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ABSTRACT
Background: Infants being born Large-for-gestational-age (LGA) are prone to 

developing cardiometabolic disease. However, the underlying mechanisms remain 
unclear.

Results: Clinical investigation showed that children born LGA had 
significantly higher serum level of total cholesterol (TC), low-density lipoprotein-
cholesterol (LDL-c), and insulin, ratio of TC/high-density lipoprotein-cholesterol 
(HDL-c) compared to children born appropriate for gestational age (AGA). 
Birth weight (BW) was positively correlated to TC, LDL-c, and the ratio of TC/
HDL in serum. Genome-wide DNA methylation analyzed in umbilical cord blood 
of controls and macrosomia cases. We identified 3459 methylation variable 
positions (MVPs) achieving genome-wide significance (adjusted P-value  
< 0.05) with methylation differences of ≥ 5%. A total of 327 MVPs were filtered by 
methylation differences of ≥ 7% located within an island, which mapped to 213 genes. 
Function analysis using Ingenuity Pathway Analysis showed 16 genes enriched in 
“cardiovascular disease”. Four genes included contributed to hyperlipidemia. 

Materials And Methods: Fifty-eight children aged 3–6 years born LGA and 123 
subjects born AGA were enrolled. Anthropometric parameters and blood pressure (BP) 
were measured, and metabolic assessment was performed in all subjects. Genome-
wide DNA methylation in umbilical blood was assayed by the 450K BeadChip in six 
AGA and six macrosomia newborns.

Conclusions: Our data indicate that excess birth weight may increase the risk 
of lipid dysfunction in children aged 3–6 years. It might through reprogramming a 
group of genes correlated to cardiovascular disease. The genes identified in this study 
might be potential biomarker for cardiometabolic disease.

INTRODUCTION

Prenatal and early postnatal origins of 
cardiometabolic disease have been extensive studied in the 
past a few years. The gestational stage and early childhood 

represents a window of phenotypic plasticity and is a 
sensitive period related to programming cardiometabolic 
risk. Women with increased body mass index (BMI) 
and obesity during pregnancy commonly result in fetal 
overgrowth and the birth of a large-for-gestational age 
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(LGA) infant [1]. Infants being born LGA are prone to 
developing obesity, diabetes, and hypertension during 
childhood and later in life [2, 3]. Being born LGA to 
mothers with or without gestational diabetes mellitus 
(GDM) and obesity is associated with diverse effects on 
cardiometabolic risk factors at prepuberty [4–6]. Other 
studies have shown that high birth weight and rapid weight 
gain in childhood are associated with cardiometabolic risk 
later in life [7–10].

Cumulative evidences suggest that there is a 
relationship between excess birth weight and metabolic 
syndrome (MetS) and cardiovascular disease (CVD) risk 
factors [4, 6]. However, the underlying mechanisms have 
not yet been clearly demonstrated. MetS and CVD have 
a heritable component that is not attributable to genetic 
factors. Instead, epigenetic mechanisms may have an 
additional role in mediating inheritance of disease risk 
[11]. Prenatal exposure to famine during the Dutch hunger 
winter of 1944 is associated with obesity with less DNA 
methylation of the imprinted insulin-like growth factor 
2 (IGF2) gene in exposed offspring relative to their 
unexposed siblings [12, 13]. Recently, retinoid X receptor 
alpha (RXRA) promoter methylation was demonstrated 
to correlate with increased adiposity in two independent 
cohorts of children of mothers with low carbohydrate 
intake [14]. Increasing evidence suggests that epigenetic 
marks can be subjected to reprogramming in response to 
both stochastic and environmental stimuli, such as the 
in utero environment [15]. In addition, a large number 
of epigenetic marks are relatively stable over time [16], 
suggesting that those epigenetic changes acquired early in 
life may have a long-lasting impact on future health.

The objective of the present study was to assess 
the association between altered DNA methylation in 
neonates born with high birth weight and cardiometabolic 
risk parameters in preschool children, using a case–
control study of preschool children born at term after 
noncomplicated pregnancies.

