Oncotarget, 2017, Vol. 8, (No. 1), pp: 1555-1568

www.impactjournals.com/oncotarget/

Research Paper

Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-
induced signaling and induces apoptosis in neuroblastoma

Xinfang Mao'?*, Zhenghu Chen?3", Yanling Zhao?, Yang Yu?, Shan Guan'?, Sarah
E. Woodfield*, Sanjeev A. Vasudevan?, Ling Tao?, Jonathan C. Pang? Jiaxiong Lu?,
Huiyuan Zhang?, Fuchun Zhang', Jianhua Yang?

1Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang
University, Urumgi 830046, P. R. China

2Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine,
Houston, Texas 77030, USA

3Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
P. R. China

“Division of Pediatric Surgery, Texas Children’s Hospital Department of Surgery, Michael E. DeBakey Department of Surgery,
Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA

“These authors have contributed equally to this work and should be considered co-first authors
Correspondence to: Fuchun Zhang, email: zfcxju@gg.com
Jianhua Yang, email: jjianhuay@bcm.edu
Keywords: neuroblastoma, EGFR inhibitor, afatinib, apoptosis, chemotherapy
Received: October 12, 2016 Accepted: November 08, 2016 Published: November 26, 2016

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor in children. The
ErbB family of proteins is a group of receptor tyrosine kinases that promote the
progression of various malignant cancers including neuroblastoma. Thus, targeting
them with small molecule inhibitors is a promising strategy for neuroblastoma
therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible
inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib
suppressed the proliferation and colony formation ability of neuroblastoma cell lines
in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced
activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In
addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells,
including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor
efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma
mouse model. Taken together, these results show that afatinib inhibits neuroblastoma
growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR
signaling. Our study supports the idea that EGFR is a potential therapeutic target
in neuroblastoma. And targeting ErbB family protein kinases with small molecule
inhibitors like afatinib alone or in combination with doxorubicin is a viable option for
treating neuroblastoma.

INTRODUCTION

Neuroblastoma (NB) is a pediatric cancer
deriving from neural crest and is commonly found in
the adrenal medulla or along the sympathetic chain
[1]. As the most common extracranial solid pediatric
tumor, NB causes approximately 13% of mortality from
all pediatric malignancies [2, 3]. NB are stratified into
five risk groups, 1, 2, 3, 4, and 48, and late stages with

MYCN amplification have been defined as “high-risk”
[4]. Despite the improvements in treatment made in
recent decades, the cure rate for high-risk NB patients
remains disappointingly low with a five-year survival
rate less than 50% [5, 6]. The poor outcomes warrant
investigation for a better biological understanding
of this pediatric malignancy and development of new
therapeutic targets and treatment options to cure this
disease.
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The ErbB family of RTKs, which consist of
Epidermal growth factor receptor (EGFR) (ErbB1 or
HER1), ErbB2 (HER2 or Neu), ErbB3 (HER3), and
ErbB4 (HER4), have been shown to promote tumor
progression in various cancer types [7]. Of the human
ErbB family members, EGFR functions as a critical
mediator of tumor progression in several cancer types.
Notably, abnormally activated EGFR predicts poor
outcomes in many cancer types including non-small-cell
lung cancer (NSCLC), head and neck cancer, and breast
cancer [8—11]. In addition, somatic mutations of EGFR
lead to continuous activation of kinase activity, resulting
in uncontrolled cell division and tumorigenesis [12—14].
EGFR is a transmembrane tyrosine kinase receptor that
binds to ligands like Epidermal growth factor (EGF) and
Transforming growth factor alpha (TGF-a) through its
extracellular domain to activate downstream signaling
pathways [15, 16]. These pathways include PI3K/AKT/
mTOR pathway, which is critical for cell survival and
proliferation, as well as, the KRAS/BRAF/MEK/ERK,
and JAK2/STAT3 pathways [7, 17, 18]. Moreover,
EGFR has been found to be widely expressed in NB
cells and primary tumors, and activation of EGFR
significantly promoted NB cell proliferation [19, 20].
Previous studies have identified EGFR as a potential
therapeutic target in NB [21] and pan-ErbB inhibition is
a therapeutic option for treating NB patients [20], which
supports further study of the efficacy of ErbB family
inhibitors in NB.

