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ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type 
of cancer. The tumor inflammatory microenvironment regulates almost every 
step towards liver tumorigenesis and subsequent progression, and regulation of 
the inflammation-related signaling pathways, cytokines, chemokines and non-
coding RNAs influences the proliferation, migration and metastasis of liver tumor 
cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-
mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. 
Emerging evidence points to inflammation-related microRNAs as crucial molecules 
to integrate the complex cellular and molecular crosstalk during HCC progression. 
Thus understanding the mechanisms by which inflammation regulates microRNAs 
might provide novel and admissible strategies for preventing, diagnosing and treating 
HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and 
elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 
and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-
suppressing microRNAs and detail how they regulate HCC initiation and progression 
and collaborate with other critical modulators in this review.

INTRODUCTION

Resolving inflammation is a component of the 
body's immune responses to external or internal stimuli 
that eliminates the aggressor and restores the tissue 
physiology. In contrast to resolving inflammation, non-
resolving inflammation is a major driver of disease. It 
becomes clear that perpetuation of inflammation may lead 
to an inherent health risk, as the chronic inflammation 
can progressively damage the tissues [1]. Clinical and 
epidemiological studies have suggested that about 15% 
of human cancers are associated with chronic infection 
and inflammation [2]. Hepatocellular carcinoma (HCC) 
is the fifth most commonly diagnosed type of cancer [3]. 
Inflammation is central to the pathogenesis of chronic liver 
injury and has been proposed as a risk factor for HCC. 

In 2011, 8% of the world’s population was chronically 
infected with hepatitis B or C viruses (HBV or HCV), thus 
increasing the risk of HCC development [4]. Up to 5% of 
HCV patients will develop HCC in their life-span [5].

The current understandings which concern 
HCC initiation and progression involve the epithelial-
mesenchymal transition (EMT) [6-8], cancer stem cells 
(CSCs) [3, 9, 10] and inflammatory microenvironment 
hypotheses [11, 12]. As known, HCC usually progresses 
through four stages: cell degeneration, fibrosis, cirrhosis 
and tumor formation. Noteworthy, inflammation is 
involved in all of the stages [7]. During HCC initiation, 
cells acquire mutations that lead to inactivation of 
tumor suppressor genes and/or activation of oncogenes, 
thereby providing mutant cells with a growth and 
survival advantage [13]. However, these initial genetic 
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or epigenetic changes are not sufficient for a complete 
neoplastic progression, suggesting that tumor promotion 
and progression might depend on consistently supportive 
signals that are likely to be released from tumor 
inflammatory microenvironment.

In this review, we will describe the underlying 
mechanisms driving liver tumorigenesis and the 
involvement of key inflammation related signaling 
pathways and microRNAs (miRNAs), which might 
facilitate to hypothesize about the etiology of HCC, 
as well as to develop the diagnosis and therapies for 
hepatocarcinogenesis.

INFLAMMATION-RELATED EMT

EMT is involved in several steps of HCC initiation 
and progression. On one hand, hepatic stellate cells 
(HSCs), hepatocytes and some other cells undergo EMT 
in response to liver injuries and inflammatory stimuli 
to promote deposition of extracellular matrix (ECM), 
leading to liver fibrosis; on the other hand, primary HCC 
cells undergo EMT to gain invasive, migratory and stem 
cell-like properties allowing them to disseminate and 
propagate at distant sites [7]. EMT is mediated by genetic 
and epigenetic modifications in the cells. For instance, 
EMT activates transcription factors such as Snail, Twist 
and ZEB, down-regulating intercellular junction proteins 
such as E-cadherin, CAR, claudins, occluding and 
ZO-1 and up-regulating mesenchymal-related proteins 
such as Vimentin, Fibronectin, and N-cadherin [6, 8]. 
Meanwhile, miRNAs such as miR-155 and miR-200c are 
also capable of regulating EMT and linking inflammation 
with HCC initiation, which will be discussed later. 
Noteworthy, EMT requires cells responsive to EMT-
promoting stimuli and an extracellular microenvironment 
able to provide cytokines and growth factors capable of 
inducing EMT. Furthermore, a number of publications 
point out that the inflammatory microenvironment 
enriched in cytokines, chemokines and growth factors as 
the optimal microenvironment to induce EMT. Among 
them, the transforming growth factor-β (TGF-β) has 
been unveiled as the predominant regulator of EMT.

The pleiotropic cytokine TGF-β exerts context-
dependent actions on both EMT and hepatocarcinogenesis 
[14]. On one hand, TGF-β signaling may inhibit HCC 
development in an early stage of tumorigenesis; on 
the other hand, TGF-β supports the progression and 
maintenance of advanced HCC [15]. EMT can be activated 
through canonical or non-canonical manners downstream 
of TGF-β receptors (Figure 1). In the canonical pathway, 
TGF-β binds to the type I and type II Serine/Threonine 
kinase receptors (TβRI and TβRII) on the cell surface. 
The activated TβRI phosphorylates specific receptor-
regulated R-Smad proteins, Smad2 and Smad3, which 
assemble into heteromeric complexes with Co-Smad4 
[16, 17]. This pathway regulates the expression of EMT 

transcription factors including Snail, ZEB and Twist. In 
the non-canonical pathway, TGF-β stimulates various 
alternative signaling pathways such as mitogen-activated 
protein kinase (MAPK), small GTPases, phosphoinositide 
3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) to 
regulate expression of EMT-related genes (Figure 1). Under 
inflammatory microenvironment, TGF-β may accelerate 
the progression of EMT. For example, the aberrant TGF-β 
and interleukin-6 (IL-6) axis was reported to mediate 
selective and adaptive mechanisms of resistance to 
molecular targeted therapy in lung cancer [18]. In addition, 
a number of studies have uncovered several TGF-β-
independent pathways involved in EMT activation in HCC 
and other cancers, including the recently reported role of 
phosphorylation of eukaryotic initiation factor-4E (eIF4E) 
to promote EMT and metastasis via translational control 
of Snail and matrix metalloproteinase (MMP)-3 [19]. 
Additionally, Hedgehog signaling-regulated hypoxia was 
demonstrated to induce EMT and invasion in pancreatic 
cancer cells [20]. Therefore, to interfere with EMT by 
intervening in the mechanisms by which the inflammatory 
microenvironment and TGF-β signaling cooperate, might 
be considered as a therapeutic approach for HCC.

