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AbstrAct:
Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal 
regulators of apoptotic cell death. They are all highly overexpressed in cancers of 
different origin in which they enhance the survival of the cancer cells. Consequently, 
they represent prime candidates for anti-cancer therapy and specific antisense 
oligonucleotides or small molecule inhibitors have shown broad anti-cancer 
activities in pre-clinical models and are currently tested in clinical trials. In addition, 
immune-mediated tumor destruction is emerging as an interesting modality to 
treat cancer patients. Notably, spontaneous cellular immune responses against the 
Bcl-2 family proteins have been identified as frequent features in cancer patients 
underscoring that these proteins are natural targets for the immune system. Thus, 
Bcl-2 family may serve as an important and widely applicable target for anti-cancer 
immunotherapeutic strategies, alone or in the combination with conventional 
therapy. Here, we summarize the current knowledge of Bcl-2 family proteins as 
T-cell antigens, which has set the stage for the first explorative trial using these 
antigens in therapeutic vaccinations against cancer, and discuss future opportunities.

Abbreviations Used: AI apoptotic index; ALL acute lymphoid leukaemia; AML acute myeloid leukemia; B-CLL B-cell chronic lym-

phocytic leukemia; CTL cytotoxic T cells;

IntroductIon

The use of cancer vaccines to induce anti-tumor 
immune responses holds huge potential to complement 
traditional cancer therapies. Currently around 50 different 
therapeutic cancer vaccines have reached phase III clinical 
testing (not including HPV-based clinical trials) and the 
FDA has recently approved the first therapeutic cancer 
vaccine in the US (Dendreon’s Provenge, sipuleucel-T). 
Moreover, more than 400 phase I trials and more than 
430 phase II trials are testing therapeutic cancer vaccines 
in the clinic (www.clinicaltrials.gov). Cancer vaccines 
are designed to re-calibrate the existing host-tumour 
interaction, tipping the balance from tumor acceptance 
towards tumor control to the benefit of the cancer patient. 

Immunization evolves in a stepwise fashion 
beginning with an innate inflammatory response at the site 
of danger involving mast cells, resident and/or migrant 
monocytes, as well as NK cells and granulocytes [1]. 

Their effector function, e.g. secretion of pro-inflammatory 
chemo-/cytokines, innate cytotoxicity and thereby release 
of antigen, together with their capacity of antigen uptake 
and migratory phenotype are prerequisites to mount an 
adaptive immune response.  Inflammatory signals allow 
their migration to loco-regional lymph nodes where they 
either transfer the antigen to professional APC or directly 
encounter cognate naïve or memory T cells which upon 
antigen recognition get activated. Primed T cells return to 
circulation as memory and/or effector T cells and patrol 
the organism in search of the relevant targets. While 
T-helper cells influence the activation of B- and antigen-
presenting cells as well as cytotoxic T cells (CTL) only the 
latter have a vital function in monitoring the cells of the 
body and eliminating cells that are flagged for destruction 
and display the appropriate antigen. This function has 
been firmly established for virus-infected cells. However, 
in addition CTL are thought to provide some degree of 
protection against spontaneous tumors, by virtue of their 
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ability to detect quantitative and qualitative antigenic 
differences in transformed cells [2,3]. Tumorigenic 
alterations result in an altered protein repertoire inside 
the cell. Class I HLA molecules sample peptides from 
protein-degradation inside the cell and present these at 
the cell surface to CTL. Thus, it is well established that 
peptide epitopes derived from human tumor-associated 
antigens, can be recognized by CTL in the context of HLA 
molecules [4]. Spontaneous cancers represent approx. 
80% of all cancers and obviously, the antigens potentially 
recognized by the immune system are basically “self” 
antigens. Nevertheless, it is now well documented that 
the immune system is in fact capable of recognizing 
spontaneous cancers. Thus, even in the absence of 
treatment, cells of the immune system in the cancer 
patients specifically recognize cancer cells. Moreover, 
CTL responsible for cancer cell recognition are capable 
of killing cancer cells and leaving normal cells unharmed. 
The molecular targets recognized – which derive from 
proteins present in the cancer cells - encompass structures 
that potentially are applicable in anti-cancer vaccination 
strategies. A large number of such target structures have 
been characterized over the past more than 10 years [5].  
Due to the phenomenon of “immune escape”, in which 
antigen-negative cancer cells avoid immune recognition, 
strategies have been developed that conceptually focus on 
specifically targeting proteins that are important for the 
function, survival and growth of cancer cells [6]. Likewise, 
the tumor microenvironment, and conventional disease 
management has been taken into consideration. In this 
regard, anti-apoptotic molecules that enhance the survival 
of cancer cells and facilitate their escape from cytotoxic 
therapies represent prime candidates for immunological 
intervention. 