RESULTS

Metabolic parameters 

To compare the metabolic parameters between 
children born with different birth weight, we measured 
glucose and insulin values, HOMA index, lipid profile, and 
uric acid in fasting conditions in children at 3–6 years of 
age. As shown in Table 1, when grouped by birth weight 
categories, the LGA children had significantly higher levels 
of total cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-c), and insulin and ratio of TC/high-density 
lipoprotein cholesterol (HDL-c) when compared with that 
for the appropriate for gestational age (AGA) children; their 
body weight, length, and BMI were also higher. Although 
there was a trend to higher levels of glucose, it was not 
significant. Furthermore, maternal characteristics of those 

subjects are presented in Supplementary Table S1. Due to 
the matching criteria, maternal age, height, weight gain 
during pregnancy, and maternal occupation, education, 
parity, and family history showed no significance between 
both groups. Furthermore, there was no difference in blood 
pressure (BP), red blood cells, hemoglobin, platelets and 
serum glucose, and protein levels between mothers of AGA 
and LGA children. However, the weight and BMI during 
late pregnancy of mothers from LGA group presented 
significantly higher than that of mothers from the AGA 
group. Maternal triglyceride (TG) levels were higher in 
the LGA group than that in AGA group (Supplementary 
Table S1), whereas there was no difference in cholesterol 
levels. 

Relationship between anthropometric, BP, and 
metabolic parameters at 3–6 years of age 

To further study the relationship between the 
birth weight and cardiometabolic risks, we analyzed 
the correlation coefficients between birth and current 
weight, as well as the mean weight gain, with systolic and 
diastolic BP and cardiometabolic parameters. Birth weight 
was related to cardiometabolic parameters, positively 
to TC, LDL-c, and the ratio of TC/HDL-c even after 
being adjusted by BMI and weight at 3–6 years of age 
(Table 2). The weight and BMI at 3–6 years old and the 
average weight gain were positively related to systolic 
and diastolic BP, fasting glucose, insulin, and HOMA 
index but not correlated with TC, LDL-c, and the ratio 
of TC/HDL-c (Supplementary Table S2). Those results 
suggest that excess birth weight increases the risk of 
cardiometabolic disease later in life.

DNA methylation analyses 

To explore the mechanisms involved in birth weight 
and the risk of cardiometabolic disease in later life, we use 
the Illumina Human Methylation 450 BeadChip to assay 
genome-wide DNA methylation in umbilical cord blood 
from six controls and six macrosomia cases. Detailed 
information for the 6 pairs of selected subjects was showed 
in Supplementary Table S3. Results indicated that there 
was comparable between the two groups. Totally, 444,152 
CpG loci remained for analysis after all quality control 
steps. We set the threshold of significance for methylation 
variable positions (MVPs) using adjusted P value  
= 0.05 and delta beta = 5%. Samples were successfully 
differentiated into control and macrosomia groups 
after principal component analysis. In total, there were 
3459 MVPs remaining after the initial filter, and 62.3% 
(2156/3459) of them were less methylated. According to 
their different genomic features and relation to the nearest 
CpG islands, MVPs could be annotated as transcription 
start sites (TSS) 1500, TSS200, 1stExon, 5´untranslated 
regions (UTR), 3´UTR, gene body or intergenic region 
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(IGR), and island, shore, shelf, or open sea. Excluding 
29.0% (1003/3459) MVPs that were located on an IGR, 
23.8% (585/2456), the remaining MVPs were distributed 
on islands (Figure 1A). Further analysis was performed in 
327 MVPs (filtered by adjusted p value < 0.05, delta beta 
≥ 7%) and CpGs were located in islands, which mapped 
to 213 genes. Differential DNA methylation between 
controls and the macrosomia group could be observed in 
the heatmap (Figure 1B and 1C). DNA methylation level 
was down-regulated in 67.9% (222/327) of MVPs. To 
detect the biological functions and major pathways related 
to these 213 genes, we performed functional enrichment 
analysis using Gene Ontology (GO) Tool from DAVID 
Bioinformatics Resources. According to the results of 
GO enrichment in the biologic process (Supplementary  
Table S4), 4 of 5 terms were related to embryo organ or 
system development, and the top one was “embryonic 
organ development” (9 genes, P = 5.52E- 04). 
“Endocytosis” (9 genes, P = 0.01) was found to be the 

most significantly Kyoto Encyclopedia of Genes and 
Genomes (KEGG) term (Supplementary Table S5).