CANCER STEM CELLS AND 
INFLAMMATION NICHE

In the early steps of HCC progression, most of the 
tumor cells are sensitive to radiotherapy and chemotherapy. 
However, increasing evidences support the idea that a 
rare population of cells which exhibit self-renewal and 
tumorigenic potential called cancer stem cells (CSCs) are 
present in HCC, and perhaps all types of tumors [10, 21]. 
Actually, epidemiological data suggest that up to 40% 
HCCs develop from clonal populations originated from 
hepatic CSCs [22, 23]. Such cells are believed to be the 
only cells that exist in the liver for sufficient time to adopt 
the necessary genetic or epigenetic changes required for 
neoplastic development [24]. However, determination 
of the origin and spatio-temporal dynamics of liver 
CSCs remains to be accomplished. With this regard, 
hepatic tissue stem cells, or liver progenitor cells (LPCs), 
which are required to modulate liver development and 
homeostasis, share many similarities with liver CSCs 
[25]. Therefore one can speculate that LPCs can convert 
into CSCs under a certain tumorigenic microenvironment, 
especially the inflammatory microenvironment. In fact, 
a recent study showed that the malignant progression of 
LPCs might serve as a pre-malignant marker for HCC 
[5]. These LPCs are induced by diethylnitrosamine 
(DEN), a commonly accepted carcinogenic compound for 
liver, and the proliferation of LPCs in liver depends on 
autocrine IL-6 signaling [5]. LPCs derive from the canal 
of hering and subsequently differentiate into hepatocytes 
or cholangiocytes under certain conditions [26]. Upon 
injury, LPCs revive and expand from the canal of hering 
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via a process called “Ductular Reaction” [27]. However, 
chronic liver injuries and associated regeneration may 
result in hepatocarcinogenesis. Therefore, identification 
of markers to characterize LPCs/CSCs in liver and study 
on signaling pathways associated with LPCs/CSCs fate 
determination, are critical to control HCC. Currently a 
number of markers, such as CD13, CD133, CD24, CD44, 
CD90, cytokeratin 19 (CK19), OV6, α-fetal protein 
(AFP) and epithelial cell adhesion molecule (EpCAM) [3, 
5, 26, 28, 29] (also see Table 1) have been proposed to 
identify LPCs/CSCs. Yi Tang and colleagues reported that 
normal LPCs are characterized by the positive expression 
of octamer-binding transcription factor 4 (Oct4), signal 
transducer and activator of transcription 3 (STAT3), 
embryonic liver fodrin (ELF) and TβRII, whereas hepatic 
CSCs express Oct4 and STAT3 but lack ELF and TβRII 
[21, 30]. Meanwhile, signaling pathways that regulate 
the LPCs/CSCs fate have been suggested, such as bone 
morphogenetic protein (BMP), fibroblast growth factor 
(FGF), Wnt, oncostatin M (OSM), TGF-β, Jagged1/Notch, 
IL-6/STAT3, and hepatocyte growth factor (HGF)/c-
Met [3, 31]. Moreover, expression patterns of miRNAs 
in EpCAM+ hepatic CSCs differ from that in LPCs, and 
miRNAs such as Let-7 family members, miR-125a/b 
and miR-452 are also involved in determination and 
maintenance of LPCs/CSCs [79-81]. It is worth noting that 
a series of intriguing questions have not been addressed. 
For example, HCC may arise from LPCs/CSCs, and 
chronic liver injury may cause HCC. As aforementioned, 
LPCs proliferate in response to liver injury to contribute 
to liver regeneration. Therefore, whether regenerating 
or tumorigenic cells respond to liver injury in different 
manners, for example by inducing either cell proliferation 
or apoptosis is still under debate. In this sense, one 
could benefit from making liver CSCs sensitive to death 
signaling under chronic liver injury.

INFLAMMATORY 
MICROENVIRONMENT

The inflammation-tumorigenesis cascade is probably 
orchestrated by various types of cells within the local 
inflammatory microenvironment and the pro- and anti-
inflammatory molecules they produce. In the process 
of liver tumorigenesis, tumor-associated macrophages 
(TAMs) play a pivotal role between tumor cells and 
stromal cells [11, 82]. Macrophages derive from peripheral-
blood monocytes and are recruited to the tumor sites by 
chemotactic factors such as chemokine CC motif ligand 
2 (CCL2) and macrophage colony-stimulating factor 
(M-CSF). Macrophages can be broadly classified as M1 
and M2 types according to their polarity (Figure 2). M1, 
with powerful antigen presentation potential, can rapidly 
respond to microbial products and interferon γ (IFN-γ). 
Then, they overexpress IL-12 and other pro-inflammatory 

factors that activate Th1 cytotoxic cells that target microbes 
and tumor cells by producing reactive oxygen species 
(ROS) and nitric oxide (NO) [83]. In contrast, monocytes 
differentiate to M2 when exposed to IL-4, IL-10, IL-13, 
the ligands of Toll-like receptor (TLR) and glucocorticoid. 
M2 are weak in antigen presentation potential and secrete 
IL-10, TGF-β and other chemokines such as CCL17, 
CCL22 and CCL24. M2 exert multiple functions, e.g., 
activating Th2 cells and promoting angiogenesis, tissue 
remodeling and recovery [12, 83]. TAMs within the 
tumor usually belong to the M2 type and clinical studies 
imply that increase of M2 type is related to angiogenesis, 
tumor metastasis and poor prognosis [12, 84]. Resident 
macrophages in liver, called Kupffer cells, appear essential 
for sensing liver injury and initiating inflammatory 
responses in HCC. For example, Xu and Tian reported that 
Kupffer cell-derived IL-10 plays a key role in maintaining 
humoral immune tolerance in HBV-persistent mice [85]. 
Moreover, recent observations in animal models revealed 
that hepatic macrophages are a remarkably heterogeneous 
population of immune cells that play diverse functions 
in homeostasis, disease progression, and regression from 
injury [86]. We can infer that besides Kupffer cells, other 
populations of immune cells such as dendritic cells, 
lymphocytes and natural killer cells may be involved in the 
initiation and progression of liver tumorigenesis as well.

