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ABSTRACT

Competitive endogenous RNAs (ceRNAs) act as molecular sponges for microRNAs 
(miRNAs), and are associated with tumorigenesis in various cancers, including 
laryngeal cancer (LC). In this work, we constructed an LC-specific inflammatory gene-
related ceRNA network (IceNet). In IceNet, ceRNAs targeting inflammation-related 
genes tended to be network hubs. Additionally, the betweenness centralities of these 
hub ceRNAs were higher than those of the inflammation-related genes themselves, 
indicating that the hub ceRNAs in this study played critical roles in communication 
between IceNet molecules. Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes pathway analyses indicated that IceNet molecules are associated with 
multiple cancer-related functions and signaling pathways. Using cFinder software 
and survival analyses, we identified a potential prognostic module within IceNet 
that contains 18 mRNAs and a long non-coding RNA (lncRNA), and we effectively 
stratified patients into high- and low-risk subgroups with different survival outcomes, 
independent of patient age and tumor grade. This 18-mRNA and one-lncRNA 
module provides a novel mechanism for potentially improving LC patient prognostic 
predictions. Applying the module clinically to differentiate high- and low-risk patients 
could inform therapeutic decision making and ultimately improve patient outcomes. 
In addition, these results demonstrate the potential importance of IceNet hub ceRNAs 
in LC development and progression.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) 
is the sixth most common cancer in the world, with a 
mortality rate of ~50%. Approximately 600,000 HNSCC 
cases occur annually [1], of which ~25% are new laryngeal 
cancer (LC) cases [2]. Although surgical, radiotherapeutic, 
and chemotherapeutic technologies continue to improve, 
LC patient prognosis remains poor. Novel therapeutic 
targets are required to improve diagnosis and prognosis 
prediction, and ultimately survival outcomes, in LC 
patients.

As a critical component of tumor progression [3], 
cancer-related inflammation is now recognized as a cancer 
hallmark [4]. Recent efforts focused on the relationship 
between inflammatory cells and many types of cancers 
have revealed that inflammatory cells can occupy much 
of the tumor microenvironment, fostering tumor cell 
proliferation, survival and migration [3]. Signaling pathways 
that orchestrate innate inflammation, such as NF-kB, are 
activated in many cancers [5]. These findings provide 
insight into mechanisms of inflammation in promoting 
tumorigenesis. The present study focuses on novel LC 
prognostic biomarkers from the perspective of inflammation.
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MicroRNAs (miRNAs) are small, non-coding 
RNAs (~22 nucleotides long) that negatively regulate gene 
expression by targeting messenger RNAs (mRNAs). In cells, 
a pool of mRNAs, transcribed pseudogenes, long noncoding 
RNAs (lncRNA) [6], and circular RNAs (circRNA) [7, 8], 
together termed competitive endogenous RNAs (ceRNAs), 
competes for a complementary miRNA [9]. ceRNAs act as 
molecular sponges for miRNAs, targeting specific miRNA 
response elements (MREs) and ultimately de-repressing the 
miRNA target genes. ceRNAs have been linked to cancer 
through various oncogenes and tumor suppressors; for 
example, the pseudogene PTENP1 appears to compete with 
the important tumor suppressor gene PTEN for interaction 
with a miRNA, thus regulating PTEN protein levels [10].

In this study, we used a computational approach to 
construct an inflammatory genes-associated ceRNA network 
(IceNet) specific to LC. 109 LC patient gene expression 
profiles were obtained from the Gene Expression Omnibus 
(GEO) repository [11]. An LC-specific ceRNA network 
consisting of lncRNAs and mRNAs derived from expression 
data, along with experimentally validated miRNA-mRNA 
and miRNA-lncRNA interaction data, was constructed. To 
explore the roles of inflammatory genes and their ceRNAs 
in LC initiation and progression, we further constructed an 
LC-specific inflammatory gene-associated ceRNA network 
(IceNet). The results indicated that ceRNAs of known 
inflammatory genes tended to be network hubs. Additionally, 
the betweenness centralities (BC) of these hub ceRNAs were 
higher than those of the inflammatory genes themselves. 
Based on cFinder and survival analysis, we identified a 
potential prognostic module that contained 18 mRNAs and 
one lncRNA, H19, which is associated with tumor growth 
[12]. These analyses demonstrated that inflammatory gene-
associated ceRNA networks might be used to identify novel 
laryngeal cancer-specific molecular biomarkers.