The pan-ErbB family tyrosine kinase inhibitor
afatinib (BIBW-2992, trade name Gilotrif, previously
Tomtovok and Tovok) has been approved by the U.S. Food
and Drug Administration (FDA) for first-line treatment of
patients with NSCLC with distinct EGFR mutations [22].
In cell-free assays, afatinib shows potent activity against
the proteins encoded by wild-type and mutant EGFR and
HER? including the L858R and T790M EGFR mutations
[23]. In addition, afatinib shows inhibitory effects on cells
with wild-type HER4 [24, 25]. Afatinib exhibits potent
antitumor effects against various types of carcinomas
including breast cancer, head and neck squamous cell
cancer, colorectal cancer and NSCLC [26-28]. In addition,
EGFR and HER4 are known to be expressed in NB
cell lines and patient samples and HER2 in NB patient
samples. Thus, investigation of the efficacy of afatinib in
NB is warranted [20]. However, to our knowledge, the
antitumor effects of afatinib on NB have not yet been
explored.

In this study, we investigated the anti-tumor effects
of ErbB family member inhibitor afatinib on NB. We
found that afatinib inhibited the cell viability and induced
apoptosis in NB cells. In addition, afatinib blocked EGF-
induced activation of PI3K/AKT/mTOR signaling in all
NB cell lines tested. Moreover, afatinib sensitized a subset
of NB cells to doxorubicin treatment. More importantly,

afatinib induced apoptosis and blocked PI3K/AKT/mTOR
signaling in an orthotopic xenograft NB mouse model.
Taken together, our study supports the idea that EGFR is a
potential therapeutic target in NB and treating NB patients
by ErbB family protein kinases inhibitors like afatinib
alone or in combination with doxorubicin is a promising
strategy.

RESULTS

The prognostic significance of EGFR
expression in NB

Aberrant activated expression of EGFR correlates
with poor outcomes in many adult malignancies [8—10].
Hence, we first evaluated the clinical significance of
EGFR expression in NB patients. Data analysis of the
R2 database (R2: http://r2.amc.nl) reveals that high
expression of EGFR predicts lower overall and relapse-
free survival in the Versteeg-88 data set (Figure 1A).
In addition, consistently, high expression of EGFR is
associated with lower relapse-free survival in MYCN
non-amplified NB patients from the Seeger-102 data
set (Figure 1B). These data suggest that EGFR is a
potential biomarker for the prediction of outcomes
in NB patients. We then examined the endogenous
expression level of EGFR in a subset of NB cell lines.
A protein immunoblotting assay revealed the expression
pattern of EGFR in the six NB cell lines (IMR-32, NGP,
NB-19, SK-N-AS, SH-SY5Y, LA-N-6) tested. As shown
in Figure 1C, high expression levels of phospho-EGFR
(Y1068) and total EGFR were detected in SK-N-AS,
SH-SYS5Y, IMR-32, and NB-19 cells, wherecas NGP
and LA-N-6 cell lines showed very low expression of
phospho-EGFR (Y1068) and total EGFR.