Interestingly, liver tumorigenesis is also 
characterized by an abnormal secretion of pro-
inflammatory cytokines, which further favor an 
inflammatory microenvironment. This is supported by a 
shift from the Th1 cell related cytokines (IL-4, IL-8, IL-
10 and IL-5) to Th2 cell related cytokines (IL-1, IL-2 and 
tumor necrosis factor α[TNF-α]) [87, 88]. Other studies 
found that expression patterns of inflammatory cytokines 
differ among HCC cell lines. For example, in HepG2 
cells, IL-1, IL-2, IL-4, IL-5, IL-6 and IL-8 expression 
are significantly lower than those in Huh7 cells [89]. In 
addition, inflammation-related chemokines and their 
receptors contribute to the pathogenesis of HCC in 
different aspects, such as promoting proliferation of cancer 
cells, fine-tuning the inflammatory microenvironment in 
the tumor, favoring evasion from immune surveillance 
and inducing angiogenesis and tumor metastasis [90]. 
Therefore, to block immune response in the liver such as 
using neutralizing antibodies to neutralize inflammatory 
cytokines or their receptors might be considered as a 
promising strategy to dampen liver tumorigenesis.

INFLAMMATION-RELATED 
SIGNALING PATHWAYS

IL-6/STAT3 signaling pathway

IL-6 plays a pivotal role in regulating multiple 
physiological and pathologic processes. For example, IL-6 
is one of the early cytokines secreted during an acute phase 
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Figure 1: The dominating interconnected signaling pathways and transcriptional network that promote EMT during 
tumorigenesis. TGF-β signaling pathway is initiated by binding of TGF-β ligands to TβRII and TβRI. The Smad pathway is mediated by 
phosphorylation of TβRI by TβRII and subsequent activation of Smad2/3. Activated Smad2/3 form complexes with Smad4 and translocate 
into the nucleus. The Non-Smad pathway takes place through multiple intracellular signaling cascades such as Par6-Smurf1-RhoA, RAS-
RAF-MEK-ERK and PI3K/Akt pathway. Other signaling pathways, such as Wnt, Notch and HIF-1α, are also involved in EMT. Wnt 
signaling promotes EMT by inhibiting GSK3β to stabilize β-catenin, which translocates to the nucleus with LEF/TCF. The interaction 
between Delta/Jagged and its receptor Notch induces the release of Notch ICD. Hypoxia in the tumor microenvironment promotes EMT 
through HIF-1α and crosstalks with Wnt and Notch pathways. Activation of above pathways induces the expression of master regulators 
of EMT including Snail1/2, Twist and ZEB1/2 families, which can initiate a coordinated transcriptional network leading to suppression of 
epithelial marker and up-regulation of mesenchymal marker expressions.

of inflammatory response to promote liver regeneration, 
partly by up-regulating the expression of the fibrinogenic 
genes in the liver [86, 91]. IL-6 also induces insulin 
resistance in liver by activating STAT3 and stimulating 
the transcription of its target gene suppressors of cytokine 
signaling 3 (SOCS3) [92]. In addition, IL-6 secretion by 
stromal cells has been reported to induce the formation 
of cancer stem-like cells [93], in a mechanism involving 
the up-regulation of Oct4 [94]. Furthermore, a positive 
feedback loop between IL-6 and NF-κB was elucidated 
in the recent years [95]. Among STAT members, the most 
studied is STAT3 which is closely associated with HCC. 
Upon IL-6 stimulation, the JAK/STAT3 signal transduction 
cascade becomes activated, which leads to phospho-
STAT3 translocation into the nucleus and trans-activation 
of its target genes, including protein inhibitors of activated 

STATs (PIAS), SOCS and SH2-containing phosphatases 
(SHP), which are implicated in cell growth, proliferation, 
differentiation and survival [96]. Furthermore, STAT3 
regulates many genes directly involved in the progression 
of HCC: (1) inflammation related genes: IL-6, IFN, gp130, 
NF-κB; (2) cell survival related genes: Bcl-xL, Bcl-2, 
Survivin, XIAP; (3) angiogenesis related genes: vascular 
endothelial growth factor (VEGF), FGF, platelet derived 
growth factor (PDGF); (4) cell proliferation related genes: 
Cyclins, p21; (5) tumor invasion and metastasis related 
genes: cyclooxigenase (COX)-2/MMPs; (6) oxidative 
stress related gene: CYP450 [97]. Notably, chronic 
IL-6 stimulation was shown to induce tumorigenesis 
in liver [5, 98, 99], via a mechanism that might imply 
the over activation of STAT3 (Figure 3). Additionally, 
plenty of miRNAs can regulate or be regulated by IL-6/
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Table 1: Putative biomarkers of liver CSCs

Biomarker Location Biological functions in liver CSCs Characteristics of marker-positive CSCs 
(Sources)

Refs

ABCG2 Cell surface
Determinant of the SP phenotype; 
extruding a variety of compounds 

such as anticancer agents

Chemoresistant (PLC5, HepG2, Huh-7, 
MHCC-97L, Hep3B; Human HCC tissue) [32-34]

AFP Cytoplasm; 
secreted

Serum transport protein; binding 
numerous molecules (fatty acids, 
estrogen, steroids); modulating 
immune function, metabolism

Poorly differentiated, anti-apoptosis, cell cycle 
progression, tumorigenic, invasive, metastatic 
(Huh-1, HepG2, Hep3B, SK-Hep-1; Human 

HCC tissue; female athymic nude mice)

[35-38]

ALDH1 Cytoplasm

Catalyzing the oxidation of 
endogenous and exogenous 

aldehydes; functional marker of 
CSCs; cellular detoxification

Abnormal metabolism, chemoresistant, 
tumorigenic (H2P, H2M, Hep3B, QGY-7701, 

QGY-7703, BEL7402, HepG2, PLC8024, 
Huh-7; SCID mice)

[39, 40]

CD13 Cell surface
Reducing ROS-induced DNA 
damage; protecting cells from 

apoptosis

Tumorigenic, chemoresistant (Huh-7, PLC/
PRF/5; Human HCC tissue; NOD/SCID mice) [41-43]

CD24 Cell surface Mediating Twist2/STAT3/Nanog self-
renewal pathway

Tumorigenic, chemoresistant, metastatic 
(HLE, HepG2, MHCC-97L, MHCC-LM3, 
MHCC-97H, Huh-7, PLC/PRF/5, Hep3B, 