RESULTS

Analysis of IceNet topological properties and 
functional enrichment in LC

We analyzed 109 LC patient mRNA and lncRNA 
expression profiles from the publicly available Gene 
Expression Omnibus (GEO) database, along with 
experimentally validated miRNA and lncRNA interaction 
networks, to identify functional miRNA-mediated 
ceRNAs. A total of 13,665 miRNA-mediated ceRNA 
interactions were identified, including 377 lncRNA-
mRNA and 13,288 mRNA-mRNA pairs. These functional 
interactions were integrated to build an LC-specific ceRNA 
network. We then extracted an inflammatory gene-related 
LC ceRNA network, IceNet, which included 935 nodes 
(including 190 inflammatory genes, 10 lncRNAs, and 
735 mRNAs) and 5415 edges (Figure 1A, Supplementary 
Table 1). To explore the topological properties of IceNet, 
degree distribution analysis was performed in all nodes, 
mRNAs, and inflammatory genes (Figure 1B–1D). We 

observed that the degree distribution of all IceNet nodes 
closely followed a power law distribution with R2=0.854 
(Figure 1B). Most nodes had relatively few interactions 
with others, and only a small portion of nodes had a large 
number of interactions. The topology analysis suggested 
that IceNet had a small-world organization.

We also performed a functional enrichment 
analysis of all IceNet mRNAs (including inflammatory 
genes and others) based on Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. IceNet mRNAs were enriched in 122 GO 
terms (false discovery rate (FDR) <0.05) mainly in seven 
functional clusters, including biosynthetic process, cell 
communication, cell cycle, cell death and apoptosis, 
cell proliferation, protein localization process, and RNA 
splicing (Figure 1E), along with 50 KEGG pathways 
(P<0.05), including cancer, focal adhesion, and several 
signaling pathways (Figure 1F, Supplementary Table 2). 
All enriched signaling pathways, including MAPK, NOD-
like receptor, Jak-STAT and p53 signaling, are known 
contributors to LC pathogenesis [13–16].

Hub inflammatory gene-specific ceRNAs played 
critical communication roles in IceNet

We found that inflammatory genes had lower degree 
and closeness centralities (CC) than their ceRNAs in the 
IceNet (p=2.42e-11 for degrees, Figure 2A; p=1.15e-4 for 
CC, Figure 2B; Wilcoxon rank sum test), indicating that 
inflammatory gene ceRNAs were central within IceNet.

We next analyzed the hub inflammatory gene 
ceRNAs in IceNet in greater detail. In previous studies, 
hubs were typically defined as the top 10–20% of nodes 
in the networks by degree [17–19]. Thus, we chose the 
top 10% of nodes based on highest degree as the hub 
components, identifying 94 total hub nodes, including 
11 inflammatory genes, and 83 ceRNAs (1 lncRNA 
and 82 mRNAs). The betweenness centralities of hub 
inflammatory gene ceRNAs were higher than those of the 
inflammatory genes themselves (p=2.45e-8, Figure 2C), 
indicating that these hub ceRNAs played critical roles in 
communicating with molecules in IceNet.

The lncRNA H19, in the IceNet hub-subnetwork 
(Figure 2D), reportedly promotes LC development 
and progression in combination with miR-148a-3p by 
competing with DNMT1 [20]. H19 interacted in IceNet 
with three hub inflammatory genes (LIMK1, PDE4D, 
SEMA7A). These observations demonstrated that hub 
inflammatory gene ceRNAs in IceNet were more likely to 
be essential for LC development and progression.

