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ABSTRACT

The prognosis of cytogenetically normal acute myeloid leukemia (CN-AML) 
varies greatly among patients. Achievement of complete remission (CR) after 
chemotherapy is indispensable for a better prognosis. To develop a gene signature 
predicting overall survival (OS) in CN-AML, we performed data mining procedure 
based on whole genome expression data of both blood cancer cell lines and AML 
patients from open access database. A gene expression signature including 42 probes 
was derived. These probes were significantly associated with both cytarabine half 
maximal inhibitory concentration values in blood cancer cell lines and OS in CN-AML 
patients. By using cox regression analysis and linear regression analysis, a chemo-
sensitive score calculated algorithm based on mRNA expression levels of the 42 
probes was established. The scores were associated with OS in both the training 
sample (p=5.13 × 10-4, HR=2.040, 95% CI: 1.364-3.051) and the validation sample 
(p=0.002, HR=2.528, 95% CI: 1.393-4.591) of the GSE12417 dataset from Gene 
Expression Omnibus. In The Cancer Genome Atlas (TCGA) CN-AML patients, higher 
scores were found to be associated with both worse OS (p=0.013, HR=2.442, 95% 
CI: 1.205-4.950) and DFS (p=0.015, HR=2.376, 95% CI: 1.181-4.779). Results of 
gene ontology (GO) analysis showed that all the significant GO Terms were correlated 
with cellular component of mitochondrion. In summary, a novel gene set that could 
predict prognosis of CN-AML was identified presently, which provided a new way to 
identify genes impacting AML chemo-sensitivity and prognosis.

INTRODUCTION

Acute myeloid leukemia (AML), characterized 
by the rapid growth of abnormal white blood cells 
interfering with the production of normal blood cells, is 
the most common type of acute leukemia affecting adults. 
Presently, induction chemotherapy with cytarabine and 
anthracyclines is the first-line treatment for AML except 
for acute promyelocytic leukemia (According to NCCN 
AML Guidelines 2015, version 1). However, outcomes 

of AML vary greatly among patients after chemotherapy. 
Clinical studies have shown that the five-year survival rate 
of AML varies from 18% to 82%, and relapse rate varies 
from 33% to 80% [1–4].

It is well known that chromosomal abnormalities 
are major prognostic factors in AML. Based on karyotype, 
AML patients can be divided into favorable, intermediate 
and unfavorable cytogenetics risk groups which show 
different survival profiles [5]. However, the detailed 
mechanism of the prognosis variation in normal karyotype 
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AML (CN-AML) patients, the most common type, 
remains unclear. Several factors affecting AML prognosis 
have been identified, including somatic mutations in genes 
such as NPM1, FLT3-ITD, CEBPA, WT1, ASXL1, IDH1/2, 
DNMT3A, and RUNX1 [6–10]. Moreover, expression 
levels of LFE1 [11], CXXC5 [12], EVL1, MEL1 [13], and 
miR-9* [14] are also reported to be associated with AML 
prognosis. However, only a small part of AML prognosis 
variation can be explained by these above-mentioned 
factors.

Cancer cell lines, which were descended from 
naturally occurring tumors, are commonly used for 
molecular biology research and drug discovery in 
vitro. Previous studies have confirmed that the use of 
pharmacological data and genomic information of cancer 
cell lines can help researchers to identify therapeutic 
biomarkers [15–17]. These data are also helpful to find 
genomic variants associated with sensitivity of anti-
tumor drugs and thus potentially affect cancer prognosis. 
Cytarabine is a first-line drug for inducing remission in 
common therapeutic schedule for AML. The achievement 
of complete remission (CR) is indispensable for a better 
prognosis; meanwhile, chemo-resistance is essential for 
treatment failure and poor outcomes for AML [18–20]. 
Therefore, further identification of genomic information 
affecting drug response phenotype in leukemia cell lines 
may help to find new factors affecting AML prognosis.