BEL7402; Human HCC tissue; NOD/SCID 
mice)

[44-46]

CD44 Cell surface

Reducing ROS level via stabilizing 
xCT; regulating TGF-β-mediated 

mesenchymal phenotype; mediating 
c-Met-PI3K-AKT signaling cascade

Tumorigenic, invasive, circulating (PLC/
PRF/5, Huh-7, HLE, Huh-1, Hep3B, HepG2, 
SK-Hep-1, MHCC97-H, HLF; Human HCC 

tissue; Transgenic mice, Nude mice)

[47-51]

CD90 Cell surface Involved in cell-cell, cell-matrix 
interactions

Tumorigenic, invasive, metastatic, circulating, 
chemoresistant, proliferation (Hep3B, MHCC-
97L/H, Huh-7, SMMC7721, SK-Hep-1, PLC/
PRF/5; NOD/SCID mice; Human HCC tissue)

[52-54]

CD133 Cell surface

Supporting tumor growth and 
survival; mediating Akt/PKB pathway 

and Neurotensin/Interleukin-8/
CXCL1 signaling

Tumorigenic, chemoresistant (Hep3B, Huh-7, 
PLC8024, HepG2, SK-Hep-1; Human HCC 

tissue; SCID mice)

[28, 55-
58]

CK19 Cytoplasm Skeleton protein
Tumorigenic, invasive, metastatic, 

chemoresistant (Huh-7, PLC/PRF/5, Hep3B; 
Human HCC tissue; NOD/SCID mice)

[59-61]

DCLK1 Whole cell
Catalyzing tubulin polymerization 
into microtubules; regulating HCV 

replication

Tumorigenic, invasive, metastatic (Huh-7; 
Athymic nude Balb/c mice; Human HCC 

tissue)
[62, 63]

DLK1 Cell surface Not reported

Tumorigenic, chemoresistant (PLC/PRF/5, 
QGY7701, SK-Hep-1, YY-8103, SMMC7721, 

HepG2, Hep3B, Huh-7, SNU398, WRL68, 
MHCC-97L, MHCC-LM3; NOD/SCID mice)

[64]

EpCAM Cell surface
Cell-cell adhesion; maintenance of 

a pluripotent state; regulation of 
differentiation, migration and invasion

Tumorigenic, invasive, chemoresistant, 
circulating (Huh-7, Huh-1, Hep3B, PLC/
PRF/5, SK-Hep-1, HLE, HLF; Human 

HCC tissue)

[37, 38, 
52, 65-67]

(Continued )
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Biomarker Location Biological functions in liver CSCs Characteristics of marker-positive CSCs 
(Sources)

Refs

KIAA1114 Cell surface Not reported
Tumorigenic, metastatic (Hep3B, SK-Hep-1, 
Huh-7, HepG2, SH-J1, SNU475; Beige/nude/

XID mice; Human HCC tissue)
[68]

Lin28B Nucleus 
(main)

Regulating the transition between 
pluripotency and committed cell 

lineages

Metastatic, poorly differentiated, circulating 
(PLC/PRF/5, Huh-7, HepG2; Human HCC 

tissue; Transgenic mice)
[69-71]

OV6 Cell surface Not reported

Tumorigenic, chemoresistant, invasive, 
metastatic (Huh-7, SMMC7721, HepG2, PLC/

PRF/5, Hep3B; Human HCC tissue; NOD/
SCID mice)

[72-74]

SALL4 Intracellular Regulating embryogenesis, 
organogenesis, pluripotency

Cell cycle progression, chemoresistant (Huh-7, 
PLC/PRF/5; NOD/SCID mice; Human HCC 

tissue)
[75, 76]

TLR4 Cell surface Receptor for LPS; facilitating 
invasion and migration

Invasive, metastatic (SMMC7721, Huh-7; 
Human HCC tissue; BALB/c-nu/nu mice) [77, 78]

Abbreviations: ABCG2, ATP-binding cassette G subfamily type 2 transporter; SP, side population; ALDH1, Aldehyde 
dehydrogenase 1; DCLK1, doublecortin-like kinase 1; SALL4, Sal-Like Protein.

Figure 2: The roles of TAMs in the pro-inflammatory microenvironment. Macrophages can be classified into two main classes 
according to their phenotypic polarization: M1 macrophages respond to IL-6, TNF-α, M-CSF, INFγ and LPS whereas they differentiate 
into M2 in response to TGF-β, VEGF, CCL2, IL-4, IL-10 and IL-13. M1 and M2 macrophages exert different functions. M1 macrophages 
with powerful antigen presentation potential can secrete IL-1, IL-6, IL-12 and TNF-α, and are able to exert cytotoxic activity on microbes 
and tumor cells. M2 macrophages can secrete VEGF, MMPs, IL-10 and TGF-β and promote angiogenesis, tissue remodeling, tumor 
progression, invasion and metastasis as well as suppression of anti-tumor immune response. TAMs can be recruited to tumor lesions and 
interact with both stromal and tumor cells within the tumor microenvironment, which will amplify the inflammation and accelerate tumor 
progression.
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STAT3 signaling, which will be elucidated in detail 
later. As known, STAT3 signal is essential for sustaining 
pluripotency in embryonic stem cells, but seems redundant 
for mature cells. Particularly, over activation of STAT3 is 
sufficient to induce tumorigenesis. Therefore, a proper 
targeted therapy against STAT3 in tumor cells might be 
a strategy for tumor treatment, avoiding undesirable side 
effects which may affect physiological functions of mature 
cells.

