small molecule inhibitors is a promising strategy for neuroblastoma 
therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible 
inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib 
suppressed the proliferation and colony formation ability of neuroblastoma cell lines 
in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced 
activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In 
addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, 
including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor 
efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma 
mouse model. Taken together, these results show that afatinib inhibits neuroblastoma 
growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR 
signaling. Our study supports the idea that EGFR is a potential therapeutic target 
in neuroblastoma. And targeting ErbB family protein kinases with small molecule 
inhibitors like afatinib alone or in combination with doxorubicin is a viable option for 
treating neuroblastoma.

INTRODUCTION

Neuroblastoma (NB) is a pediatric cancer 
deriving from neural crest and is commonly found in 
the adrenal medulla or along the sympathetic chain 
[1]. As the most common extracranial solid pediatric 
tumor, NB causes approximately 13% of mortality from 
all pediatric malignancies [2, 3]. NB are stratified into 
five risk groups, 1, 2, 3, 4, and 4S, and late stages with 

MYCN amplification have been defined as “high-risk” 
[4]. Despite the improvements in treatment made in 
recent decades, the cure rate for high-risk NB patients 
remains disappointingly low with a five-year survival 
rate less than 50% [5, 6]. The poor outcomes warrant 
investigation for a better biological understanding 
of this pediatric malignancy and development of new 
therapeutic targets and treatment options to cure this 
disease.
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The ErbB family of RTKs, which consist of 
Epidermal growth factor receptor (EGFR) (ErbB1 or 
HER1), ErbB2 (HER2 or Neu), ErbB3 (HER3), and 
ErbB4 (HER4), have been shown to promote tumor 
progression in various cancer types [7]. Of the human 
ErbB family members, EGFR functions as a critical 
mediator of tumor progression in several cancer types. 
Notably, abnormally activated EGFR predicts poor 
outcomes in many cancer types including non-small-cell 
lung cancer (NSCLC), head and neck cancer, and breast 
cancer [8–11]. In addition, somatic mutations of EGFR 
lead to continuous activation of kinase activity, resulting 
in uncontrolled cell division and tumorigenesis [12–14]. 
EGFR is a transmembrane tyrosine kinase receptor that 
binds to ligands like Epidermal growth factor (EGF) and 
Transforming growth factor alpha (TGF-α) through its 
extracellular domain to activate downstream signaling 
pathways [15, 16]. These pathways include PI3K/AKT/
mTOR pathway, which is critical for cell survival and 
proliferation, as well as, the KRAS/BRAF/MEK/ERK, 
and JAK2/STAT3 pathways [7, 17, 18]. Moreover, 
EGFR has been found to be widely expressed in NB 
cells and primary tumors, and activation of EGFR 
significantly promoted NB cell proliferation [19, 20]. 
Previous studies have identified EGFR as a potential 
therapeutic target in NB [21] and pan-ErbB inhibition is 
a therapeutic option for treating NB patients [20], which 
supports further study of the efficacy of ErbB family 
inhibitors in NB.

The pan-ErbB family tyrosine kinase inhibitor 
afatinib (BIBW-2992, trade name Gilotrif, previously 
Tomtovok and Tovok) has been approved by the U.S. Food 
and Drug Administration (FDA) for first-line treatment of 
patients with NSCLC with distinct EGFR mutations [22]. 
In cell-free assays, afatinib shows potent activity against 
the proteins encoded by wild-type and mutant EGFR and 
HER2 including the L858R and T790M EGFR mutations 
[23]. In addition, afatinib shows inhibitory effects on cells 
with wild-type HER4 [24, 25]. Afatinib exhibits potent 
antitumor effects against various types of carcinomas 
including breast cancer, head and neck squamous cell 
cancer, colorectal cancer and NSCLC [26–28]. In addition, 
EGFR and HER4 are known to be expressed in NB 
cell lines and patient samples and HER2 in NB patient 
samples. Thus, investigation of the efficacy of afatinib in 
NB is warranted [20]. However, to our knowledge, the 
antitumor effects of afatinib on NB have not yet been 
explored.