Ingenuity pathway analysis (IPA) analysis 

We next used the IPA software (QIAGEN, Redwood 
City, CA, USA) for functional analyses for the 213 genes. 
We observed 27 enriched “Diseases and Disorders” terms 
(Figure 2). The top items identified were: (1) “Cancer”, (2) 
“Organismal Injury and Abnormalities”, and (3) “Endocrine 
System Disorders”. In addition, “Cardiovascular Disease” 
(16 genes, 0.001< P < 0.019) was also included within the 
enrichment. Among 16 genes in “Cardiovascular Disease”, 
many genes participated in lipid metabolism (Figure 3). Four 
representational genes, including Apolipoprotein B gene 
(APOB), Carboxylesterase 1 gene (CES1), Delta Like Non-
Canonical Notch Ligand 1 gene (DLK1), Lipase Maturation 
Factor 1, (LMF1), were contributed to hyperlipidemia. An 
average 10.1% lower methylation level was identified at 

Table 1: Anthropometric and metabolic parameters in children of 3–6 years grouped by birth 
weight

AGA (n = 123) LGA (n = 58) P value1

Age (month) 55.11 ± 7.872 55.02 ± 7.20 0.472

Birth weight (g) 3237.07 ± 322.88 4114.05 ± 197.45 < 0.001

Birth height (cm) 50.06 ± 1.68 50.90 ± 1.55 < 0.001

Male/female sex (n) 64/59 32/26 0.751

Weight (kg) 17.84 ± 2.75 19.75 ± 3.07 < 0.001

Height (cm) 107.59 ± 6.41 110.41 ± 4.86 0.002

BMI (kg/m2) 15.36 ± 1.49 16.14 ± 1.76 0.001

Weight gain (g/month) 266.45 ± 43.65 287.36 ± 62.46 0.005

Systolic BP (mmHg) 97.59 ± 10.48 98.94 ± 6.96 0.187

Diastolic BP (mmHg) 56.92 ± 8.55 58.07 ± 7.40 0.190

MAP (mmHg) 70.47 ± 8.10 71.69 ± 6.19 0.156

Pulse pressure (mmHg) 40.67 ± 9.41 40.87 ± 8.04 0.446

Serum TG (mmol/L) 0.73 ± 0.28 0.72 ± 0.28 0.487

Serum TC (mmol/L) 4.31 ± 0.74 4.62 ± 0.76 0.005

Serum HDL-c (mmol/L) 1.47 ± 0.27 1.47 ± 0.24 0.476

Serum LDL-c (mmol/L) 2.25 ± 0.54 2.46 ± 0.54 0.008

Serum TC/HDL-c 2.99 ± 0.56 3.19 ± 0.57 0.014

Fasting glucose (mmol/L) 4.78 ± 0.40 4.87 ± 0.37 0.091

Fasting insulin (uU/ml) 3.62 ± 2.04 4.19 ± 1.99 0.038

HOMA-IR 0.79 ± 0.50 0.92 ± 0.47 0.048
1. Data were analyzed by using Student’s t, and Mann-Whitney tests.
2. Mean ± SD (all such values). 
3. BP, blood pressure.
4. MAP, mean arterial pressure.
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Table 2: Correlation coefficients between cardiometabolic parameters with birth weight

Parameters
Birth weight

Non-adjusted P value Adjusted P value
Systolic BP (mmHg) 0.009 0.452 0.061 0.429
Diastolic BP (mmHg) −0.001 0.494 −0.076 0.324
MAP (mmHg) 0.003 0.484 0.081 0.293
Pulse pressure (mmHg) 0.011 0.444 0.005 0.946
Serum TG (mmol/L) 0.054 0.237 0.025 0.749
Serum TC (mmol/L) 0.255* < 0.001 0.267* < 0.001
Serum HDL (mmol/L) −0.019 0.399 −0.002 0.979
Serum LDL (mmol/L) 0.294* < 0.001 0.302* < 0.001
Serum TC/HDL 0.217# 0.002 0.211# 0.006
Fasting glucose (mmol/L) 0.022 0.383 0.043 0.575
Fasting insulin (uU/ml) 0.047 0.264 0.105 0.173
HOMA-IR 0.043 0.284 0.103 0.181