NF-κB signaling pathway

NF-κB is probably the most studied signaling 
pathway in response to inflammation and refers to a 
family of signal-responsive transcription factors that, 
upon activation by exogenous ligands or cytokines such 
as lipopolysaccharide (LPS), TNF-α and IL-1, translocate 
into the nucleus and activate target genes [100]. NF-κB 
signals are regulated mainly by three components: (1) NF-

Figure 3: The role of IL-6/STAT3 signaling pathway and interactions with other pathways in hepatocarcinogenesis. IL-6 
secreted by Kupffer cells or hepatocytes binds to IL-6Rα and induces the homodimerization of IL-6Rα with gp130, activating downstream 
signaling pathways such as JAK/STAT3, PI3K/Akt and MAPK pathways, which promote proliferation and survival of cells, inflammatory 
amplification and tumor invasion and metastasis.
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κB family: Rel-A (p65), Rel-B, c-Rel, NF-κB1 (p105) and 
NF-κB2 (p100); (2) Inhibitor of κB (IκB) family: IκB-α, 
IκB-β, IκB-ε and Bcl-3; (3) IκB kinase (IKK) complex, 
including the catalytic subunits IKK-α, IKK-β, and the 
modulator IKK-γ (also termed as NEMO) [13]. P105 and 
p100 are processed to their mature forms p50 and p52, 
respectively [101]. The NF-κB pathway can be activated 
by canonical and non-canonical manners (Figure 4). In the 
canonical manner, activation of the IKK complex induces 
the phosphorylation and ubiquitin-mediated degradation of 
IκB-α, which releases the p65/p50 dimer that translocates 
into the nucleus. The non-canonical signaling involves 
the activation of the p52-Rel-B dimer derived from p100-
Rel-B [102]. NF-κB modulates the transcription of various 
inflammatory cytokines and chemokines, functioning as a 
tumor-promoting regulator of HCC initiation [103]. NF-
κB also interacts with many miRNAs to synergistically 
favor HCC development which will be discussed later. 
It is reported that IKK-β suppressed early chemical-
induced liver tumorigenesis by inhibiting hepatocyte 

death and compensatory proliferation [104]. However, 
genetic inhibition of IKK-β long after tumor initiation 
accelerated HCC development and enhanced proliferation 
of tumor initiating cells, mainly by ROS accumulation 
and c-Jun N-terminal kinase (JNK) and STAT3 activation 
[104]. Although there are a large number of signaling 
pathways like TLR, TNF, TGF-β and Wnt that cooperate 
to modulate the promotion of HCC, many signaling 
pathways mentioned above seem to converge to the NF-
κB pathway to exert their oncogenic effects, highlighting 
the crucial role of the NF-κB pathway.

INFLAMMATION-RELATED MIRNAS

MiRNAs are endogenous single-stranded and 
evolutionarily conserved non-coding RNAs of 18-25 
nucleotides in length [105]. They are mainly involved in 
the epigenetic regulation of gene expression at the post-
transcriptional level by binding the 3’ untranslated regions 
(UTRs) of targeted messenger RNAs (mRNAs), resulting 

Figure 4: The activation of canonical and non-canonical NF-κB signaling pathways in the liver tumorigenesis. In the 
canonical NF-κB pathway, IL-1, LPS or TNF-α activate IL-1R, TLRs and TNFR respectively, leading to the activation of the IKK complex 
which can phosphorylate IκB-α. This phosphorylation results in the polyubiquitination and subsequent proteasomal degradation of IκB-α. 
The released NF-κB p50-p65 dimers then translocate into nucleus and activate target gene transcription. In the non-canonical pathway, 
activation of CD40, LTβR, etc. leads to activation of IKK-α by NIK. IKK-α homodimers can then phosphorylate p100 subunit, which is a 
prerequisite for the polyubiquitination of p100 and its proteasomal processing to p52. Then RelB-p52 heterodimers translocate into nucleus 
and activate transcription of target genes.
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in the degradation of the targeted mRNAs and subsequent 
translational repression [106, 107]. MiRNAs have been 
demonstrated to regulate a myriad of physiological 
and pathological processes. Dysregulation of their 
expression has been linked to hepatic inflammation 
and tumorigenesis. All together, miRNAs establish 
complex regulatory networks involving transcription 
factors in order to promote or inhibit inflammation and 
carcinogenesis. The globally altered miRNAs in HCC 
have been reviewed elsewhere [108-111]. Therefore, next 
we will focus on miRNAs related to liver inflammation 
and tumorigenesis, and validate miRNA regulatory 
networks on HCC initiation and progression.

Tumor suppressive miRNAs

miR-122

Genome-wide screening of miRNA expression 
alterations found that miR-122, a tissue-specific miRNA 
accounting for 70% and 52% of the total liver miRNAs 
in adult mouse and human respectively, is significantly 
decreased in the clinical HCC tissues and pre-clinical 
experimental studies [112-115]. MiR-122 contributes to 
maintaining the homeostasis of hepatocyte differentiation, 
cholesterol and fatty acid synthesis and metabolism 
in the healthy liver [113, 116]. Microarray analysis has 
shown that down-regulation of miR-122 promotes the 
dedifferentiation of hepatocytes [117]. Some targets of 
miR-122 in HCC have been elucidated, including pyruvate 
kinase M2 (PKM2), cut like homeobox 1 (CUTL1), Ras 
homolog gene family member A (RhoA), a disintegrin 
and metalloproteinase domain-containing protein 
(ADAM)-10 and -17, Cyclin G1, insulin-like growth 
factor 1 receptor (IGF1R), Bcl-w, Wnt1 and c-Myc, which 
have been implicated in proliferation, apoptosis and 
metastasis of HCC cells [108, 116, 118, 119]. Hepatocyte 
nuclear factor (HNF)-1α, HNF-3β, HNF-4α, HNF-6 and 
CCAAT/enhancer binding protein α (C/EBPα) induce the 
expression of miR-122 [113, 118, 120]. MiR-122 also 
targets Krueppel-like factor 6 (KLF6), a pro-fibrogenic 
factor, and miR-122-deficient mice developed hepatic 
inflammation, fibrosis and HCC, suggesting an anti-
inflammatory role of miR-122 in the liver [114].

During HCV infection, miR-122 is essential for 
HCV replication, whereas appears to restrict HBV 
replication [120]. As aforementioned, 8% of the world 
population is chronically infected with HBV or HCV 
and up to 5% of HCV patients will develop HCC in their 
life [4, 5]. In this sense, whether miR-122 facilitates 
HCV replication and proliferation thus favoring HCC 
development or functions as a tumor suppressor 
simultaneously is unclear. As such, the expression levels 
of miR-122 that effectively promote HCV replication 
are undetermined. Moreover, whether the pathological 
microenvironment modulates the dual role of miR-122 
remains unknown. These questions need to be solved to 

unveil the molecular mechanisms driving inflammation-
related liver tumorigenesis.
miR-124

MiR-124 was initially identified as a brain-specific 
miRNA regulating neural development, inhibiting the 
proliferation of glioblastoma multiforme cells and 
inducing the differentiation of brain tumor stem cells [121, 
122]. More recently, several publications have studied the 
roles of miR-124 in HCC, and a few targets of miR-124 
have been confirmed, such as Rho-kinase 2 (ROCK2), 
an enhancer of the zeste homologue 2 (EZH2), SET 
and MYND domain containing 3 (SMYD3), STAT3 and 
phosphoinositide 3-kinase catalytic subunit α (PIK3CA), 
through which miR-124 exerts its tumor-suppressive 
function [123-126].