Afatinib shows cytotoxic effect on NB cells

To assess the cytotoxicity of afatinib on NB cell
lines, six NB cell lines (IMR-32, NGP, NB-19, SK-N-
AS, SH-SYS5Y, LA-N-6) were treated with increasing
concentrations of afatinib for 72 hrs. Afatinib significantly
inhibited the cell viability of the NB cell lines tested in a
dose-dependent manner (Figure 2A). The IC50 values of
afatinib on NB cell lines and EGFR status of those cell
lines were listed (Figure 2B). We found that IMR-32 and
SH-SYS5Y cells were very sensitive to afatinib with an
IC50 of 0.85 uM and 0.57 uM, respectively. LA-N-6 cells
were the most resistant to afatinib treatment, with an IC50
of 15.72 uM. This suggests that afatinib has high efficacy
against NB cell lines. Morphological changes of the
treated cells further confirmed the cytotoxicity of afatinib
on the NB cells (Figure 2C). These data demonstrate that
afatinib can inhibit the cell viability of NB cell lines in a
dose dependent manner.
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Afatinib suppresses the anchorage-independent
growth of NB cells

To evaluate whether afatinib affects the
anchorage-independent growth ability of NB cells, a
soft agar assay was performed in which cell growth
independent of a solid surface is measured. Lower
doses of the inhibitor were used in this assay to measure
effects on growth in the absence of cytotoxicity. As
expected, afatinib treatment led to decreased colony
formation ability of all the tested NB cell lines in a dose
dependent manner (Figure 3A). Quantification of the
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results from this assay show that afatinib significantly
suppressed the anchorage-independent growth of NB
cells (Figure 3B).

Afatinib induces apoptosis in NB cells

Previous studies reported that afatinib can inhibit
cell proliferation and induce apoptosis in various types of
cancer cells [29-31]. To explore whether afatinib could
induce apoptosis in NB cells, IMR-32, NGP, NB-19, SK-
N-AS, SH-SYS5Y, and LA-N-6 cells were treated with
afatinib for various time points (0-16 hrs). We found that
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Figure 1: High expression of EGFR predicts poor outco

mes in NB patients. A. Overall survival probability and Relapse-free

survival probability for NB patients with high EGFR expression (blue; n=68) and low EGFR expression (red; n=20) (Versteeg-88 data set).
B. Estimated relapse-free survival rates in NB patients with high EGFR expression (blue; n=86) and low EGFR expression (red; n=16) from
Seeger-102 data set. C. Basal expressions of phospho-EGFR (Y 1068) and total EGFR in a panel of six NB cell lines: IMR-32, NGP, NB-19,
SK-N-AS, SH-SY5Y and LA-N-6. The expression pattern of p-EGFR and EGFR varies in those cell lines.
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afatinib induced apoptosis in all the tested NB cell lines in
a time-dependent manner, as shown by PARP and Caspase
3 cleavage (Figures 4A-4F).

Afatinib effectively inhibits the EGF-induced
PI3K/AKT/mTOR signaling pathway

Human EGF (hEGF) has been reported to bind to
and activate EGFR, which leads to activation of the PI3K/
AKT/mTOR signaling pathway [32]. The PI3K/AKT/
mTOR pathway promotes cell growth and proliferation in
many tumor types and is the most important downstream
signaling pathway mediated by EGFR in NB cells [7,
21]. As afatinib potently inhibits the activity of both
wild-type and mutant (L858R/T790M) EGFR [23], we
hypothesized that the inhibitor may block EGF-induced
activation of EGFR and its downstream signaling. To test
this hypothesis, six NB cell lines (IMR-32, NGP, NB-
19, SK-N-AS, SH-SY5Y, LA-N-6) were used in an EGF
stimulation assay in which they were starved in serum-free

medium for 16 hrs and then exposed to 10 uM afatinib
with or without hEGF treatment. As predicted, afatinib
dramatically blocked hEGF-induced phosphorylation of
p-EGFR (Y1068), p-AKT (S473) and p-S6 (S235/236) in
all the NB cell lines tested (Figures SA-5B). These results
suggest that afatinib effectively inhibits EGF-induced
activation of EGFR and its downstream PI3K/AKT/mTOR
signaling pathway in NB cells.