In this study, we investigated the anti-tumor effects 
of ErbB family member inhibitor afatinib on NB. We 
found that afatinib inhibited the cell viability and induced 
apoptosis in NB cells. In addition, afatinib blocked EGF-
induced activation of PI3K/AKT/mTOR signaling in all 
NB cell lines tested. Moreover, afatinib sensitized a subset 
of NB cells to doxorubicin treatment. More importantly, 

afatinib induced apoptosis and blocked PI3K/AKT/mTOR 
signaling in an orthotopic xenograft NB mouse model. 
Taken together, our study supports the idea that EGFR is a 
potential therapeutic target in NB and treating NB patients 
by ErbB family protein kinases inhibitors like afatinib 
alone or in combination with doxorubicin is a promising 
strategy.

RESULTS

The prognostic significance of EGFR 
expression in NB

Aberrant activated expression of EGFR correlates 
with poor outcomes in many adult malignancies [8–10]. 
Hence, we first evaluated the clinical significance of 
EGFR expression in NB patients. Data analysis of the 
R2 database (R2: http://r2.amc.nl) reveals that high 
expression of EGFR predicts lower overall and relapse-
free survival in the Versteeg-88 data set (Figure 1A). 
In addition, consistently, high expression of EGFR is 
associated with lower relapse-free survival in MYCN 
non-amplified NB patients from the Seeger-102 data 
set (Figure 1B). These data suggest that EGFR is a 
potential biomarker for the prediction of outcomes 
in NB patients. We then examined the endogenous 
expression level of EGFR in a subset of NB cell lines. 
A protein immunoblotting assay revealed the expression 
pattern of EGFR in the six NB cell lines (IMR-32, NGP, 
NB-19, SK-N-AS, SH-SY5Y, LA-N-6) tested. As shown 
in Figure 1C, high expression levels of phospho-EGFR 
(Y1068) and total EGFR were detected in SK-N-AS, 
SH-SY5Y, IMR-32, and NB-19 cells, whereas NGP 
and LA-N-6 cell lines showed very low expression of 
phospho-EGFR (Y1068) and total EGFR.

Afatinib shows cytotoxic effect on NB cells

To assess the cytotoxicity of afatinib on NB cell 
lines, six NB cell lines (IMR-32, NGP, NB-19, SK-N-
AS, SH-SY5Y, LA-N-6) were treated with increasing 
concentrations of afatinib for 72 hrs. Afatinib significantly 
inhibited the cell viability of the NB cell lines tested in a 
dose-dependent manner (Figure 2A). The IC50 values of 
afatinib on NB cell lines and EGFR status of those cell 
lines were listed (Figure 2B). We found that IMR-32 and 
SH-SY5Y cells were very sensitive to afatinib with an 
IC50 of 0.85 µM and 0.57 µM, respectively. LA-N-6 cells 
were the most resistant to afatinib treatment, with an IC50 
of 15.72 µM. This suggests that afatinib has high efficacy 
against NB cell lines. Morphological changes of the 
treated cells further confirmed the cytotoxicity of afatinib 
on the NB cells (Figure 2C). These data demonstrate that 
afatinib can inhibit the cell viability of NB cell lines in a 
dose dependent manner.
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Afatinib suppresses the anchorage-independent 
growth of NB cells

To evaluate whether afatinib affects the 
anchorage-independent growth ability of NB cells, a 
soft agar assay was performed in which cell growth 
independent of a solid surface is measured. Lower 
doses of the inhibitor were used in this assay to measure 
effects on growth in the absence of cytotoxicity. As 
expected, afatinib treatment led to decreased colony 
formation ability of all the tested NB cell lines in a dose 
dependent manner (Figure 3A). Quantification of the 

results from this assay show that afatinib significantly 
suppressed the anchorage-independent growth of NB 
cells (Figure 3B).

Afatinib induces apoptosis in NB cells

Previous studies reported that afatinib can inhibit 
cell proliferation and induce apoptosis in various types of 
cancer cells [29–31]. To explore whether afatinib could 
induce apoptosis in NB cells, IMR-32, NGP, NB-19, SK-
N-AS, SH-SY5Y, and LA-N-6 cells were treated with 
afatinib for various time points (0-16 hrs). We found that 

Figure 1: High expression of EGFR predicts poor outcomes in NB patients. A. Overall survival probability and Relapse-free 
survival probability for NB patients with high EGFR expression (blue; n=68) and low EGFR expression (red; n=20) (Versteeg-88 data set). 
B. Estimated relapse-free survival rates in NB patients with high EGFR expression (blue; n=86) and low EGFR expression (red; n=16) from 
Seeger-102 data set. C. Basal expressions of phospho-EGFR (Y1068) and total EGFR in a panel of six NB cell lines: IMR-32, NGP, NB-19, 
SK-N-AS, SH-SY5Y and LA-N-6. The expression pattern of p-EGFR and EGFR varies in those cell lines.
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afatinib induced apoptosis in all the tested NB cell lines in 
a time-dependent manner, as shown by PARP and Caspase 
3 cleavage (Figures 4A-4F).