Recently, a lot of classified studies based on 
RNA microarray have been performed to establish the 
classifier which might help to predict the outcomes of 
CN-AML. For example, Metzeler et al. reported an 
86-probe-set mRNA expression signature which was 
correlated with overall survival (OS) of AML [21]. 
Gentles et al. found a leukemic stem cell gene expression 
signature correlated with clinical outcomes in AML [22]. 
Garzon et al. derived a lncRNA score composed of 48 
lncRNAs and found that the score was an independent 
marker for the outcome in CN-AML patients [23]. 
However, no studies have focused on genes related to 
chemo-sensitivity. In 2013, an open access database 
named Genomics of Drug Sensitivity in Cancer (GDSC) 
was developed [24]. This database includes date of 
half maximal inhibitory concentration (IC50) values 
for 138 anticancer drugs on more than 800 cancer cell 
lines. Whole genome mutations and expression levels 
are also available for the GDSC database. To find out 
whether genes correlated with chemo-sensitivity could 
also predict the outcome of AML, we downloaded IC50 
values of cytarabine from 96 leukemia cell lines and raw 
whole genome expression data of these cell lines from 
GDSC in this study. Probes significantly associated with 
IC50 levels in the cells and OS in GSE12417 dataset, 
a whole genome expression dataset for CN-AML in 
NCBI Gene Expression Omnibus (GEO), were selected. 
Based on the selected probes, chemo-sensitivity score 
was derived and replicated in a TCGA CN-AML dataset.

RESULTS

Cluster analysis in blood cell lines

At first, we conducted a cluster analysis based 
on expression of all probes. The blood cancer cell lines 
were clustered into two classes except for Daudi (a 
human Burkitt’s lymphoma cell line) and U-698-M (a 
B-Acute Lymphoblastic Leukemia cell line) (Figure 1A). 
Significant difference in mean cytarabine IC50 values 
between the two classes was observed (p=0.030, Figure 
1B). These results indicated that the whole genome 
expression pattern can affect cytarabine sensitivity in 
blood cell lines.

Function prediction of genes notably impacting 
cytarabine IC50 in blood cancer cell lines

Results of linear-regression analysis showed 
that 4207 probes were significantly associated with 
cytarabine IC50 values (raw p<0.05) in the GDSC blood 
cell lines. GO annotation was carried out to predict the 
potential function of genes targeted by the probes. In 
terms of biological processes, 4 of the top 10 categories 
belonged to RNA processing modification and metabolic 
process (Figure 2A). Interestingly, molecular functions 
of all top 10 categories were related to protein or 
nucleic acid binding (Figure 2B). With regard to 
cellular components, lumen appeared in 3 most enriched 
categories (Figure 2C). KEGG database was also used to 
identify gene networks affected by these genes (Figure 
2D). Most pathways were related to immune system. 
The details of pathway analysis based on all 4207 probes 
were listed in supplementary materials (Supplementary 
material S2).

A 42 probe set correlated with both cytarabine 
sensitivity and AML OS

Among the 4207 probes associated with cytarabine 
IC50 values, 453 were significantly associated with OS in 
GSE12417 U133 AB sample, while 337 were associated 
with OS in GSE12417 U133 plus sample (univariate 
cox regression analysis P<0.05). Finally, 42 probes 
correlated with both cytarabine sensitivity and OS in the 
same direction were identified. Details of these probes 
were listed in Table 1. After analysis in David database, 
33 GO Terms with raw p<0.05 were identified, and four 
(GO:0044429, Bonferroni p=1.74 × 10-5; GO:0005759, 
Bonferroni p=0.002; GO:0031980, Bonferroni p=0.002; 
GO:0005739, Bonferroni p=0.006) of them passed 
correction for multiple tests (Table 2). Interestingly, all 
these four GO Terms correlated with cellular component 
of mitochondrion which plays important roles in AML 
progression.
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Association of the chemo-sensitivity score based 
on 42 probes with AML survival in patients from 
GSE12417 dataset