Afatinib enhances doxorubicin-induced
cytotoxicity in NB cells

Since afatinib was able to inhibit cell proliferation
and induce apoptosis in NB cells, we reasoned that the
combination therapy of afatinib and the traditional
therapeutic agent doxorubicin may increase the chemo-
sensitivity of NB cells to doxorubicin treatment. We found
that afatinib (2 uM) sensitized all six NB cell lines tested
to doxorubicin treatment, compared with the single drug
treatment of doxorubicin (Figure 6A). Moreover, afatinib
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Figure 2: Afatinib shows cytotoxic effect on NB cells. A. Six NB cell lines (IMR-32, NGP, NB-19, SK-N-AS, SH-SY5Y and
LA-N-6) were treated with increasing concentrations of afatinib for 72 hrs. Cell viability was then assessed by a CCK-8 assay. Data were
presented as mean + SD. P <0.01 (**), or P <0.001 (***) (Student’s t-test) were indicated. B. The IC50 values of afatinib on the tested NB
cell lines and EGFR status of each cell line were listed. Five of the six NB cell lines were EGFR wild-type (WT). C. Morphologic changes
of the six NB cell lines treated with afatinib for 72 hrs were shown.
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Figure 3: Afatinib suppresses the anchorage-independent growth of NB cells. A. A panel of six NB cell lines were seeded in
six-well plates with indicated concentrations of afatinib in soft agar, and grown for 2 to 3 weeks, followed by staining with crystal violet for
4 hrs and the photos were taken. B. Colonies were counted and colony numbers were presented as mean + SD. P <0.01 (**), or P <0.001

(***) (Student’s t-test) were indicated.
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(2 uM) enhanced doxorubicin (2 pM)-induced apoptosis,
as shown by increased levels of PARP and Caspase 3
cleavage (Figure 6B). Importantly, afatinib significantly
enhanced both doxorubicin-induced apoptosis and
inhibition of cell proliferation in the chemoresistant LA-
N-6 cells (Figures 6A-6B). Taken together, these data
demonstrate that afatinib enhances doxorubicin-induced
cytotoxicity in NB cells.

Afatinib induces apoptosis and blocks the
activity of PI3K/AKT/mTOR signaling in an
orthotopic xenograft NB mouse model

To explore the antitumor effects of afatinib in
vivo, an orthotopic xenograft NB mouse model was
used. Mice bearing SH-SYS5Y-luciferase xenografted
tumors were treated with either afatinib (25 mg/kg) or an
equal volume of dimethyl sulfoxide (DMSO) daily for
three days by intraperitoneal (i.p.) injection. At the end
of treatment, the mice were sacrificed and the tumors
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were harvested and lysed for a protein immunoblotting
assay. As shown in Figure 7, afatinib induced apoptosis
in NB tumor cells, as shown by cleavage of PARP and
Caspase 3. Furthermore, the phosphorylation levels of
AKT and S6 were much lower in the afatinib treated
group, compared with the DMSO control group (Figure
7). Together, these data indicate that afatinib induces
apoptosis and blocks PI3K/AKT/mTOR signaling
activity in vivo.

DISCUSSION

Aberrant EGFR activation has been shown to
be associated with the tumorigenesis of a variety of
malignancies, including NB [33, 34]. EGFR is present
in many tumors from NB patients and is rarely mutated
[35-37]. Recently, a novel EGFR extracellular domain
deletion mutant EGFR*® has been found in primary
tumors of NB patients and in a NB cell line BE2M17,
which confers an aggressive cancer phenotype in NB cells
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Figure 4: Afatinib induces apoptosis in NB cells. A-F. IMR-32, NGP, NB-19, SK-N-AS and SH-SY5Y and LA-N-6 cells were
treated with afatinib (10 pM or 20 uM) for various time points (0-16 hrs). At the end of treatment, cells were harvested and cell lysates were
subjected to SDS-PAGE, and then immunoblotted with the indicated antibodies. B-Actin was used as a loading control.
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[38]. Another known EGFR mutant EGFRvIII (EGFR*") mutation analysis of 106 NB patients revealed that no