Furthermore, a novel role of miR-124 has been 
unveiled in two recent reports, describing previously 
unknown inflammatory feedback circuits involving 
miRNAs and transcription factors that amplify 
tumorigenic signals in HCC (Figure 5). First, it was shown 
that transient inhibition of HNF-4α is sufficient to initiate 
malignant transformation through a network including 
HNF-4α, miR-124, IL6R, STAT3, miR-24 and miR-629 
[127]; the second pathway is comprised of HNF-4α, miR-
124, miR-7, NF-κB (p65) and miR-21, which modulates 
HCC initiation and progression, and might be useful to 
predict the prognosis of HCC patients [128]. Interestingly, 
either a transient inhibition or activation of any component 
in the aforementioned pathways is sufficient to induce 
HCC initiation. Further, stable transformation can be 
supported by these feedback loops through multiple 
generations of cells, even if the initial stimuli are removed 
[129]. Particularly, miR-124 (alone or together with miR-
7) inhibits the activation of IL-6R and NF-κB (Rel-A) and 
could be down-regulated by loss of HNF-4α. These results 
underline the key contributions of miRNAs to early stages 
of hepatocarcinogenesis.
miR-194 and miR-370

Previous investigations have identified the role 
of miR-194 and miR-370 in the lipid metabolism, liver 
fibrosis and HCV infection [130-133]. Chunyang Bao 
and colleagues delineated a network activated upon 
TNF-α stimulation, involving NF-κB, HNF-1α, miR-
194, tripartite motif containing 23 (TRIM23), and 
chromosome 21 open reading frame 91 (C21ORF91) 
[134] (Figure 5). TNF-α-induced activation of NF-κB 
and inhibition of HNF-1α led to down-regulation of miR-
194. TRIM23, which encodes an E3 ligase for NEMO 
ubiquitin conjugation and NF-κB activation [135], and 
C21ORF91, a gene of unknown function, are identified as 
direct targets of miR-194 in HCC cells. Upon knockdown 
of miR-194, its repressive effect on TRIM23 and 
C21ORF91 is relieved, rendering the activation of NF-κB 
and promoting HCC cell migration, invasion, and tissue 
colonization [134].
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Figure 5: The critical crosstalks between important transcriptional factors, oncogenic and tumor suppressive proteins, 
and inflammation-related miRNAs that regulate key processes during HCC initiation, progression and metastasis. The 
core associated proteins and miRNAs can constitute positive or negative feedback circuits to sustain the malignant state when there is an 
exogenous stimulus triggering the malignant transformation, and even when the stimulus is removed.

Another regulatory circuit described by Wen-Ping 
Xu and colleagues consists of miR-370, LIN28A, NF-
κB (RelA/p65) and IL-6 [136]. The role of miR-370 in 
tumorigenesis remains controversial. Whereas evidence 
showed that miR-370 serves as a tumor suppressor 
in malignant cholangiocytes, leukemia cells and oral 
squamous carcinoma cells [137-139], several studies have 
reported that overexpression of miR-370 contributes to 
the progression of gastric carcinoma, prostate cancer, and 
acute myeloid leukemia [140-142]. In this report, miR-
370 is down-regulated in HCC tissues and cell lines. They 
demonstrated that LIN28A is a direct target of miR-370, 
and blocks maturation of miR-370 in turn, forming a  
reciprocally repressive regulation [136]. Furthermore, they 
also verified that as an RNA-binding protein, LIN28A 
could directly bind to the RelA/p65 mRNA to promote its 
translation [136]. Finally, it was shown that IL-6 treatment 
on HCC cells significantly decreased miR-370 levels, 
which was followed by an increase in LIN28A protein, 
thereby closing the loop [136]. To our knowledge, let-7 
is the only miRNA that interacts reciprocally with Lin28. 

NF-κB has been shown to transcriptionally activate the 
expression of LIN28B, rather than LIN28A, in breast 
cancer [136, 143]. This investigation not only elucidated 
the effect of LIN28A on NF-κB, but also identified a 
novel recripocal regulation between miR-370 and LIN28, 
thus updating our understanding of the interplay between 
miRNAs and RNA-binding proteins.
miR-15, miR-26, and miR-29 families

An increasing number of reports have unveiled 
a direct reciprocal regulation of these miRNAs with 
components of the NF-κB signaling pathway. For 
instance, miR-26b has been reported to suppress NF-
κB signaling and enhance the chemosensitivity of HCC 
cells by inhibiting TGF-activated kinase 1 (TAK1) and 
TAK1-binding protein 3 (TAB3), two positive regulators 
mediating the activation of canonical NF-κB pathway 
[144]. Besides, NF-κB could promote the down-regulation 
of miR-29 in HSCs during liver fibrosis [145]. More 
importantly, Jie Ding and colleagues have identified the 
entire miRNA families or clusters that regulate almost 
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all the steps in the NF-κB pathway, among which miR-
195, a member of the miR-15 family, plays a crucial 
role in regulating the TNF-α/NF-κB pathway by down-
regulating IκB-α and TAB3 in HCC [146]. It was 
previously mentioned that NF-κB plays a critical role 
linking inflammation to liver carcinogenesis, and miRNAs 
interacting with this pathway are also potential participants 
to involve the inflammation-related hepatocarcinogenesis.

Oncogenic miRNAs

miR-155

As a multifunctional miRNA, physiological level of 
miR-155 has been shown to regulate the haematopoietic 
lineage differentiation and the homeostasis of the immune 
system [147, 148]. Recently, accumulating evidences 
have pointed out the oncogenic role of miR-155, which 
is frequently overexpressed in HCC. MiR-155 can be 
induced by a broad range of pro-inflammatory cytokines 
(e.g. TNF-α, IFN-γ, TGF-β) and activated by NF-κB and 
TLR ligands (e.g. LPS) [149], functioning as a critical 
link between inflammation and hepatocarcinogenesis. 
The total number of predicted potential targets of miR-
155 (according to miRBase Sequence database) is 991 
although only a limited number of these genes have been 
experimentally validated such as C/EBPβ and SOCS1 
[150].