DBP indicates diastolic blood pressure; SBP, systolic blood pressure; MAP, mean arterial pressure; HDL, high-density 
lipoprotein; HOMA-IR, homeostatic model assessment; and LDL, low-density lipoprotein. Adjusted correlation coefficients, 
after adjusted by current weight and current BMI.
*P < 0.001, and #P < 0.01.

Figure 1: DNA methylation in genomic level altered in cord blood from macrosomia. (A) Distribution of a total of 3459 
methylation variable positions (MVPs) after the initial statistical significant filter (adjusted P-value < 0.05 and methylation differences of 
≥ 5%) according to epigenetic/genomic feature. Y-axis denotes specific numbers of MVPs involved in each epigenetic/genomic feature; 
X-axis denotes genomic features (annotated as TSS1500, TSS200, 1stExon, 5´UTR, 3′UTR, gene body or IGR, andepigenetic feature-
distances from a CG enriched region (CGI) (island, shore, shelf, open sea). (Abbreviations: TSS1500, within 1.5 kB of transcriptional start 
site; TSS200, within 200 bp of transcriptional start site; IGR, intergenic region). (B) Heat map including the top statistically significantly 
MVPs in island (n = 327, adjusted P-value < 0.05 and methylation differences of ≥ 7%). (C) The number of up-regulated and down-
regulated MVPs with different filters.
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APOB DMR in Chr2: 21266944–21266969, version 2009 
(GRCh37/hg19), which also was annotated asTSS200-
island; 21.2% lower methylation level in Chr16: 55866890, 
at gene CES1 (body-island); 9.4%, 10.1%, and 12.9% 
varied methylation level in Chr14: 101192852, 101192860, 
and 101192913, respectively, annotated as gene DLK1 
(TSS1500-island); 15.8%, 15.3%, 20.2%, and 23.0% varied 
methylation level in Chr16: 979488, 979553, 979662, and 
979898, respectively, annotated as gene LMF1 (body-island). 
Arachidonate 15-Lipoxygenase gene (ALOX15), along with 
APOB, was referred to as fatty lesion associated in the 
“CVD” network, and 25.1% and 18.5% varied methylation 
level showed in Chr17: 4544507, 4544513 (body-island).

Verification of the target genes 

Among those 16 genes in “CVD”, we chose the 
first three genes according to the alphabetical order 
for verification with expanded samples (control: 22, 
macrosomia: 24). The methylation levels of five CpG 
sites ofALOX15, 24CpG sites of APOB, and 13 CpG 
sites of CES1 were detected (Figure 4A–E). The average 
methylation level of ALOX15 in Chr17: 4544507–
4544627 was significantly up-regulated in the macrosomia 
group (Figure 4B, P = 0.002). CpG methylation levels at 

sites 1, 6–7 were significantly higher in the macrosomia 
group (P < 0.01), but the methylation levels at site 2, 3 
did not significantly differ (P > 0.05 for all) (Figure 4A). 
No valid data were received at site 4 and 5. The average 
methylation level of APOB in chr2: 21266623–21267021 
in the macrosomia group was lower than that in the control 
group (Figure 4D, P = 0.02). Differential CpG methylation 
levels lay at sites 1, 15, 16, and 38 (P < 0.05) and sites  
21 and 33–37 (P < 0.01), whereas the methylation levels 
of the rest of the 14 sites did not significantly differ  
(P > 0.05 for all) (Figure 4C). No valid data were received 
at sites 2–7, 22–28, and 30. The average methylation level 
of CES1 in chr16: 55866758–55867030 was significantly 
increased in the macrosomia group (Figure 4F,  
P = 0.0006). CpG methylation levels at sites 1–3, 4, 6, 7, 
8, 9–10, 12, 13, and 14–15 were significantly higher in the 
macrosomia group (P < 0.01), but the methylation levels 
at site 14 and 15 did not significantly differ (P > 0.05) 
(Figure 4E). No valid data were received at site 5 and 11.