Identification of inflammatory network-based 
prognosis-associated module biomarkers in LC

Based on cFinder software analysis, nine modules 
were identified in IceNet with k-clique>10 (Supplementary 
Table 3). We evaluated each module’s ability to predict 
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LC patient survival using an unsupervised hierarchical 
clustering strategy. A module consisting of 18 mRNAs 
and one lncRNA (k-clique=12) (Figure 3A) separated the 
106 samples into two major groups (32 vs. 74 patients; 
a third group that included 3 samples was removed to 
generate the survival curve due to the limited number 
of samples) based on the expression patterns of the 
19 molecules (Figure 3B). Survival analysis showed a 
difference in disease-free survival (DFS) between these 
two patient subgroups (log-rank test p=2.8e-02; Figure 
3C), indicating the module’s prognostic potential, and the 
potential for each molecule to act as a candidate biomarker 
in the prediction of LC clinical outcomes. Notably, the 
only lncRNA in the module, H19, was an inflammatory 

hub lncRNA in the above analysis, and H19 alterations are 
associated with metastasis in lung, colorectal and bladder 
cancers, and multiple myeloma [21–23].

The 18-mRNA and one-lncRNA module in LC 
clinical outcome assessment

To further validate the prognostic performance of 
the 18-gene and one-lncRNA module, the module was 
fitted in a multivariate Cox regression model with DFS 
as the dependent variable and other clinical information 
as covariables. A risk score model of molecules in 
this module was constructed according to a linear 
combination of expression values weighted by the 

Figure 1: Topological properties of the inflammatory gene-associated ceRNA network (IceNet). A. The overview of IceNet. 
B-D. The degree distribution of all nodes, mRNA, and inflammatory genes in IceNet. Colors were assigned as the colors of the nodes in 
IceNet. E. The functional enrichment map of GO terms. Each node represented a GO term, which was grouped and annotated by GO 
similarity. Each edge represented whether there was any shared gene between two GO terms. Node size represented the number of genes 
in GO term. Color intensity of nodes was proportional to enrichment significance. Edge thickness represented the number of shared genes 
between two GO terms. Edge length was automatically arranged so that higher similar gene-sets placed closer together. F. Significantly 
enriched KEGG pathways of mRNAs in IceNET.
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Figure 2: Comparison analysis of topological properties of ceRNAs and inflammatory genes in IceNet. A-B. Box plot 
of degree and CC of ceRNAs and inflammatory genes in IceNet. C. Box plot of BC of hub ceRNAs and inflammatory genes in IceNet. D. 
Hub-subnetwork of IceNet.

Figure 3: Overview of 18-mRNA and one-lncRNA module and its prognostic ability for assessing clinical outcome of 
laryngeal cancer. A. Overview of the 18-mRNA and one-lncRNA module. B. Hierarchical clustering heatmap and dendrogram of patients 
based on the expression patterns of module molecules in laryngeal cancer. The genes and lncRNA in red represented cancer-associated 
genes and lncRNA. The genes in black represented the potential cancer-associated genes. C. KM survival curves of two subgroup patients 
resulted from the unsupervised hierarchical clustering in laryngeal cancer. P value was calculated using the log-rank test.
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regression coefficients derived from multivariate Cox 
regression analysis (Cox regression coefficients are listed 
in Supplementary Table 4). Molecules with larger Cox 
regression coefficient absolute values, such as SNTB2, 
have greater potentials to influence patient mortality risk. 
All patients were randomly divided into two subsets: 
training (n=54) and test (n=55). In the training dataset, 
patients were divided into high- (n=27) and low-risk 
groups (n=27) using the median risk score (-0.09) as 

the cut-off. Patients in the high-risk group had shorter 
survival times than those in the low-risk group (log-rank 
p=3.27e-2, Figure 4A). This module was further validated 
in the independent test dataset (log-rank p=2.17e-2, Figure 
4B) and the entire dataset (log-rank p=2.39e-3, Figure 4C).

After further adjusting for age and grade, univariate 
analysis indicated that this module, as an independent risk 
factor, was associated with LC patient overall survival in 
the training (Hazard Ratio (HR)=2.72, 95% CI: 1.68–4.39, 