The detailed information including univariate cox 
score and combined cox score of the 42 selected probes 
mapped to 44 annotated genes were summarized in Table 
1. Among these probes, 3 targeted two genes, and 2 
genes were represented by 2 probes simultaneously. As 
compared to patients with a favorable chemo-sensitivity 
score, those with an unfavorable score had a shorter OS 
in both samples with U133 AB (p=0.006, HR=1.739, 95% 
CI: 1.174-2.575, Figure 3A) and U133 plus data (p=0.003, 
HR=2.456, 95% CI: 1.358-4.441, Figure 3B). As age was 
significantly associated with OS in both U133 AB and 
U133 plus samples in univariate analysis, we performed 
further multivariate analysis adjusted by age. The results 

showed that the influence of chemo-sensitivity score on 
OS was more notable (p=5.13 × 10-4, HR=2.040, 95% CI: 
1.364-3.051 for U133AB sample; p=0.002, HR=2.528, 
95% CI: 1.393-4.591 in U133 plus sample).

Validation of the association between 42-probe-
based chemo-sensitivity score and survival in 
TCGA CN-AML patients

TCGA AML dataset was downloaded and 
association between chemo-sensitivity score based on the 
42 probes and OS in 56 de novo CN-AML patients was 
also assessed. Patients with an unfavorable score had a 
shorter OS (p=0.013, HR=2.442, 95% CI: 1.205-4.950, 
Figure 4A). However, age was not associated with OS 
in TCGA CN-AML patients (p=0.367). As disease-free 
survival (DFS) data was also available for the TCGA 

Figure 1: Whole genome expression pattern impact cytarabine sensitivity in blood cancer cell lines. A. Cluster analysis 
of all probes in blood cancer cell lines, B. Comparison of cytarabine IC50 values between two classes of blood cancer cell lines divided by 
cluster analysis.
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AML dataset. Our results showed that patients with 
an unfavorable score had significantly shorter DFS as 
compared with patients with a favorable chemo-sensitivity 
(p=0.015, HR=2.376, 95% CI: 1.181-4.779, Figure 4B).

To confirm whether chemo-sensitivity score was 
an independent risk factor for OS in TCGA CN-AML 
patients, association between the score and some known 
risk factors for AML outcome, including cytogenetic 
risk, NPM1 mutations, FLT3-IDT mutations, CEBPA 
mutations, IDH mutations, and DMNT3A R882 mutations 
were analyzed. However, no significant association was 
observed for any of the somatic mutations (Table 3).

DISCUSSION

In this study, we derived a gene signature including 
42 probes which mapped to 43 annotated genes from 
GDSC blood cell lines and the GEO GSE12417 dataset. 
The chemo-sensitivity score calculated based on the 
expression level of the 42 probes was significantly 
associated with OS in GSE12417 CN-AML patients 
and replicated in the TCGA AML dataset. Multivariate 
analysis showed that the chemo-sensitivity score might be 
an independent risk factor for AML outcome. Our results 
indicated that chemo-sensitivity score might be used for 
predicting prognosis of AML patients after cytarabine 
based chemotherapy.

Cytarabine is a key drug used for the induction 
therapy of AML. Evidence has shown that AML patients 

who achieved CR had longer OS than non-CR patients 
[18–20], and chemo-resistance is the main reason for 
treatment failure in AML [25–27]. Hence, factors affect 
IC50 of cytarabine may also influence prognosis of AML. 
Our findings presently confirmed the conjecture. In this 
study, we obtained a gene signature related to both IC50 
values of cytarabine in blood cancer lines and AML OS 
accepted induction therapy based on cytarabine. According 
to the chemo-sensitivity score calculated by the expression 
level of the gene signature, AML patients could be divided 
into favorable and unfavorable groups that have different 
OS and DFS. These results indicated that identification 
of factors related to cytarabine response on cancer cell 
lines maybe a viable strategy for finding potential factors 
affecting AML survival.