DISCUSSION

Fetal origins of cardiovascular and metabolic 
diseases have attracted more and more attention. 
Cardiometabolic risk factors, including higher BP, 

Figure 2: Ingenuity pathway analysis. Functional classification of 213 genes mapped by the top statistically significant 327 MVPs 
identified between controls and the macrosomia group using the Ingenuity Pathway Analysis. “Diseases and disorders” enriched 27 terms, 
and including “Cardiovascular Disease” (Bigger Italic fonts).
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triglycerides, TC and LDL-c, insulin, HDL-c, and ratio 
of TC to HDL-c are increasingly being determined in 
children as well as in adulthood [17–19]. The present 
prospective study performed in children born at term 
after a noncomplicated pregnancy shows that birth weight 
exerted independent influences on cardiometabolic 
parameters at preschool age.

Barker and his colleagues were the first to find 
significant associations between low birth weight and 
the risk of chronic diseases in adulthood, including 
coronary artery disease, hypertension and stroke, type 
2 diabetes, and osteoporosis [20]. Strong evidence from 
several studies indicates that individuals born with a low 
birth weight are more likely to present cardiometabolic 
complications later in life [21–24]. Recent studies in 
the USA, Europe, and other countries have revealed a 
continuous increase of mean birth weight in the past 
2 decades. So far, the long-term consequences of high 
birth weight have not been clearly defined. A recent 
review examined the role of high birth weight on the 
development of cardiometabolic consequences (obesity, 
body composition, type 2 diabetes mellitus, and CVD) 
in childhood and adulthood [25]. Overweight and 
overnutrition are among the most widely recognized 
risk factors of metabolic diseases. The findings in a 

systematic review suggest that an individual with high 
birth weight is prone to hypertension and higher BP 
during childhood [26]. The subjects included in this study 
were only 3–6 years old, we did not find any correlation 
between birth weight and BP. On the other hand, it is not 
surprise that the average weight gain and current weight 
were positively correlated to BP and insulin levels. The 
findings indicated that “catch-up” growth correlate with 
some aspects of a later MetS, such as BP, which implies 
that a catch-up growth may be another factor linked to 
hypertension later in life [27]. The fetal origins of the 
adult disease hypothesis propose that exposures to an 
adverse intrauterine environment directly relates to 
poor nutritional status in early life and may increase 
their risk of adult disease, such as metabolic and CVDs 
[28]. Here we showed the associations of high birth 
weight and altered DNA methylation in neonates with 
cardiometabolic risk parameters in preschool children. 
As we all know, there were complicated maternal risks 
linked to birth weight [1, 10, 29]. We also investigated 
the maternal information during pregnancy. The results 
showed in Supplementary Table S1 revealed that mothers 
with higher BMI and serum triglyceride levels during late 
pregnancy are apt to born LGA neonates, which imply that 
prenatal exposure to an adverse intrauterine environment 

Figure 3: Downstream effect analysis of specific genes with differentially methylated CpGs associated with CVD. For 
this cardiovascular function network, genes or gene products are represented as nodes, and the biological relationship between two nodes 
is represented as an edge. All edges are supported by at least one publication in the Ingenuity Knowledge database. The legend of the 
interaction network and the relationships between molecules are summarized on the right of the figure.
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with potential consequences for subsequent developmental 
cardiometabolic diseases over the lifespan.

Accumulative epidemiological investigation has 
illuminated that macrosomia infants were more prone 
to develop CVD and MetS. However, the potential 
mechanisms were still unclear. Recently, epigenetics 
was suggested to provide a mechanistic link between 
environmental exposures and adult disease. DNA 
methylation is a well-known epigenetic modification 
that participates in metabolic programming during the 
perinatal period [30]. We have previously demonstrated 
in mice that the hyperglycemic intrauterine environment 
of GDM can increase the risk of diabetes in offspring by 
altering Igf2/H19 imprinting in islets [31]. Epigenetic 
marks can be subjected to reprogramming in response 
to in utero environment, which might lead to healthy or 
unhealthy phenotypes, thus enabling phenotypic plasticity 
in the context of a fixed genotype [15, 32]. Epigenetic 
variation in umbilical cord blood may have a mechanistic 

role in metabolic disease programming through interaction 
of the pregnancy environment with gene function  
[29, 33]. Indeed, the results of DNA methylation analyses 
in umbilical cord blood in this study identified 327 MVPs 
with methylation differences of > 7% located within 
island, which mapped to 213 genes. Bioinformatics 
analysis showed many genes correlated to CVD and lipid 
metabolism.