MiR-155 expression can be transiently induced 
upon the activation of macrophages, dendritic cells, B 
cells and T cells, through the NF-κB and activator protein 
(AP)-1 [151]. Bo Wang and colleagues investigated 
the role of miR-155 at the early stage of non-alcoholic 
steatohepatitis-induced HCC and up-regulation of miR-
155 accompanied by reduced expression of C/EBPβ and 
activation of NF-κB was confirmed in the liver during 
HCC progression [152]. Furthermore, deficiency of miR-
155 attenuates liver steatosis and fibrosis in a mouse 
model of steatohepatitis without reducing inflammation 
[153]. In another study, miR-155 levels were markedly 
increased in patients chronically infected with HCV [154]. 
In addition, it was shown that miR-155 expression was 
up-regulated in non-parenchymal liver cells during HCV 
infection and that IL-10, TGF-β and miR-155 may regulate 
the TLR3-dependent antiviral and inflammatory activity 
of non-parenchymal liver cells in vitro [155]. Besides, 
miR-155 overexpression not only strongly enhanced the 
EMT process and cell invasion but also increased the 
population of stem-like CSCs among liver cancer cells 
[156]. Furthermore, knockdown of miR-155 in Kupffer 
cells resulted in immunosuppressive effects and prolonged 
mice survival using a liver allografts model [157]. In 
contrast, another study demonstrated that miR-155 was 
down-regulated in hepatocytes during chronic HBV 
infection and overexpression of miR-155 could contribute 
to reducing HBV viral load by targeting C/EBPβ [158]. 
Since HBV and HCV infection usually induce chronic 

hepatic inflammation, thereby favoring HCC initiation and 
progression, additional studies concerning the function of 
miR-155 in HCC may be considered in the future.

miR-21

MiR-21 has been strongly associated with anti-
inflammatory response in macrophages, apart from 
regulating organ morphogenesis during embryonic 
development [159-161]. Up-regulation of miR-21 has 
been observed in almost all types of cancers [159]. A 
number of genes have been found to be targeted by miR-
21, such as phosphatase and tensin homolog (PTEN) 
[162], programmed cell death 4 (PDCD4) [163, 164], 
tissue inhibitor of metalloproteinase 3 (TIMP3) [164, 165] 
and p53 [166].

Inflammatory stimuli such as pro-inflammatory 
cytokines or HBV/HCV infection can induce the 
expression of miR-21. For example, IL-6 activates miR-21 
through direct binding of STAT3 to an upstream enhancer 
of miR-21 [167-169]. Additionally, miR-21 has been 
described to be part of a regulatory network involving 
HNF-1α, SHP-1, NF-κB (p65), STAT3, miR-146a and 
miR-21, which modulates hepatic fibrogenesis [167] 
(Figure 5). More interestingly, a coordinated crosstalk 
between hepatocytes and HSCs participates in this circuit 
and facilitates the progression of hepatic damage [167]. 
Impaired hepatocytes release IL-6 and TGF-β1 to activate 
the quiescent HSCs and activated HSCs release IL-6 and 
TNF-α up-regulating miR-21 and miR-146a to further 
aggravate the hepatic damage. HBV or HCV infection can 
also induce miR-21, and in addition to promoting viral 
replication, miR-21 also modulates the host response 
in favor of the virus [163, 170]. In this case, signaling 
components of the TLR pathway (MyD88 and IRAK) have 
emerged as targets for miR-21, which lead to decrease of 
IFN-α [170]. On the other hand, miR-21 is significantly 
up-regulated in HCC samples from patients infected 
with HBV, but not HCV, when compared to adjacent 
benign tissue [171]. This finding was confirmed by a 
later publication which showed that miR-21 was among 
the most highly overexpressed miRNAs in hepatitis B, 
positive cirrhotic liver and HCC biopsies compared to 
healthy liver [172]. From this point of view, more clinical 
and pre-clinical experiments need to be done to elucidate 
the specific roles of miR-21 in different aspects of HCC 
progression.

miR-224

The expression of miR-224 is undetectable in 
normal livers, however, as liver diseases progress, the level 
of miR-224 increases, and can be elevated by over 20-fold 
[108, 145]. Cecilia Scisciani and colleagues identified 
p65/NF-κB as a direct transcriptional regulator of miR-
224 and linked miR-224 up-regulation with activation of 
LPS, lymphotoxin-α and TNF-α inflammatory pathways, 
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as well as cell migration/invasion in HCC from HCV-
infected patients [173]. A later study demonstrated that 
autophagy suppressed tumorigenesis of HBV-associated 
HCC through degradation of miR-224 and derepression of 
its target Smad4 [174]. A significant correlation was found 
between poor survival rate upon HBV infection and high 
expression of miR-224 [174, 175]. In a different report, 
HBV-associated tumors and tumors from HBx-transgenic 
mice were shown to have increased levels of miR-224, 
and miR-224 is a direct target of HBx and modulates 
HBV replication [176]. Taken together, miR-224 plays 
an important role in affecting crucial processes during 
HCC promotion and emerges as a new link between 
inflammation and HCC.