For the 44 genes involved in the signature, results 
of pathway analysis by using the David database showed 
that 4 GO terms were significantly correlated with 
cellular component of mitochondrion after multiple 
testing corrections. Mitochondria is a key organelles 
in human cells participating in cell apoptosis [28, 29], 
and it also plays important roles in AML progress and 
chemosensitivity [30]. Energy is greatly demanded in 
cancer cells, therefore, more adenosine triphosphate (ATP) 
synthesized by mitochondrion is required. Using AML cell 
lines, Vo et al. demonstrated that increasing mitochondrial 
priming enhances chemo-sensitivity, and selection for 
reduced mitochondrial priming in relapsed AML may 
be an important determinant for the chemo-resistant 

Figure 2: GO and KEGG pathway analysis of genes notably impacting cytarabine IC50 in blood cancer cell lines. The 
top ten significantly enriched GO categories and pathways were calculated and plotted as the − 1 × log10 (p value). A. Biological process, 
B. Molecular function, C. Cellular component, D. KEGG Pathways.
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Table 1: Statistical analysis results for the 42 probes in blood cancer cell lines and in the GSE12417 dataset

Gene Probe name
GDSC Blood cancer 

cell lines GSE12417 Prognostic 
Index

p value t value U133AB sample U133 Plus sample

p value Z value p value Z value

ULK1 209333_at 1.44E-05 -4.578 0.045 -2.004 0.018 -2.362 -0.309

PIGF 205078_at 2.54E-05 4.431 0.043 2.020 0.041 2.045 0.193

ABCC5 209380_s_at 9.26E-05 -4.085 0.011 -2.541 0.035 -2.109 -0.336

MRPL40 203152_at 9.84E-05 4.069 0.003 2.959 0.018 2.366 0.253

DARS2 218365_s_at 1.60E-04 3.934 0.046 1.992 0.011 2.532 0.193

ITSN1 35776_at 2.27E-04 -3.835 0.027 -2.208 0.041 -2.041 -0.274

ZC3HAV1 213051_at 4.09E-04 -3.665 0.032 -2.149 0.017 -2.397 -0.355

NDUFB5 203621_at 5.32E-04 3.588 0.003 3.022 0.004 2.865 0.341

SKAP2 204361_s_at 7.54E-04 3.483 0.025 2.243 0.038 2.072 0.186

ZNF451 215012_at 0.001 -3.367 0.038 -2.070 0.005 -2.821 -0.316

IARS2 217900_at 0.002 3.197 0.010 2.562 0.018 2.358 0.212

MPP1 202974_at 0.003 -3.049 0.018 -2.367 0.044 -2.010 -0.363

ZNF259P1/
ZPR1 217185_s_at 0.004 2.961 0.003 3.023 0.011 2.541 0.231

BCL2L1 212312_at 0.004 -2.916 0.022 -2.288 0.042 -2.032 -0.309

CHMP4A/
TM9SF1 218572_at 0.006 2.836 0.026 2.219 0.047 1.987 0.197

GAS2 205848_at 0.007 2.744 0.029 2.185 0.001 3.403 0.191

ME2 210154_at 0.008 2.715 0.021 2.307 0.016 2.412 0.221

ALCAM 201951_at 0.008 2.710 0.000 3.634 0.000 5.064 0.363

DNAJC1 218409_s_at 0.009 2.675 0.005 2.791 0.023 2.282 0.259

VDAC1 212038_s_at 0.009 2.673 0.005 2.804 0.018 2.376 0.213

SLC25A38 217961_at 0.009 -2.648 0.011 -2.540 0.016 -2.420 -0.314

IL6R 205945_at 0.010 2.636 0.003 2.986 0.022 2.282 0.260

ME2 210153_s_at 0.012 2.568 0.018 2.367 0.002 3.053 0.254

ETFDH 33494_at 0.013 2.527 0.040 2.058 0.043 2.020 0.158

TAL1 206283_s_at 0.017 -2.441 0.036 -2.092 0.027 -2.216 -0.339

TAL1 216925_s_at 0.017 -2.427 0.011 -2.541 0.032 -2.147 -0.381

BMP2K 219546_at 0.017 -2.420 0.013 -2.486 0.033 -2.137 -0.308

FH 203033_x_at 0.019 2.379 0.016 2.399 0.033 2.131 0.213

SLC14A1 205856_at 0.021 -2.353 0.037 -2.091 0.048 -1.974 -0.356

SPATS2 218324_s_at 0.021 2.338 0.023 2.268 0.017 2.391 0.272

P4HTM 222125_s_at 0.026 2.269 0.013 2.478 0.029 2.184 0.212

PLA2G4A 210145_at 0.031 2.195 0.007 2.689 0.023 2.281 0.242

TRIB2 202478_at 0.031 -2.184 0.030 -2.174 0.033 -2.126 -0.310
(Continued )
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Gene Probe name
GDSC Blood cancer 