The ChAMP package is a pipeline that integrates 
currently available 450K analysis methods. ChAMP-
implemented BMIQ was identified by Marabita as an 
effective method [34, 35]. SNPs filter function available in 
this pipeline helps to prevent biases due to genetic variation 
in downstream statistical analyses aimed at identifying 
differentially methylated CpGs and focus investigation 
on the epigenetic factors. We also exclude probes on sex 
chromosomes to avoid their interference effect.  However, 
the long period of clinical follow-up of women throughout 
pregnancy and their offspring in childhood was needed; it 

Figure 4: Verification of the target genes. (A and C and E) Percentage of DNA methylation of individual CpG sites within the island at 
ALOX15, APOB, and CES1 (MASSARRAY) in controls (n = 22) and macrosomia (n = 24). (B and D and F) Median of % DNA methylation 
for each region in controls (n = 22) and macrosomia (n = 24). Values (in A–F) are expressed as means ± SE, ***p < 0.0001 **p < 0.01,  
*p < 0.05, compared with the corresponding control.
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has not been possible to increase the number of samples 
analyzed by the 450 K plat-form in consideration of the 
cost of such an epigenome-wide study. It resulted in 
limited statistical power, weakening conclusions on 
methylation alteration of the individual CpG sites. Despite 
these limitations, verifying methylation differences on 
more CpG sites nearby enlarged samples and applying 
systematic functional analysis contributed to increasing 
our confidence in the results.

 High birth weight contributed to epigenetic changes 
in embryonic organ development and morphogenesis, 
which probably influence an offspring’s future health. 
Endocytic processes, enriched in KEGG pathway analysis 
is a responsive mechanism to variable environments in 
the uterus and after birth. It (including autophagy) was 
linked to a wide array of vascular processes, ranging 
from angiogenesis to calcification of the vessel wall. 
Alterations in autophagic flux are also increasingly being 
implicated in disease processes, including atherosclerosis 
and pulmonary hypertension [36].

As suggested by common disease and disorder 
pathway analyses results, a number of the identified 
epivariations were correlated with CVD candidate 
genes. DNA methylation at gene promoter regions is 
often associated with transcriptional repression due to 
interactions between DNA methylation, methyl DNA 
binding proteins, and histone deacetyltransferases. In 
contrast, promoter hypomethylation is often associated 
with a euchromatic state and transcriptional permissiveness 
[37]. Apolipoprotein B (APOB) transcribes and translates 
into the main Apo lipoprotein of chylomicrons and LDL. 
LDL is considered as one of the main molecules leading 
to atherosclerosis and associated with cardiovascular risk 
[38]. Higher methylation levels in APOB were reported 
to be associated with an increased risk of having a 
birth weight below the 50th percentile [29]. The same 
relationship of methylation levels in APOB and birth 
weight was found in our study. Lower APOB methylation 
levels in specific CpGs located on islands were detected in 
the macrosomia group by 450K. We detected methylation 
of 399bp DNA surrounding the MVPs in enlarged samples 
by MASSARRAY and identified the same methylation 
differences. Delta-like homolog 1 (DLK1), an imprinted 
gene, is subject to multiple levels of epigenetic dosage 
control beyond conventional mechanisms of tissue- 
and temporal specific regulation [39]. Upregulation of 
DLK1 impairs angiogenesis by inhibiting Endothelial 
cell (EC) proliferation [40] and impedes the regenerative 
response of ECs to the proapoptotic and antiproliferative 
effects of oxidized LDL [41]. CES1, carboxylesterase 
1, encodes a member of the carboxylesterase large 
family and participates in fatty acyl and cholesterol ester 
metabolism. An in vitro study showed that overexpression 
of CES1 in THP-1 macrophages markedly increases the 
rate of cholesterol efflux. Overexpression of human 

CES1 in macrophages increases the recruiting rates of 
macrophage and reduces atherosclerosis in Western diet-
fed Ldlr−/−mice [42]. Differential methylation in the 
island and surround of CES1 was quite probably resulted 
in expression change [43].