has also been found in NB patients [38]. While both of the mutations in the EGFR gene in the examined group of NB
two EGFR mutants are constitutively active and able to patients, and only three polymorphisms were identified in
activate downstream signaling cascades, the biologic and the EGFR gene (¢.2184+19 G>A, ¢.2361 G>A and ¢.2508
biochemical properties are distinctly different. Besides, C>T) [35]. There were no associations between EGFR
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Figure 5: Afatinib blocks EGF-induced phosphorylation of EGFR, AKT and S6 in NB cells. A-B. Six NB cell lines (IMR-
32, NGP, NB-19, SK-N-AS, SH-SYS5Y, and LA-N-6) were starved for 16 hrs in serum-free medium before exposed to afatinib (10 uM)
treatment for 1 hr. Then the cells were stimulated with or without 100 ng/ml hEGF for 10 min. Cells were then collected and subjected to
SDS-PAGE, immunoblotted with the indicated antibodies, respectively. B-Actin was used as a loading control in all samples.
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Figure 6: Afatinib enhances doxorubicin-induced cytotoxicity in NB cells. A. Six cell lines were seeded in 96-well plates and
were incubated with doxorubicin at the indicated concentrations with or without afatinib (2 M) for 48 hrs. Cell viability was then measured
by CCK-8 assay. Data were represented as mean + SD. P <0.05 (*), P <0.01 (**) or P <0.001 (***) (Student’s t-test) are indicated. B.
IMR-32, NGP, NB-19, SK-N-AS, SH-SY5Y, and LA-N-6 cells were treated with either doxorubicin (2 uM) alone, afatinib (2 pM) alone, or
their combinations for 16 hrs. Then whole cell lysates were then subjected to SDS-PAGE and immunoblotted with the PARP and Caspase
3 antibodies. B-Actin was used as a loading control in all samples.
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expression and gene polymorphisms either. In addition,
EGFR is amplified in the SK-N-AS cell line used in this
study, according to The Cancer Genome Atlas (TCGA)
data portal (http://www.cbioportal.org/). This is consistent
with the expression level of EGFR in SK-N-AS cells,
as shown in Figure 1C. In this study, we found that high
expression of EGFR predicts poor outcome in two datasets
of NB patients. Moreover, IMR-32, NB-19, and SH-SY5Y
cell lines also showed relatively high expression of EGFR,
whereas the endogenous levels of EGFR in NGP and LA-
N-6 cell lines were very low. Taken together, our data
support that EGFR is a potential therapeutic target in NB.

The novel multi-target small molecule inhibitor
afatinib was effective on HER2 and several forms of
EGFR in a cell-free assay [23]. Consistent with previous
studies, we found that EGFR was expressed in all the NB
cell lines tested [20]. In addition, the PI3K/AKT/mTOR
pathway has been reported to be the main signaling
pathway that contributes to EGFR-mediated NB cell

proliferation [19, 39, 40]. Therefore, we hypothesized
that afatinib-induced cytotoxicity may result from
the inhibition of EGFR-mediated PI3K/AKT/mTOR
signaling. To test this hypothesis, we performed an EGF
stimulation assay. As expected, afatinib blocked EGF-
induced activation of EGFR/PI3K/AKT/mTOR signaling
in all NB cell lines tested. These results show that EGFR
inhibition by afatinib plays the major role in afatinib-
induced cytotoxicity in NB cells. However, since non-
EGFR ErbB family members were reported to contribute
directly to NB growth and survival [20], inhibition of other
ErbB family members by afatinib may have an auxiliary
role in afatinib-induced cytotoxicity in NB. Afatinib is
also known to target HER-2, but HER-2 expression is low
or absent in NB and is known to not be necessary for NB
tumorigenesis [20].