Afatinib effectively inhibits the EGF-induced 
PI3K/AKT/mTOR signaling pathway

Human EGF (hEGF) has been reported to bind to 
and activate EGFR, which leads to activation of the PI3K/
AKT/mTOR signaling pathway [32]. The PI3K/AKT/
mTOR pathway promotes cell growth and proliferation in 
many tumor types and is the most important downstream 
signaling pathway mediated by EGFR in NB cells [7, 
21]. As afatinib potently inhibits the activity of both 
wild-type and mutant (L858R/T790M) EGFR [23], we 
hypothesized that the inhibitor may block EGF-induced 
activation of EGFR and its downstream signaling. To test 
this hypothesis, six NB cell lines (IMR-32, NGP, NB-
19, SK-N-AS, SH-SY5Y, LA-N-6) were used in an EGF 
stimulation assay in which they were starved in serum-free 

medium for 16 hrs and then exposed to 10 µM afatinib 
with or without hEGF treatment. As predicted, afatinib 
dramatically blocked hEGF-induced phosphorylation of 
p-EGFR (Y1068), p-AKT (S473) and p-S6 (S235/236) in 
all the NB cell lines tested (Figures 5A-5B). These results 
suggest that afatinib effectively inhibits EGF-induced 
activation of EGFR and its downstream PI3K/AKT/mTOR 
signaling pathway in NB cells.

Afatinib enhances doxorubicin-induced 
cytotoxicity in NB cells

Since afatinib was able to inhibit cell proliferation 
and induce apoptosis in NB cells, we reasoned that the 
combination therapy of afatinib and the traditional 
therapeutic agent doxorubicin may increase the chemo-
sensitivity of NB cells to doxorubicin treatment. We found 
that afatinib (2 µM) sensitized all six NB cell lines tested 
to doxorubicin treatment, compared with the single drug 
treatment of doxorubicin (Figure 6A). Moreover, afatinib 

Figure 2: Afatinib shows cytotoxic effect on NB cells. A. Six NB cell lines (IMR-32, NGP, NB-19, SK-N-AS, SH-SY5Y and 
LA-N-6) were treated with increasing concentrations of afatinib for 72 hrs. Cell viability was then assessed by a CCK-8 assay. Data were 
presented as mean ± SD. P <0.01 (**), or P <0.001 (***) (Student’s t-test) were indicated. B. The IC50 values of afatinib on the tested NB 
cell lines and EGFR status of each cell line were listed. Five of the six NB cell lines were EGFR wild-type (WT). C. Morphologic changes 
of the six NB cell lines treated with afatinib for 72 hrs were shown.
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Figure 3: Afatinib suppresses the anchorage-independent growth of NB cells. A. A panel of six NB cell lines were seeded in 
six-well plates with indicated concentrations of afatinib in soft agar, and grown for 2 to 3 weeks, followed by staining with crystal violet for 
4 hrs and the photos were taken. B. Colonies were counted and colony numbers were presented as mean ± SD. P <0.01 (**), or P <0.001 
(***) (Student’s t-test) were indicated.
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(2 µM) enhanced doxorubicin (2 µM)-induced apoptosis, 
as shown by increased levels of PARP and Caspase 3 
cleavage (Figure 6B). Importantly, afatinib significantly 
enhanced both doxorubicin-induced apoptosis and 
inhibition of cell proliferation in the chemoresistant LA-
N-6 cells (Figures 6A-6B). Taken together, these data 
demonstrate that afatinib enhances doxorubicin-induced 
cytotoxicity in NB cells.