Figure 4: Survival curves and risk score analysis of 18-mRNA and one-lncRNA module in training, test, and entire 
datasets, respectively. A-C. KM survival curves for disease free survival of training, test and entire datasets patients respectively with 
high and low risk scores. P value was calculated using the log-rank test. D-F. Risk score analysis of the module in training, test and entire 
datasets patients respectively. G-I. Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) value of the 
ROC curve indicating the sensitivity and specificity of the module for survival prediction.
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p=4.47e-5), test (HR=3.15, 95% CI: 1.12–8.85, p=2.93e-2), 
and whole (HR=1.20, 95% CI: 1.09–1.33, p=4.08e-4) 
datasets (Table 1). The distribution of gene risk scores and 
the survival statuses of the three datasets are shown in Figure 
4D–4F. Patients with high-risk scores tended to present 
poorer clinical outcomes compared to patients with low-risk 
scores. A time-dependent receiver operating characteristic 
(ROC) curve analysis was performed to evaluate sensitivity 
and specificity for module survival prediction in the entire 
GEO dataset. The module achieved area under the curve 
(AUC) values of 0.731, 0.613, and 0.614 in the training, 
test, and entire datasets respectively, revealing a superior 
prediction performance (Figure 4G–4I).

In addition, multivariate analysis was performed 
to investigate the independence of the module with 
respect to the other clinical factors. The results 
demonstrated that designation of high- and low-risk 
groups remained statistically significantly independent 
of other clinical factors in training (HR=2.83, 95% CI: 
1.65–4.84, p=1.56e-4), test (HR=3.34, 95% CI: 1.18–9.43, 
p=2.30e-2), and entire (HR=1.20, 95% CI: 1.08–1.33, 
p=4.22e-4) datasets (Table 1). Data stratification analysis 
results in GSE27020 indicated that the module was age 
and grade independent, as it performed equally well in 
the two patient age groups (log-rank test p=5.70e-2 for 
patients >60 years of age, and p=1.10e-2 for patients <60 
years of age) and in patients with grades G1 or G2 disease 
(log-rank test p=1.68e-2 for G1 group and p=1.00e-3 
for G2 group) (Figure 5A–5D). Taken together, our data 
suggest that the 18-mRNA and one-lncRNA module may 
be a useful prognostic indicator in LC.

DISCUSSION

Laryngeal cancer (LC) originating from the head 
and neck region is the second most common upper-
aerodigestive cancer [24, 25], and patient prognosis remains 
poor. The ceRNA hypothesis, which states that ceRNAs 
act as molecular sponges for miRNAs to de-repress the 
miRNA target genes, has been proposed as a novel post-
transcriptional gene expression regulatory mechanism [26]. 
In this study, on the basis of the ceRNA hypothesis and the 
fact that inflammation likely promotes LC, we used LC 
patient lncRNA and mRNA expression profiles combined 
with experimentally validated miRNA-target interactions to 
construct an inflammatory gene-associated ceRNA network 
(IceNet). This network consisted of 935 molecules (including 
190 inflammatory genes, 10 lncRNAs and 735 mRNAs) and 
5,415 interactions. IceNet is a novel method for exploring 
the roles of inflammatory gene-associated ceRNA networks 
in LC initiation and progression. To investigate the IceNet 
structure and the function of its components, we analyzed the 
topological properties of the inflammatory genes and their 
ceRNAs within the network. We found that inflammatory 
genes had lower degrees and CCs than their ceRNAs, 
indicating that these ceRNAs were central to IceNet. BCs 
of hub inflammatory gene ceRNAs, on the other hand, were 
higher than those of the inflammatory genes themselves, 
indicating that these ceRNAs played critical communication 
roles with molecules in IceNet.

Furthermore, we identified a potential prognostic 
module within IceNet that included 18 mRNAs and one 
lncRNA. The module identified high- vs. low-risk patients 

Table 1: Univariate and multivariate Cox regression analysis of the 18-mRNA and one-lncRNA module in LC 
patients
Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value
Training dataset
18-mRNA and 
one-lncRNA 
module

2.72 1.68-4.39 <0.0001 2.83 1.65-4.84 <0.0001

Grade 1.27 0.590-2.71 0.546 0.837 0.319-2.20 0.719
Age 0.992 0.938-1.05 0.793 1.02 0.941-1.10 0.666
Test dataset
18-mRNA and 
one-lncRNA 
module

3.15 1.12-8.85 2.93e-2 3.34 1.18-9.43 2.30e-2

Grade 0.824 0.426-1.59 0.565 0.731 0.385-1.39 0.336
Age 1.04 1.00-1.09 5.20e-2 1.04 0.997-1.09 6.60e-2
Entire dataset
18-mRNA and 
one-lncRNA 
module