cell lines GSE12417 Prognostic 
Index

p value t value U133AB sample U133 Plus sample

p value Z value p value Z value

ACYP2/
LOC101927144 206833_s_at 0.032 2.182 0.008 2.636 0.030 2.167 0.321

SYNCRIP 217834_s_at 0.033 2.166 0.025 2.239 0.007 2.691 0.211

IDH3A 202069_s_at 0.033 2.161 0.012 2.509 0.014 2.466 0.215

TPD52 201688_s_at 0.033 2.161 0.004 2.895 0.008 2.662 0.268

HIST1H2APS4 216585_at 0.033 2.160 0.038 2.072 0.005 2.795 0.229

ERMP1 218342_s_at 0.036 2.124 0.034 2.119 0.038 2.072 0.217

SLC25A37 221920_s_at 0.038 -2.099 0.016 -2.413 0.027 -2.213 -0.368

TCTN3 212121_at 0.046 2.026 0.000 3.506 0.009 2.620 0.331

CD164 208654_s_at 0.048 2.008 0.012 2.519 0.006 2.732 0.293

Table 2: Four most significantly GO terms for the selected 42 probes
Category GO Term Count % p value Bonferroni

GOTERM_CC_FAT
GO:0044429 ~ 
mitochondrial 

part
12 30.0 1.54E-07 1.74E-05

GOTERM_CC_FAT
GO:0005759 ~ 
mitochondrial 

matrix
7 17.5 2.18E-05 0.002

GOTERM_CC_FAT
GO:0031980 ~ 
mitochondrial 

lumen
7 17.5 2.18E-05 0.002

GOTERM_CC_FAT GO:0005739 ~ 
mitochondrion 12 30.0 5.36E-05 0.006

Figure 3: Survival curve of AML patients stratified by chemo-sensitivity score. A. U133 AB samples; B. U133 plus samples.
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phenotype [31]. Xiao et al found that mitochondrial 
ATPsyn-b played an important role in multidrug resistance 
in AML [32]. Wang et al observed that arsenic trioxide 
(ATO), used for the treatment of acute promyelocytic 
leukemia (APL), could induce apoptosis at therapeutic 
concentrations (1–2mM) through the mitochondrial 
pathway in APL NB4 cells [33].

There is also study shows that AML blast cells 
have higher copy number of mtDNA and consume more 
oxygen [34]. When AML cells were treated by tigecycline 
to inhibit mitochondrial translation, both mitochondrial 
translated proteins level and oxygen consumption were 
reduced with subsequent cell death [35]. Moreover, 
activation of the molecular cascade of apoptosis through 
mitochondrial is supposed to be an important mechanism 
by which cytarabine kills cancer cells [35]. Previous 
research reported that cytarabine could induce the release 
of reduced form of cytochrome c from mitochondrial into 
the cytosol and initiated caspase-3 activity, which could 
prompt apoptotic program and result in cells death in AML 
cells [36, 37].