Afatinib induces apoptosis and blocks the 
activity of PI3K/AKT/mTOR signaling in an 
orthotopic xenograft NB mouse model

To explore the antitumor effects of afatinib in 
vivo, an orthotopic xenograft NB mouse model was 
used. Mice bearing SH-SY5Y-luciferase xenografted 
tumors were treated with either afatinib (25 mg/kg) or an 
equal volume of dimethyl sulfoxide (DMSO) daily for 
three days by intraperitoneal (i.p.) injection. At the end 
of treatment, the mice were sacrificed and the tumors 

were harvested and lysed for a protein immunoblotting 
assay. As shown in Figure 7, afatinib induced apoptosis 
in NB tumor cells, as shown by cleavage of PARP and 
Caspase 3. Furthermore, the phosphorylation levels of 
AKT and S6 were much lower in the afatinib treated 
group, compared with the DMSO control group (Figure 
7). Together, these data indicate that afatinib induces 
apoptosis and blocks PI3K/AKT/mTOR signaling 
activity in vivo.

DISCUSSION

Aberrant EGFR activation has been shown to 
be associated with the tumorigenesis of a variety of 
malignancies, including NB [33, 34]. EGFR is present 
in many tumors from NB patients and is rarely mutated 
[35–37]. Recently, a novel EGFR extracellular domain 
deletion mutant EGFRΔ768 has been found in primary 
tumors of NB patients and in a NB cell line BE2M17, 
which confers an aggressive cancer phenotype in NB cells 

Figure 4: Afatinib induces apoptosis in NB cells. A-F. IMR-32, NGP, NB-19, SK-N-AS and SH-SY5Y and LA-N-6 cells were 
treated with afatinib (10 µM or 20 µM) for various time points (0-16 hrs). At the end of treatment, cells were harvested and cell lysates were 
subjected to SDS-PAGE, and then immunoblotted with the indicated antibodies. β-Actin was used as a loading control.
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[38]. Another known EGFR mutant EGFRvIII (EGFRΔ801) 
has also been found in NB patients [38]. While both of the 
two EGFR mutants are constitutively active and able to 
activate downstream signaling cascades, the biologic and 
biochemical properties are distinctly different. Besides, 

mutation analysis of 106 NB patients revealed that no 
mutations in the EGFR gene in the examined group of NB 
patients, and only three polymorphisms were identified in 
the EGFR gene (c.2184+19 G>A, c.2361 G>A and c.2508 
C>T) [35]. There were no associations between EGFR 

Figure 5: Afatinib blocks EGF-induced phosphorylation of EGFR, AKT and S6 in NB cells. A-B. Six NB cell lines (IMR-
32, NGP, NB-19, SK-N-AS, SH-SY5Y, and LA-N-6) were starved for 16 hrs in serum-free medium before exposed to afatinib (10 µM) 
treatment for 1 hr. Then the cells were stimulated with or without 100 ng/ml hEGF for 10 min. Cells were then collected and subjected to 
SDS-PAGE, immunoblotted with the indicated antibodies, respectively. β-Actin was used as a loading control in all samples.
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Figure 6: Afatinib enhances doxorubicin-induced cytotoxicity in NB cells. A. Six cell lines were seeded in 96-well plates and 
were incubated with doxorubicin at the indicated concentrations with or without afatinib (2 µM) for 48 hrs. Cell viability was then measured 
by CCK-8 assay. Data were represented as mean ± SD. P <0.05 (*), P <0.01 (**) or P <0.001 (***) (Student’s t-test) are indicated. B. 
IMR-32, NGP, NB-19, SK-N-AS, SH-SY5Y, and LA-N-6 cells were treated with either doxorubicin (2 µM) alone, afatinib (2 µM) alone, or 
their combinations for 16 hrs. Then whole cell lysates were then subjected to SDS-PAGE and immunoblotted with the PARP and Caspase 
3 antibodies. β-Actin was used as a loading control in all samples.
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expression and gene polymorphisms either. In addition, 
EGFR is amplified in the SK-N-AS cell line used in this 
study, according to The Cancer Genome Atlas (TCGA) 
data portal (http://www.cbioportal.org/). This is consistent 
with the expression level of EGFR in SK-N-AS cells, 
as shown in Figure 1C. In this study, we found that high 
expression of EGFR predicts poor outcome in two datasets 
of NB patients. Moreover, IMR-32, NB-19, and SH-SY5Y 
cell lines also showed relatively high expression of EGFR, 
whereas the endogenous levels of EGFR in NGP and LA-
N-6 cell lines were very low. Taken together, our data 
support that EGFR is a potential therapeutic target in NB.