1.20 1.09-1.33 <0.0001 1.20 1.08-1.33 <0.0001

Grade 1.00 0.608-1.65 0.999 0.902 0.541-1.51 0.694
Age 1.02 0.989-1.06 0.192 1.02 0.985-1.06 0.249
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independent of clinical factors, such as age and grade. The 
potential targets of this module, i.e. the first neighbors of 
the 18-mRNA and one-lncRNA, were associated with 
different types of cancers, including LC. For example, 
AMOT appears to regulate breast cancer cell proliferation 
and invasion [27]. By regulating the miR-107/CDK6 
interaction, the lncRNA NEAT1 may promote laryngeal 
squamous cell cancer [28]. Encoded by SPAM1, PH-20 
was upregulated in primary LC tissues, and may be an LC 
prognostic marker [29].

Additionally, several of the 19 molecules in the 
module themselves are reportedly associated with 
various cancers. The lncRNA H19 may promote glioma 
development and invasion [12]. A balance of acetylation 
and deaceylation by ATAT1/HDAC6 enzymes regulates 
breast cancer cell migration and invasion [30]. BMP8B 
mediated pancreatic cancer cell survival and regulated 

pancreatic cancer progression [31]. CRY2 may promote 
breast cancer aggressiveness, possibly via epigenetic 
modifications [32], and its degradation promotes 
chemoresistance in colorectal cancer [33]. LIMK1 
and LIMK2 are important for pancreatic cancer cell 
metastasis and tumor cell-induced angiogenesis [34].

In conclusion, the 18-mRNA and one-lncRNA 
module identified in our study provides a novel mechanism 
for potentially improving LC patient prognostic 
predictions. Applying the module clinically to differentiate 
high- and low-risk patients could inform therapeutic 
decision-making and ultimately improve patient outcomes. 
In addition, our identification of potential LC prognostic 
biomarkers based on an inflammatory gene-related, 
ceRNA network analysis demonstrated the potential 
importance of hub ceRNAs in disease development and 
progression.

Figure 5: Stratification analysis of all patients based on age and grade. A-B. KM survival curves of patients stratified by age 
based on the 18-mRNA and one-lncRNA module (age < 60, N = 35; age >= 60, N = 74). C-D. KM survival curves of patients stratified by 
grade based on the 18-mRNA and one-lncRNA module (G1, N = 42; G2, N = 49).
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MATERIALS AND METHODS

Data collection

Laryngeal cancer patient datasets, corresponding 
clinical information, and mRNA expression profiles were 
collected from the publicly available GEO database. After 
removing patients without disease-free survival (DFS) 
information, a total of 109 patients were selected from 
the GSE27020 [35] dataset on the Affymetrix HG-U133A 
platform.

lncRNA levels from the Affymetrix-based patient 
expression profiles were obtained by repurposing the 
microarray probes using a previously described method 
[36]. First, Affymetrix HG-U133A probesets from the 
Affymetrix website (http://www.affymetrix.com) were 
re-mapped to the human genome (GRCh38/hg38) 
using SeqMap33 with no mismatch [37]. Second, the 
chromosomal positions of those probes, which were 
uniquely mapped to the human genome, were matched 
to the chromosomal positions of lncRNAs derived from 
GENCODE (release 21, GRCh38) [38]. A total of 909 
probes (or probe sets) and 649 corresponding lncRNA 
genes were obtained (Supplementary Table 5). Multiple 
probes (or probe sets) that mapped to the same lncRNA 
were combined using the median expression value of the 
probes (or probe sets).

Human miRNAs and targets genes were collected 
from miRTarBase (version 6.1) [39], which provides 
high quality experimentally validated miRNA-target 
interaction relationships manually curated from 
published experiments. A total of 322,388 non-redundant 
miRNA-target interactions were used in our study. The 
experimentally validated miRNA-lncRNA interactions 
were downloaded from starBase v2.0 [40], including 
10,212 miRNA-lncRNA interactions.