In conclusion, our results suggest that high maternal 
TG level will dysregulate the fetal epigenome and mediate 
the increase of cardiometabolic disease risk in later life. 
Neonate born LGA presented high maternal BMI and 
TG levels during pregnancy. Individuals with high birth 
weight were accompanied by a specific pattern change 
of DNA methylation, including CVD candidate genes. 
Our data therefore provide supportive evidence that 
DNA methylation is involved in fetal cardiometabolic 
programming. The candidate genes that we have identified 
in this study might be severs as potential biomarkers to 
assess the risk of cardiometabolic disease. Therefore, our 
findings in this study not only extend our knowledge of 
pathomechanism of cardiometabolic diseases but also hold 
great promise for future clinical applications.

MATERIALS AND METHODS 

Study population 

Preschool children who were born at term 
(gestational age ≥ 37 and < 42 weeks) after uncomplicated 
pregnancies and in the absence of perinatal illness were 
invited to participate in the study between January and 
December 2012 from the Child Care Center of Women’s 
Hospital, School of Medicine, Zhejiang University. 
Exclusion criteria were multiple gestations, congenital 
anomalies, preterm infants, and small-for-gestational age. 
Subjects were divided according to birth weight: AGA, 
between 10th and 90th percentile, and LGA, > 90th 
percentile [44]. Fifty-eight children aged 3–6 years born 
LGA were enrolled according the criteria; 123 subjects 
born AGA were matched approximately at a ratio of 1:2 to 
the LGA group according to maternal age (± 1 year) and 
maternal weight gain (± 1 kg) during pregnancy. The study 
was approved by the Research and Ethics Committee of 
the Zhejiang Women’s Hospital, School of Medicine, 
Zhejiang University, Hangzhou, China, and was registered 
in the Chinese Clinical Trial Registry (ChicCTR-
OCH-14004536, www.medresman.org). Informed consent 
from the parents of each participant was obtained. 

The umbilical cord blood of neonates born in 
the Women’s Hospital, School of Medicine, Zhejiang 
University, was routinely collected and preserved in the 
biomedical sample center. The corresponding maternal and 
birth information was investigated. Among the enrolled 
subjects, 12 umbilical cord blood samples were collected 
at delivery, randomly involving six normal birth weight 
(AGA) and six macrosomia newborns, from the sample 
center for the DNA methylation analysis. 
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Serum biochemistry parameters analysis

Serum samples were obtained under fasting 
conditions in the early morning and were performed for the 
concentration metabolic assessment. The assays for serum 
lipids and peripheral glucose were assayed by the clinical 
chemistry laboratory at the Women’s Hospital, School of 
Medicine, Zhejiang University (Abbott C1600, Chicago, 
IL, USA). The fasting insulin was tested at the same time 
using a chemiluminescence immunoassay (Access 2; 
Beckman Coulter, Fullerton, CA, USA). The homeostatic 
model assessment (HOMA) IR was calculated by dividing 
the product of insulin (microunits per milliliter) and 
glucose (millimoles per liter) by 22.5 [45].

DNA preparation 

Directly after delivery, umbilical cord blood was 
collected and stored at –80°C. DNA was extracted from 
buffy coats using the QIAamp DNA Mini Kit (Qiagen, 
Valencia, CA, USA), according to manufacturer’s 
protocol. Following isolation, all samples were checked 
for DNA quality and quantity. Those with good quality 
(260/280 ratio exceeding 1.8) and DNA concentration  
≥ 50 ng/µl were considered to be qualified.