The novel multi-target small molecule inhibitor 
afatinib was effective on HER2 and several forms of 
EGFR in a cell-free assay [23]. Consistent with previous 
studies, we found that EGFR was expressed in all the NB 
cell lines tested [20]. In addition, the PI3K/AKT/mTOR 
pathway has been reported to be the main signaling 
pathway that contributes to EGFR-mediated NB cell 

proliferation [19, 39, 40]. Therefore, we hypothesized 
that afatinib-induced cytotoxicity may result from 
the inhibition of EGFR-mediated PI3K/AKT/mTOR 
signaling. To test this hypothesis, we performed an EGF 
stimulation assay. As expected, afatinib blocked EGF-
induced activation of EGFR/PI3K/AKT/mTOR signaling 
in all NB cell lines tested. These results show that EGFR 
inhibition by afatinib plays the major role in afatinib-
induced cytotoxicity in NB cells. However, since non-
EGFR ErbB family members were reported to contribute 
directly to NB growth and survival [20], inhibition of other 
ErbB family members by afatinib may have an auxiliary 
role in afatinib-induced cytotoxicity in NB. Afatinib is 
also known to target HER-2, but HER-2 expression is low 
or absent in NB and is known to not be necessary for NB 
tumorigenesis [20].

Development of chemoresistance is thought to 
be one of the main causes for relapse in cancer therapy 
and contributes largely to the poor outcome of high-risk 

Figure 7: Afatinib induces apoptosis by blocking PI3K/AKT/mTOR signaling in an orthotopic xenograft NB mouse 
model. The mice bearing SH-SY5Y-luciferase cells xenografted tumors for four weeks were treated with either afatinib (25 mg/kg) or an 
equal volume of DMSO by i.p. injection daily for three days. Four hours after the last treatment, the mice were sacrificed and the tumors 
were harvested and lysed for immunoblotting with the indicated antibodies. β-Actin was used as a loading control.
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NB patients. Therefore, understanding the molecular 
mechanisms for chemoresistance and developing new 
strategies to overcome chemoresistance are of vital 
importance in cancer treatment. Importantly, afatinib 
exhibits synergistic cytotoxicity with other compounds 
in a variety of cancer cells [41–43]. Therefore, we 
reasoned that afatinib may sensitize NB cells to traditional 
chemotherapy. In this study, we found that afatinib 
significantly enhanced doxorubicin-induced cytotoxicity in 
all the NB cell lines tested. Moreover, afatinib overcomes 
chemoresistance in the established chemoresistant LA-
N-6 cell line, sensitizing LA-N-6 cells to doxorubicin 
treatment. These findings indicate that the combination of 
afatinib with the traditional therapeutic agent doxorubicin 
is superior to doxorubicin treatment alone and that the 
combination therapy of afatinib and doxorubicin is a 
potential effective strategy for NB therapy.

Tyrosine kinase inhibitors (TKIs) are a class 
of antagonists that target specific oncogenic tyrosine 
kinases and targeted therapy that aims to cure selected 
malignancies with the use of TKIs is an active field in 
cancer research [44]. The development of TKIs for ErbB 
family tyrosine kinase receptors has led to the use of 
several FDA-approved anti-cancer drugs such as gefitinib 
(Iressa, ZD1839), erlotinib (Tarceva, CP-358774, OSI-
774), lapatinib (GW-572016), trastuzumab (Herceptin), 
and cetuximab (Erbitux) [45–48]. Gefitinib and erlotinib 
are selective EGFR tyrosine kinase inhibitors, and they 
are commonly used as the standard of care to treat patients 
with advanced NSCLC that harbor EGFR activating 
mutations. However, both of these inhibitors do not work 
in patients with the EGFR T790M activating mutation 
[49, 50]. Compared to wild type EGFR, proteins coded 
for with the gene with the T790M mutation have a 5-fold 
increased efficacy of kinase activation [51]; this increased 
activity is responsible for the poor outcome of lung cancer 
patients [52]. Lapatinib is a specific and reversible TKI of 
both EGFR and HER2 and shows off-target effects beyond 
these targets [53]. Despite the encouraging improvements 
in clinical outcomes with these EGFR inhibitors, side 
effects like acneiform rash were commonly observed 
[54]. In contrast to the first-generation reversible EGFR 
TKIs, the irreversible, pan-ErbB family inhibitor afatinib 
overcomes EGFR T790M mutation-driven resistance in 
NSCLC patients [55]. Afatinib is 100-fold more active 
against gefitinib-resistant tumors harboring the L858R-
T790M EGFR mutation by covalently interacting with the 
mutant protein and irreversibly inhibiting its enzymatic 
activity [23]. In this study, we found that afatinib 
exhibited anti-tumor efficacy in vitro and in vivo by 
inducing apoptosis and blocking EGFR-mediated PI3K/
AKT/mTOR signaling. Our study suggests that EGFR is 
a potential therapeutic target in NB and that afatinib could 
be used in the clinic to treat this devastating disease.