Development of chemoresistance is thought to
be one of the main causes for relapse in cancer therapy
and contributes largely to the poor outcome of high-risk

SH-SY5Y-luciferase implanted tumor

DMSO

Afatinib

(25 mg/kg)

v o e Wy waw W PARP
e e == (Cleaved PARP

e — Caspase 3

~ Cleaved Caspase 3

- p-AKT

SRR TR AKT

R -\ ctin

Figure 7: Afatinib induces apoptosis by blocking PI3K/AKT/mTOR signaling in an orthotopic xenograft NB mouse
model. The mice bearing SH-SY5Y-luciferase cells xenografted tumors for four weeks were treated with either afatinib (25 mg/kg) or an
equal volume of DMSO by i.p. injection daily for three days. Four hours after the last treatment, the mice were sacrificed and the tumors
were harvested and lysed for immunoblotting with the indicated antibodies. $-Actin was used as a loading control.
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NB patients. Therefore, understanding the molecular
mechanisms for chemoresistance and developing new
strategies to overcome chemoresistance are of vital
importance in cancer treatment. Importantly, afatinib
exhibits synergistic cytotoxicity with other compounds
in a variety of cancer cells [41-43]. Therefore, we
reasoned that afatinib may sensitize NB cells to traditional
chemotherapy. In this study, we found that afatinib
significantly enhanced doxorubicin-induced cytotoxicity in
all the NB cell lines tested. Moreover, afatinib overcomes
chemoresistance in the established chemoresistant LA-
N-6 cell line, sensitizing LA-N-6 cells to doxorubicin
treatment. These findings indicate that the combination of
afatinib with the traditional therapeutic agent doxorubicin
is superior to doxorubicin treatment alone and that the
combination therapy of afatinib and doxorubicin is a
potential effective strategy for NB therapy.

Tyrosine kinase inhibitors (TKIs) are a class
of antagonists that target specific oncogenic tyrosine
kinases and targeted therapy that aims to cure selected
malignancies with the use of TKIs is an active field in
cancer research [44]. The development of TKIs for ErbB
family tyrosine kinase receptors has led to the use of
several FDA-approved anti-cancer drugs such as gefitinib
(Iressa, ZD1839), erlotinib (Tarceva, CP-358774, OSI-
774), lapatinib (GW-572016), trastuzumab (Herceptin),
and cetuximab (Erbitux) [45—48]. Gefitinib and erlotinib
are selective EGFR tyrosine kinase inhibitors, and they
are commonly used as the standard of care to treat patients
with advanced NSCLC that harbor EGFR activating
mutations. However, both of these inhibitors do not work
in patients with the EGFR T790M activating mutation
[49, 50]. Compared to wild type EGFR, proteins coded
for with the gene with the T790M mutation have a 5-fold
increased efficacy of kinase activation [51]; this increased
activity is responsible for the poor outcome of lung cancer
patients [52]. Lapatinib is a specific and reversible TKI of
both EGFR and HER?2 and shows off-target effects beyond
these targets [53]. Despite the encouraging improvements
in clinical outcomes with these EGFR inhibitors, side
effects like acneiform rash were commonly observed
[54]. In contrast to the first-generation reversible EGFR
TKIs, the irreversible, pan-ErbB family inhibitor afatinib
overcomes EGFR T790M mutation-driven resistance in
NSCLC patients [55]. Afatinib is 100-fold more active
against gefitinib-resistant tumors harboring the L858R-
T790M EGFR mutation by covalently interacting with the
mutant protein and irreversibly inhibiting its enzymatic
activity [23]. In this study, we found that afatinib
exhibited anti-tumor efficacy in vitro and in vivo by
inducing apoptosis and blocking EGFR-mediated PI3K/
AKT/mTOR signaling. Our study suggests that EGFR is
a potential therapeutic target in NB and that afatinib could
be used in the clinic to treat this devastating disease.

In summary, by using a panel of NB cell lines and
an orthotopic mouse model of NB, we provide compelling

evidence that afatinib is able to inhibit proliferation and
promote apoptosis of NB cells. Although the role of
non-EGFR ErbB signaling in afatinib-induced toxicity
in NB needs to be further clarified, our findings broaden
the therapeutic index of afatinib and provide preclinical
evidence for the use of afatinib alone or in combination
with the traditional therapeutic agent doxorubicin for NB
patients.