We further compared our results with previous 
studies that focused on the effect of gene expression in 
cytarabine response or leukemia treatment outcome. In 
a whole genome expression association (WES) study 
that focused on cytarabine sensitive and resistant murine 
cell lines, SLC14A1 was found to be upregulated in 
cytarabine-resistant cells [38]. Interestingly, SLC14A1 
is also included in our gene signature, but in an opposite 
direction. In our results, SLC14A1 high expression 
correlated with low IC50 values in blood cancer cell lines 
and acted as a good prognostic predictor in AML patients 
for both GSE12417 and TCGA CN-AML datasets. We 
further queried this gene in GEO database, and found that 
there were remarkable inter-individual variations in the 
expression of SLC14A1 in AML patients (Supplementary 
Figure S1). In the cell line WES study, both B117P and 
B140P cell lines demonstrated low SLC14A1 expression 
and could not reflect the expression distribution of 

SLC14A1 in AML patients [38]. This may therefore lead 
to the controversial findings. Further mechanism study is 
needed to confirm whether SLC14A1 expression increases 
cytarabine response in AML. Another gene, named TAL1, 
was reported to be associated with outcome of T-cell 
acute lymphoblastic leukemia [39]. As in our results, 
high TAL1 expression predicted better prognosis. Three 
probes in TPD52 were included in our gene signature. 
Previous study found that high TPD52 expression was 
correlated with worse outcome in infant ALL, and this 
was consistent with our results [40]. Moreover, UCK1, 
SLC25A38, VDAC1 in our signature have been reported 
to be involved in proliferation or apoptosis of leukemia 
cell lines [41–43]. We also compared our signature with 
other prognostic signatures for AML. All the genes but 
SLC25A37 in our signature were reported for the first time 
[4, 21, 22, 44, 45]. These indicate that our research tactics 
might help researchers to find new functionally relevant 
genes involved in AML progression or cytarabine efficacy.

There are also some limitations for this study. First 
of all, the data used in this study is obtained from public 
database, therefore information for some common AML 
somatic mutations and other known factors affecting 
AML drug response were not available for constructing 
prediction model, which may result in uncertainty of 
whether the chemo-sensitivity score was an independent 
factor. Integration of gene expression data and somatic 
mutation data is supposed to build a more precision 
prediction model. Secondly, only 17 AML cell lines are 
deposited in GDSC database, and in order to gain better 
statistic power of linear regression analysis, all the blood 
cancer cell lines were used to screen the probes that were 
associated with IC50 of cytarabine. Therefore, this process 
might cause false positive results due to specificity of 
blood cancers. Finally, we failed to validate our prediction 
model in prospective study. Therefore, further studies are 
required to validate the clinic significance of the model.

In conclusion, we identified a novel gene set that 
could affect both the cytarabine sensitivity in blood cell 

Figure 4: Influence of chemo-sensitivity score on OS and DFS of CN-AML in TCGA AML dataset.
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lines and OS of AML patients underwent cytarabine 
therapy. The prediction model based on the gene set could 
predict prognosis of CN-AML. Most genes included in 
the set are correlated with mitochondrial, which hints that 
mitochondrial might be important in cytarabine response 
and AML outcomes. Our study proposed a new way to 
identify factors impacting AML prognosis, and this would 
provide some scientific basis for elucidating the individual 
difference in outcomes of AML and realizing personalized 
medicine according to gene expression pattern of AML.

MATERIALS AND METHODS

Samples

GDSC cell lines

The open accessed database GDSC (http://www.
cancerrxgene.org/) includes more than 800 cancer cell 
lines with whole genome mRNA expression, mutation 
and copy number variation information. Based on GDSC 
release 5.0, 96 blood cancer cell lines with both natural 
log transformed IC50 values of cytarabine and normalized 
whole genome mRNA expression levels were selected in 
our study (Supplementary Table S1). The whole genome 
mRNA expression level of the cell lines were detected 
by Affymetrix GeneChip Human Genome U133A Array. 
The normalized method was Affymetrix Micro Array 
Suite 5.0 algorithm. Details for data processing method 
are described elsewhere [15]. As in some cell lines, 
mRNA expression levels were tested by more than two 
microarrays, and mRNA expression level results were 
randomly selected from one of the arrays during data 
analysis.
GEO initial sample

The dataset GSE12417 included 242 cytogenetically 
normal AML patients with whole genome mRNA 
expression data and clinical prognostic information is 
available from the GEO database [21]. Three types of 

arrays were used to detect the whole genome mRNA 
expression levels: Affymetrix GeneChip Human Genome 
U133A and U133B arrays (U133 AB sample) for 163 
patients, and Affymetrix GeneChip Human Genome 
U133 plus 2.0 array (U133 plus sample) for the other 79 
patients. The MAS5 algorithm was used to normalize the 
expression data.
TCGA validation sample