In summary, by using a panel of NB cell lines and 
an orthotopic mouse model of NB, we provide compelling 

evidence that afatinib is able to inhibit proliferation and 
promote apoptosis of NB cells. Although the role of 
non-EGFR ErbB signaling in afatinib-induced toxicity 
in NB needs to be further clarified, our findings broaden 
the therapeutic index of afatinib and provide preclinical 
evidence for the use of afatinib alone or in combination 
with the traditional therapeutic agent doxorubicin for NB 
patients.

MATERIALS AND METHODS

Antibodies and reagents

Small molecule inhibitor afatinib was purchased 
from LC Labs (A-8644) (LC Laboratories, Woburn, 
MA, USA). Recombinant human EGF was purchased 
from R&D systems (236-EG) (R&D Systems Inc., 
Minneapolis, MN, USA) and was prepared according 
to the manufacturer’s recommendation. Doxorubicin 
(doxorubicin, D1515) and anti-β-Actin (A2228) antibodies 
were purchased from Sigma (Sigma-Aldrich Corp, St. 
Louis, MO, USA). Anti-phospho-EGFR (Y1068) (3777S), 
anti-EGFR (2232S), anti-phosphor-AKT (S473) (4060S), 
anti-AKT (9272S), anti-phospho-S6 (S235/236) (4858S), 
anti-S6 (2217S), anti-PARP (9532S), and anti-Caspase 
3 (9662) primary antibodies, together with anti-Mouse 
(7076S) and anti-Rabbit (7074S) secondary antibodies 
were from Cell Signaling Technology (Cell Signaling 
Technology, Danvers, MA, USA).

Cell lines and cell culture

Five of the six NB cell lines (IMR-32, NGP, NB-
19, SK-N-AS, and SH-SY5Y) were cultured in RPMI 
Medium 1640 (RPMI) (Lonza, Walkersville, MD, USA) 
supplemented with 10% (v/v) heat-inactivated Fetal 
Bovine Serum (FBS) (SAFC Biosciences, Lenexa, 
KS, USA), 100 units/mL penicillin, and 100 µg/mL 
streptomycin. The chemoresistant NB cell line LA-
N-6 was grown in RPMI containing 20% (v/v) heat-
inactivated FBS, 100 units/mL penicillin, and 100 µg/
mL streptomycin. All cells were cultured at 37°C in a 
humidified incubator with 5% CO2. All experiments were 
performed with cells under exponential growth conditions. 
The SH-SY5Y cell line with stable expression of luciferase 
was generated by transfection with a pcDNA3 luciferase 
expression plasmid into the cells. After 10 days of 800 µg/
ml G418 (Enzo Life Sciences, Farmingdale, NY, USA) 
selection, a SH-SY5Y-luciferase stable cell line was 
obtained and used in the establishment of the orthotopic 
xenograft NB mouse model.

Cell viability assay

Cell viability assay was performed as previously 
described [56, 57]. The Cell Counting Kit-8 (CCK-
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8) (Dojindo Laboratories, Rockville, MA, USA) was 
used according to the manufacturer’s instructions. 
Cells were seeded in 96-well plates at density of 1 × 
104 cells per well. After 24 hrs of incubation at 37°C, 
the media were changed and the cells were treated with 
various concentrations of afatinib, doxorubicin, or their 
combinations for 48 hrs or 72 hrs. At the end of the 
treatment, cells were photographed and a mixture of 10 
µL of CCK-8 and 190 µL of RPMI with 10% FBS was 
added into each well. Two hours later, the absorbance 
was measured at 450 nm using a microplate reader. 
Each experiment was performed in six replicates and the 
background reading of the media was subtracted from 
each well to standardize the results.