MATERIALS AND METHODS

Antibodies and reagents

Small molecule inhibitor afatinib was purchased
from LC Labs (A-8644) (LC Laboratories, Woburn,
MA, USA). Recombinant human EGF was purchased
from R&D systems (236-EG) (R&D Systems Inc.,
Minneapolis, MN, USA) and was prepared according
to the manufacturer’s recommendation. Doxorubicin
(doxorubicin, D1515) and anti--Actin (A2228) antibodies
were purchased from Sigma (Sigma-Aldrich Corp, St.
Louis, MO, USA). Anti-phospho-EGFR (Y1068) (3777S),
anti-EGFR (2232S), anti-phosphor-AKT (S473) (4060S),
anti-AKT (9272S), anti-phospho-S6 (S235/236) (4858S),
anti-S6 (2217S), anti-PARP (9532S), and anti-Caspase
3 (9662) primary antibodies, together with anti-Mouse
(7076S) and anti-Rabbit (7074S) secondary antibodies
were from Cell Signaling Technology (Cell Signaling
Technology, Danvers, MA, USA).

Cell lines and cell culture

Five of the six NB cell lines (IMR-32, NGP, NB-
19, SK-N-AS, and SH-SYS5Y) were cultured in RPMI
Medium 1640 (RPMI) (Lonza, Walkersville, MD, USA)
supplemented with 10% (v/v) heat-inactivated Fetal
Bovine Serum (FBS) (SAFC Biosciences, Lenexa,
KS, USA), 100 units/mL penicillin, and 100 pg/mL
streptomycin. The chemoresistant NB cell line LA-
N-6 was grown in RPMI containing 20% (v/v) heat-
inactivated FBS, 100 units/mL penicillin, and 100 pg/
mL streptomycin. All cells were cultured at 37°C in a
humidified incubator with 5% CO,. All experiments were
performed with cells under exponential growth conditions.
The SH-SYSY cell line with stable expression of luciferase
was generated by transfection with a pcDNA3 luciferase
expression plasmid into the cells. After 10 days of 800 pg/
ml G418 (Enzo Life Sciences, Farmingdale, NY, USA)
selection, a SH-SY5Y-luciferase stable cell line was
obtained and used in the establishment of the orthotopic
xenograft NB mouse model.

Cell viability assay

Cell viability assay was performed as previously
described [56, 57]. The Cell Counting Kit-8 (CCK-
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8) (Dojindo Laboratories, Rockville, MA, USA) was
used according to the manufacturer’s instructions.
Cells were seeded in 96-well plates at density of 1 x
10* cells per well. After 24 hrs of incubation at 37°C,
the media were changed and the cells were treated with
various concentrations of afatinib, doxorubicin, or their
combinations for 48 hrs or 72 hrs. At the end of the
treatment, cells were photographed and a mixture of 10
pL of CCK-8 and 190 puL of RPMI with 10% FBS was
added into each well. Two hours later, the absorbance
was measured at 450 nm using a microplate reader.
Each experiment was performed in six replicates and the
background reading of the media was subtracted from
each well to standardize the results.

Anchorage-independent growth assay

Cell anchorage-independent growth ability was
assessed by soft agar assay performed as described
previously [58, 59]. Briefly, a mixture of the autoclaved
5% base agar (in 56°C water bath) with RPMI containing
10% FBS was used to make the 0.5% (w/v) bottom agar.
And 2 ml prepared bottom agar was added to each well till
cooled down to semi-solid. For the top layer, 1.5 ml 0.3%
agar was added to each well by mixing base agar with
RPMI containing 10% FBS, together with the counted
NB cells at the density of 1 x 10* cells per well. Cells in
culture were treated with the indicated concentrations of
afatinib the next day and were maintained at 37°C for 2
to 3 weeks before staining with 500 pL of 0.005% crystal
violet (C3886, Sigma) for 4 hrs. Images were captured by
the microscope, and colonies were counted by Quantity
One software (Bio-Rad Laboratories, Inc., Hercules, CA,
USA) 4 hrs later. Each assay was performed in triplicate.