The TCGA AML dataset includes 200 de novo 
patients [46]. As the TCGA dataset is very complex, only 
patients with cytogenetically normal, non-M3 subtype, 
induction chemotherapy based on cytarabine, and 
percentage of blast cells more than 50% were selected 
in our analysis. Gene expression level of this dataset 
was detected by Affymetrix GeneChip Human Genome 
U133 plus 2.0 array and normalized by MAS5 algorithm. 
The clinical information of TCGA AML dataset was 
downloaded from cBioPortal, a well-known tool used to 
extract and manage data from TCGA database [47].

Statistical analysis

Linear-regression analysis was performed to identify 
probes correlated with cytarabine IC50 in 96 blood cancer 
cell lines. Probes with P<0.05 were then selected for 
analysis in the GSE12417 dataset. Multivariate cox 
regression analysis (including age) was conducted to 
confirm whether the probes affect OS of CN-AML 
patients. Probes exhibited significance (p<0.05) in both the 
linear-regression analysis and the cox regression analysis 
in the same direction were screened. For example, if high 
expression of a probe was associated with high cytarabine 
IC50 value, the high expression of this probe must correlate 
with poor AML prognosis.

To obtain the chemo-sensitivity score for each 
patients, the expression values of the selected probes were 
standardized transformed (centered to a mean of 0 and then 
scaled the SD). Then, the univariate cox scores (which 
indicated the correlation between probe expression levels 

Table 3: Comparison of chemo-sensitivity score between genotypes of well-known somatic mutations affecting AML 
outcome

Mutation
Wild type Mutation p value

Score 
(Mean±SD)

N Score 
(Mean±SD)

N

CEBPA 0.612±3.561 48 -2.557±3.428 5 0.063

DNMT3A R882 -0.109±3.396 42 1.926±4.239 11 0.099

FLT3-IDT -0.185±3.705 36 1.369±3.355 17 0.148

IDH 0.780±3.849 39 -0.986±2.683 14 0.120

NPM1 -0.022±3.925 21 0.533±3.485 32 0.592

RUNX1 0.295±3.740 49 0.535±2.373 4 0.901

WT1 0.354±3.762 48 -0.076±2.379 5 0.804
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and OS of the AML patients in GSE12417) of the selected 
probes were acquired and used to calculate combined 
cox score for each probe by the following formula: 
CCSi=αi1×β1+αi2×β2, where CCSi was the combined 
cox score of probe i. Because GSE12417 included two 
samples, αi1 and αi2 represented the univariate cox score 
for U133 AB sample and U133 plus sample, respectively; 
while β1 and β2 were the proportion of U133 AB and 
U133 plus samples in GSE12417, respectively. To get 
the chemo-sensitivity score of each sample, the following 
formula was used: CSj= 1

ccsi ij
t

n
∑ γ×

=
, where CSj was the 

chemo-sensitivity score of patient j, n was the number of 
selected probes, and g i j was the expression level of probe 
i in patient j.

To obtain the Kaplan-Meier plots of chemo-
sensitivity score, patients were divided into favorable 
and unfavorable groups based on their chemo-sensitivity 
scores. The median was used as cut-point. Patients with 
chemo-sensitivity scores equal to or higher than the 
median were classified as unfavorable, the others were 
classified as favorable. Heatmap.2 command in gplots 
package was utilized for the cluster analysis. Gene 
Ontology (GO) and pathway analysis were conducted by 
the tool David 6.7 (https://david.ncifcrf.gov/). The GO 

analysis was performed based on biological process (BP), 
cellular component (CC) and molecular function (MF). 
The Kaplan-Meier plots were generated by Graphpad 5.0. 
All of the data arrangement and statistical analysis were 
conducted by using R (version 3.1.2). Methods flow chart 
of analysis process was shown in Figure 5.
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