Anchorage-independent growth assay

Cell anchorage-independent growth ability was 
assessed by soft agar assay performed as described 
previously [58, 59]. Briefly, a mixture of the autoclaved 
5% base agar (in 56°C water bath) with RPMI containing 
10% FBS was used to make the 0.5% (w/v) bottom agar. 
And 2 ml prepared bottom agar was added to each well till 
cooled down to semi-solid. For the top layer, 1.5 ml 0.3% 
agar was added to each well by mixing base agar with 
RPMI containing 10% FBS, together with the counted 
NB cells at the density of 1 × 104 cells per well. Cells in 
culture were treated with the indicated concentrations of 
afatinib the next day and were maintained at 37°C for 2 
to 3 weeks before staining with 500 µL of 0.005% crystal 
violet (C3886, Sigma) for 4 hrs. Images were captured by 
the microscope, and colonies were counted by Quantity 
One software (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA) 4 hrs later. Each assay was performed in triplicate.

Immunoblotting

The experiments were performed as described 
previously [60, 61]. Briefly, cells after treatment were 
washed with ice cold PBS twice and lysed at 4°C for 30 
min in cooled RIPA buffer (50 mM Tris-HCl at pH 7.4, 
150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.25% sodium 
deoxycholate, 1 mM phenylmethylsulfonyl fluoride, 1 mM 
benzamidine, 10 µg/mL leupeptin, 1 mM dithiothreitol, 
50 mM sodium fluoride, 0.1 mM sodium orthovanadate, 
and phosphatase inhibitor cocktail 2 and 3 (p5726 and 
p0044, Sigma)) on a rotator at 4°C for 30 min. The 
lysates were centrifuged at 13,000 rpm for 15 min and the 
supernatants were collected. Protein concentrations were 
measured using Bradford reagent (Bio-Rad Laboratories, 
Hercules, CA, USA). The supernatants were subjected 
to SDS-PAGE and then transferred to polyvinylidence 
fluoride (PVDF) membranes (BioRad), blocked with 
5% milk or BSA at room temperature for one hour, and 
probed with appropriate dilutions of indicated primary 
antibodies overnight at 4°C. The membranes were then 

incubated with anti-mouse or rabbit IgG conjugated with 
horseradish peroxidase at room temperature for 1h. The 
membranes were developed using the ECL-Plus Western 
detection system (GE Health Care, Buckinghamshire, UK) 
according to the manufacturer’s instruction. β-Actin was 
used as a loading control for whole cell extracts.

EGF stimulation of NB cells

Five of the six NB cell lines (IMR-32, NGP, NB-
19, SK-N-AS, and SH-SY5Y) were plated and grown in 
RPMI-1640 medium supplemented with 10% FBS (v/v) 
for 24 hrs. The chemoresistant LA-N-6 cell line were 
kept in RPMI-1640 medium supplemented with 20% FBS 
(v/v). The medium was then changed to FBS-free RPMI-
1640 medium for 16 hrs. The six serum starved NB cells 
were treated with afatinib (10 µM) for one hour before 
exposed to serum-free RPMI-1640 medium with 100 ng/
ml hEGF for 10 min. At the end of treatment, cells were 
collected and protein immunoblotting was performed as 
indicated.

Antitumor efficacy of afatinib in an orthotopic 
xenograft NB mouse model

Five to six-week-old female athymic NCR nude 
mice were purchased from Taconic (Taconic, Hudson, NY, 
USA) and maintained under barrier conditions (pathogen-
free conditions provided by plastic cages with sealed air 
filters). The preclinical xenograft mouse model of NB was 
established using an orthotopic (intrarenal) implantation 
of the NB cells as described previously [62–64]. Briefly, 
1.5 × 106 human luciferase-transduced SH-SY5Y cells 
was kept in 0.1 mL of PBS and a transverse incision was 
generated over the left flank of the nude mouse. And then 
the SH-SY5Y-luciferase cells were surgically injected 
into the left renal capsule and toward the superior pole 
of the left kidney of the nude mice. After engrafting 
for four weeks, mice with similar tumor sizes (using 
bioluminescent imaging to monitor tumor growth) were 
randomly divided into two groups: afatinib treated group 
(25 mg/kg by i.p. injection once daily for 3 days) and 
DMSO control group.

Four hours after the last injection the mice were 
sacrificed and the tumors were harvested and lysed for 
protein immunoblotting. All mice were handled according 
to protocols approved by the Institutional Animal Care and 
Use Committee of the Baylor College of Medicine.

Statistical analysis

All values were presented as mean ± standard 
deviation (SD). Student’s t-test was used to determine the 
statistical significance in all assays. A P <0.05 (*) was 
considered to be statistically significant. Each assay was 
repeated for at least three times and the representative 
results were presented.
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