Immunoblotting

The experiments were performed as described
previously [60, 61]. Briefly, cells after treatment were
washed with ice cold PBS twice and lysed at 4°C for 30
min in cooled RIPA buffer (50 mM Tris-HCI at pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.25% sodium
deoxycholate, | mM phenylmethylsulfonyl fluoride, ] mM
benzamidine, 10 pg/mL leupeptin, 1 mM dithiothreitol,
50 mM sodium fluoride, 0.1 mM sodium orthovanadate,
and phosphatase inhibitor cocktail 2 and 3 (p5726 and
p0044, Sigma)) on a rotator at 4°C for 30 min. The
lysates were centrifuged at 13,000 rpm for 15 min and the
supernatants were collected. Protein concentrations were
measured using Bradford reagent (Bio-Rad Laboratories,
Hercules, CA, USA). The supernatants were subjected
to SDS-PAGE and then transferred to polyvinylidence
fluoride (PVDF) membranes (BioRad), blocked with
5% milk or BSA at room temperature for one hour, and
probed with appropriate dilutions of indicated primary
antibodies overnight at 4°C. The membranes were then

incubated with anti-mouse or rabbit IgG conjugated with
horseradish peroxidase at room temperature for 1h. The
membranes were developed using the ECL-Plus Western
detection system (GE Health Care, Buckinghamshire, UK)
according to the manufacturer’s instruction. 3-Actin was
used as a loading control for whole cell extracts.

EGF stimulation of NB cells

Five of the six NB cell lines (IMR-32, NGP, NB-
19, SK-N-AS, and SH-SYS5Y) were plated and grown in
RPMI-1640 medium supplemented with 10% FBS (v/v)
for 24 hrs. The chemoresistant LA-N-6 cell line were
kept in RPMI-1640 medium supplemented with 20% FBS
(v/v). The medium was then changed to FBS-free RPMI-
1640 medium for 16 hrs. The six serum starved NB cells
were treated with afatinib (10 pM) for one hour before
exposed to serum-free RPMI-1640 medium with 100 ng/
ml hEGF for 10 min. At the end of treatment, cells were
collected and protein immunoblotting was performed as
indicated.

Antitumor efficacy of afatinib in an orthotopic
xenograft NB mouse model

Five to six-week-old female athymic NCR nude
mice were purchased from Taconic (Taconic, Hudson, NY,
USA) and maintained under barrier conditions (pathogen-
free conditions provided by plastic cages with sealed air
filters). The preclinical xenograft mouse model of NB was
established using an orthotopic (intrarenal) implantation
of the NB cells as described previously [62—64]. Briefly,
1.5 x 10° human luciferase-transduced SH-SY5Y cells
was kept in 0.1 mL of PBS and a transverse incision was
generated over the left flank of the nude mouse. And then
the SH-SYS5Y-luciferase cells were surgically injected
into the left renal capsule and toward the superior pole
of the left kidney of the nude mice. After engrafting
for four weeks, mice with similar tumor sizes (using
bioluminescent imaging to monitor tumor growth) were
randomly divided into two groups: afatinib treated group
(25 mg/kg by i.p. injection once daily for 3 days) and
DMSO control group.

Four hours after the last injection the mice were
sacrificed and the tumors were harvested and lysed for
protein immunoblotting. All mice were handled according
to protocols approved by the Institutional Animal Care and
Use Committee of the Baylor College of Medicine.

Statistical analysis

All values were presented as mean + standard
deviation (SD). Student’s t-test was used to determine the
statistical significance in all assays. A P <0.05 (*) was
considered to be statistically significant. Each assay was
repeated for at least three times and the representative
results were presented.
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