miR-17-92 cluster

The polycistronic miR-17-92 cluster encodes six 
miRNAs (miR-17-5p, miR-18a, miR-19a, miR-19b, miR-
20a, and miR-92a-1) and has two paralogs in the human 
genome, the miR-106b-25 cluster and the miR-106a-363 
cluster [177]. The miR-17-92 cluster has pleiotropic 
functions during both normal development and malignant 
transformation [178]. All the members of the miR-17-92 
cluster are often overexpressed in HCC [172]. A number 
of transcription factors directly regulating the expression 
of this cluster have been revealed such as c-Myc [179] 
and E2F1 [180]. Compelling evidences have demonstrated 
that IL-6 regulates the expression of the miR-17-92 
cluster by direct binding of STAT3 to its promoter region 
[181-183]. This emphasizes a potential link between 
miR-17-92 cluster and inflammation. Typically, up-
regulation of miR-17-92 cluster by IL-6/STAT3 promotes 
cholangiocarcinoma growth via repression of the 
downstream target PTEN [183] (Figure 5). In addition, 
chronic exposure of HepG2 cells or primary hepatocytes 
to inflammation stimulates the expression of the miR-17-
92 cluster member miR-18a [182]. This miRNA targets 
PIAS3, leading to an enhancement of STAT3 activity 
that eventually results in the release of acute-phase 
proteins [182] (Figure 5). This represents a novel positive 
feedback loop of IL-6 signaling through the involvement 
of miRNAs. Furthermore, other studies have investigated 
the molecular basis for miR-17-92 cluster pleiotropic 
functions in a cell type- and context-dependent manner 
[177]. For instance, miR-19a and miR-19b have been 
demonstrated to inhibit HSC-mediated fibrogenesis, 
either by negatively regulating TβRII and Smad3 [184] 
or by repressing the hepatic fibrogenic master switch 
connective tissue growth factor (CTGF) [185]. Moreover, 
induction of HBV replication in a human hepatoma 
cell line increased miR-17-5p, miR-20a and miR-92a-1 
expression via c-Myc [179]. Since miR-20a and miR-
92a-1 directly inhibit HBV replication, this mechanism 
exemplifies a negative feedback regulation between HBV 
and the miR-17-92 cluster [179]. In summary, additional 
work has to be done to elucidate the mechanisms by which 

members of miR-17-92 cluster regulate HCC initiation 
and progression.

Circulating miRNAs

Aberrant expressions of circulating miRNAs have 
also been widely reported in liver inflammation and 
related HCC. Many of the above discussed miRNAs such 
as miR-122, miR-29, miR-155 and miR-21 can function 
as circulating miRNAs and serve as biomarkers of liver 
inflammation and related HCC. For instance, increased 
circulating miR-122 is reported to be associated with 
drug-induced liver injury (DILI), HCV infection and HCC 
[186, 187]. Higher plasma miR-21 level is a promising 
biochemical marker for HCC and superior to AFP 
when distinguishing HCC from chronic hepatitis [188]. 
Circulating let-7 levels in plasma and extracellular vesicles 
correlate with hepatic fibrosis progression in chronic 
hepatitis C, although a single determination of let-7 levels 
in plasma does not have superior predictive value for 
significant hepatic fibrosis compared to that of fibrosis-4 
index [189]. As regulators of inflammation, circulating 
miR-155 and miR-146a can be transferred between 
dendritic cells in the spleen, liver and bone marrow within 
exosomes to regulate inflammatory gene expression and 
response [190]. Because HCC is a highly complicated 
and heterogeneous disease and numerous miRNAs are 
dysregulated during HCC onset and progression, multiple 
circulating miRNAs and/or a combination with some of 
the biomarkers summarized in the Table 1 rather than a 
single circulating miRNA may increase the specificity and 
sensitivity for HCC diagnosis and prognosis prediction.

In a word, the various roles of miRNAs linking 
inflammation to tumorigenesis during HCC progression 
are still largely unknown. Despite the recent discoveries 
of new signaling networks regulated by miRNAs in 
response to inflammation, it becomes evident that more 
dissections into the targets and regulators of miRNAs 
may contribute to improving our understanding of the 
molecular basis of liver tumorigenesis and thereby 
developing new approaches to treat HCC. A simplified 
illustration summarizing the proposed processes of 
hepatocarcinogenesis is shown as Figure 6.

PROSPECT

Currently, the treatments of HCC consist of 
liver resection, transplantation, percutaneous ablation, 
chemoembolization, and systemic therapies [191]. Until 
2007, no systemic chemotherapy was recommended 
for patients with advanced HCC [191, 192]. Sorafenib 
(Nexavar), a small multi-kinase inhibitor which targets 
VEGFR, PDGFR and Raf family kinases among others, 
was the first approved systemic therapy for HCC in 2007 
and the only one that has been shown to significantly 
improve overall survival in patients with unresectable 
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HCC [193]. In order to circumvent drug resistance, the 
combination of anticancer drugs has been proposed. 
The current evidence from the available clinical trials 
suggests that combined treatment of sorafenib with 
some anticancer agents (especially mTOR inhibitor) 
could be more effective for HCC [194]. Nevertheless, 
the development of additional treatment options with no 
or minor side effects, as well as identification of novel 
biomarkers of HCC that allow early detection, would 
significantly improve the prognosis of HCC patients. 
As aforementioned, a number of miRNAs have been 
associated with inflammation related HCC. It raises a 
question that whether “miRNA missile” could be a good 

strategy for HCC treatment, especially for those patients 
whose specific molecular disorder has been found. 
Theoretically, modulation of specific miRNA clusters 
might allow to reconfigure selected cancer cells to become 
less aggressive, and the tissue microenvironment to be less 
permissive to tumor progression. In this sense, miRNAs 
could achieve a selective activation of the immune system 
to contribute to eliminating cancer cells, without favoring 
their dissemination to distant organs. Finally, we have 
described how HCC results in changes in the expression 
of miRNAs. Therefore identification and profiling of 
circulating miRNAs linked to HCC might be helpful to 
favor an early detection of the disease.

Figure 6: A hypothetical illustration delineating the connection between activation of inflammatory pathways, miRNAs 
and liver tumorigenesis. Once extrinsic stimuli such as HBV/HCV, alcohol and DEN damage the liver, Kupffer cells can be activated 
and produce several inflammatory cytokines such as IL-6 and TGF-β1. On one hand, IL-6 can stimulate LPCs residing in the canal of hering 
to proliferate to restore the injured liver; however, if gene mutations happen to proliferating LPCs, they will have the potential to develop 
to CSCs. On the other hand, TGF-β1 can act on HSCs and activated HSCs proliferate and generate ECM to reconstitute the liver and 
promote hepatic fibrosis if the dynamic balance of ECM synthesis and decomposition is disrupted. Meanwhile, TGF-β1 can also stimulate 
hepatocytes to respond to either cell death or proliferation signals under different conditions. Several miRNAs such as miR-122, miR-155 
and miR-21 could join to regulate correlated pathologic processes. All the cytokines, miRNAs and other inflammatory mediators together 
generate an inflammatory microenvironment which will amplify the oncogenic mutations and self-reinforce the pro-inflammatory signals, 
finally leading to the irreversible liver tumorigenesis.
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