A list of Gene Ontology (GO) [41] terms related to 
the inflammatory response were obtained from a previous 
study [42]. The genes annotated to these inflammatory-
associated GO terms were obtained from the AmiGO2 tool 
[43] of the Gene Ontology Consortium.

Construction of inflammatory gene-related 
ceRNA network

Using the experimentally supported miRNA-mRNA 
and miRNA-lncRNA interaction data, we primarily 
followed the two principles listed below to identify 
inflammatory gene-related ceRNAs (IceRNAs, including 
mRNA-mRNA and mRNA-lncRNA pairs) in LC: trans-
regulatory ceRNA crosstalk increased with high miRNA 
regulatory similarity and ceRNA pair co-expression. First, 
a hypergeometric test was executed for each possible 
ceRNA pair separately. For each given ceRNA pair A and 
B, we identified miRNAs that regulated them both (A 

∩ B). Then, the probability for A and B was calculated 
according to
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where N was the number of all miRNAs, K and M 
were the total number of miRNAs regulated by A and 
B respectively, and x was the number of miRNAs 
shared between the pairs. Only pairs regulated by at 
least one mutual miRNA were analyzed in our study. 
Candidate ceRNA pairs with P-values <0.05 were used 
for the subsequent analysis. Second, to further identify co-
expressed ceRNA pairs, Pearson correlation coefficients 
were calculated based on expression of the pairs:

σ σ
ρ =  cov(X,Y)

X ,Y

X Y

  

(2)

where cov (X, Y) is the covariance of variables X and Y, 
and sX  and sY  are the standard deviations for X and Y, 
respectively. To reduce false positive rates, only ceRNA 
pairs with Pearson correlation coefficient >0.5 were 
included in further analyses. This threshold was used in a 
previous study to identify functional activated (competing) 
ceRNA networks across 12 cancers [44].

Based on the two criteria above, a well-correlated 
ceRNA network was constructed. The first neighbors of 
inflammatory genes in the ceRNA network were then 
selected as a subnetwork using Cytoscape 3.2.0 [45]. First 
neighbors were defined as the nodes directly interacting 
with inflammatory genes. Then, the IceNet was built by 
extracting the maximal connected components of the 
subnetwork.

Network and functional enrichment analysis

Topological properties, including degree, 
betweenness centrality (BC), and closeness centrality 
(CC), were used to decipher the structure of IceNet and 
to identify “important” molecules. Degree was used to 
determine the number of neighbors for each node. BC 
represented the key role of a node in communication 
and information diffusion [46]. Node CC measured local 
cohesiveness, i.e. how close a node is to other nodes. 
IceNet visualization and topological properties were 
analyzed using Cytoscape 3.2.0 [45] and the R package, 
igraph. Module detection was accomplished using the 
cFinder algorithm [47], and identification and visualization 
of overlapping dense groups of nodes was done using the 
Clique Percolation Method (CPM) [48].
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Genes were functionally annotated to identify 
enriched pathways based on DAVID Bioinformatics 
Resources (http://david.abcc.ncifcrf.gov/, version 6.7) 
[49]. Functional categories were visualized and clustered 
using the EnrichmentMap plugin in Cytoscape 3.2.0 [50]. 
Nodes and distances between nodes were automatically 
generated to place higher similarity gene-sets closer 
together. These clusters and their biological functions 
could be easily identified manually.

Survival analysis

A risk score was calculated based on expression of 
each molecule in IceNet weighted by its prognostic power 
from a multivariate Cox regression analysis:

 

∑=
=

RiskScore  r Exp(i)
i 1

n

i

 

(3)

where n is the number of prognostic components, Exp(i) 
is the expression of prognostic component I, and ri  is 
the estimated regression coefficient of component i in 
the multivariate Cox regression analysis. The survival 
predictive ability of the module was then assessed based 
on its ability to separate patients into two subgroups by the 
mean risk score value. The Kaplan-Meier (KM) method 
was used to estimate the survival curves between high- 
and low-risk groups. Statistical significance was evaluated 
using the two-sided log-rank test. In addition, we evaluated 
the sensitivity and specificity of the module for survival 
prediction using receiver operating characteristic (ROC) 
curve analysis and the area under the ROC curve (AUC).
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