450 K BeadChip DNA methylation analysis

DNA methylation was measured using the 
IlluminaInfinium HumanMethylation450 BeadChips 
(Illumina, San Diego, CA, USA). For each sample,  
500 ng of DNA was bisulfite converted using the EZ DNA 
Methylation Kit (Qiagen) and analyzed on HM450 Bead 
Chips, both according to the manufacturers’ instructions. 
The Illumina Genome Studio program was used for 
normalization and extraction of the methylated and 
unmethylated signal intensities. Briefly, a probe specific 
to each “allele” (methylated vs. unmethylated cytosines) 
was designed. Then, a single base extension of the probes 
incorporated a labeled ddNTP. Each probe signal was then 
used to compute a β value (β), which was a quantitative 
measure of DNA methylation ranging from 0 (no cytosine 
methylation) to 1 (complete cytosine methylation). 
Concretely, β was calculated as: β = intensity of the 
methylated allele (M) / (intensity of the unmethylated 
allele (U) + intensity of the methylated allele (M) + 
100) [46]. Quality controls were conducted according 
to the manufacturer’s recommendations. Steps of DNP 
and Biotin staining, bisulfite conversion, extension, 
hybridization, target removal, and negative and non-
polymorphic controls were included.

Chip analysis methylation pipeline (ChAMP) 

Analysis of 450K was performed according to the 
ChAMP package [47]. In brief, after raw data was loaded, 

three quality control images were provided. First, ChAMP 
filtered the data for detection (p < 0.01). Then, probes 
with a bead count < 3 in at least 5% of samples per probe 
were filtered out (n = 3324). An additional probe on the 
panel that contained single nucleotide polymorphisms 
(SNPs) or repetitive elements was removed to avoid their 
interference effect on measurement of DNA methylation  
(n = 37730). To adjust for type-2 bias, data were 
normalized with Beta-mixture quantile normalization 
(BMIQ). Meanwhile, an adjusted p-value was calculated 
for differential methylation using a linear model. 
Methylation-variable positions (MVPs) were identified 
for appropriate contrasts and target genes, for which MVP 
mapping served for bioinformatics analysis.

DNA methylation validation 

Differential methylation of Cytosine-
phosphate-guanines (CpG) was validated using 
MassARRAYEpiTYPER assays (Sequenom, San Diego, 
CA, USA). We designed three primer sets by EpiDesigner 
software (http://epidesigner.com) to cover MVPs of 
gene ALOX15, APOB, and CES1 (Supplementary  
Table S6). In total, 6 CpGs of ALOX15, 38 CpGs of 
APOB, and 13 CpGs of CES1 were included in the target 
products, respectively. Each reverse primer was designed 
to contain a T7 promoter tag for in vitro transcription, and 
each forward primer incorporated a 10-mer tag to adjust 
for melting temperature differences. According to the 
manufacturer’s standard protocol (Sequenom), bisulfite-
converted genomic DNA was prepared for polymerase 
chain reaction (PCR). Amplification parameters were 
set as follows: 95°C for 5 min, 94°C for 20 sec, 60°C 
for 25 sec, and 72°C for 1 min for a total of 40 cycles, 
with a final incubation at 72°C for 5 min. PCR products 
were used in in vitro transcription reactions (T-cleavage 
assay). Samples were then spotted on a 384-SpectroCHIP 
(Sequenom) followed by spectral acquisition on a 
MassARRAY analyzer compact MALDI-TOF-MS 
(Sequenom). Methylation data of individual units (one to 
three CpG sites per unit) was generated by the Epitope 
software (Sequenom). The non-applicable reading and its 
corresponding site were eliminated in calculations.

Statistical analyses

The clinical data were normally distributed and 
expressed as mean ± standard deviation (SD). The 
independent-samples t-test, non-parametric test, and 
chi-square tests were used to evaluate the statistical 
significance between the two groups. Associations between 
parameters were assessed using the Pearson correlation 
coefficient. Partial correlation was used to control 
confounding variables. Multiple linear regression analysis, 
using BP values and metabolic parameters as dependent 
variables and birth weight, current weight, average weight 
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gain as independent variables, was calculated. Statistical 
analyses were performed using SPSS version 19.0 for 
Windows. P values < 0.05 were considered statistically 
significant with a statistical power of 80%.
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