Most malignancies are characterized by defects in 
apoptotic signalling cascades, e.g. an overexpression of 
the inhibitor of apoptosis protein survivin or proteins 
from the Bcl-2 family (e.g. Bcl-2, Bcl-X(L), or Mcl-
1). Numerous studies have demonstrated Bcl-2 over-
expression in solid tumors, including melanoma, breast, 
colorectal, prostate, and small cell lung cancer as well 
as cancers of hematological origin [7-12]. Bcl-X(L) is 
likewise implicated in the pathogenesis of cancer and 
increased expression is a characteristic of acute myeloid 
leukemia (AML) and multiple myeloma, as well as solid 
cancers like bladder cancer, breast cancer, pancreatic 
cancer and melanoma [13]. While co-expression of Bcl-
2 and Bcl-X(L) is seen in some cancers, others exhibit 
exclusive expression of one or the other protein. In 
contrast to our current understanding of Bcl-2 and Bcl-
X(L), considerably less is known about the role of other 
anti-apoptotic Bcl-2 family members. However, elevated 
levels of Mcl-1 have been reported for a number of solid 
tumors and B-cell chronic lymphocytic leukemia (B-CLL) 
as well as and AML and acute lymphoid leukemia (ALL) 
upon relapse [13-16] . 

Attempts to overcome the cytoprotective effects 
of Bcl-2, Bcl-X(L) and Mcl-1 in cancer include several 
different strategies (as reviewed in [17]): (i) shutting 
off gene transcription, (ii) inducing mRNA degradation 
with antisense oligonucleotides [18], and (iii) directly 
attacking the proteins with small-molecule drugs [19-
21]. A randomized clinical trial for metastatic melanoma 
comparing dacarbazine alone with dacarbazine and Bcl-2 
antisense demonstrated an increase in response rates and 
improved survival in patients with less aggressive disease, 
but not in patients with more aggressive disease [22].  In 
addition to the above-mentioned means of targeting, 
immune-mediated tumor destruction is emerging as an 
interesting modality to treat cancer patients. Notably, 
during the last decade spontaneous cellular immune 
responses against regulators of apoptosis proteins have 
been identified as frequent features in cancer patients. 
As a result hereof, survivin-directed immunotherapy was 
quickly moved to the clinic [23,24] and several survivin-
based vaccination trials are currently ongoing at different 
institutes. However, whereas survivin has been given 
much attention as a T-cell target, the Bcl-2 family has as 
yet received somewhat less attention. Here, we summarize 
current knowledge of Bcl-2 family proteins as T-cell 
antigen and discuss future opportunities.

bcl-2 

Bcl-2 is a pivotal regulator of apoptotic cell 
death, and it is overexpressed in many cancers [25]. 
Consequently, the Bcl-2 protein is an attractive target for 
drug design and Bcl-2 specific antisense oligonucleotides 
or small molecule Bcl-2 inhibitors have shown broad anti-
cancer activities in pre-clinical models and are currently 
in clinical testing [26]. However, Bcl-2 is in addition the 
target of  spontaneous T-cell reactivity in cancer patients 
[27]. Hence, analyses of the protein sequence for HLA-
binding motifs and subsequent testing of blood of tumor 
patients revealed spontaneous T-cell reactivity against 
Bcl-2 in patients suffering from unrelated tumor types, 
i.e., melanoma, pancreatic and breast cancer, as well 
as AML and B-CLL. These spontaneously occurring 
immune responses comprised of cytotoxic effector cells. 
This notion could be confirmed by ex vivo analysis 
of Bcl-2 reactive T cells which were capable of killing 
HLA-matched tumor cells [27]. Moreover, CTL clones 
recognizing Bcl-2-derived epitopes efficiently killed 
cancer cells of different origin, e.g., colorectal cancer, 
breast cancer and melanoma cells [28]. 

Bcl-2 is implicated in cancer development, tumor 
progression and protection of cells from a wide range 
of cytotoxic insults, including cytokine deprivation, 
irradiation, and chemotherapeutic drugs [29]. However, 
although Bcl-2 is an anti-apoptotic protein a rather 
paradoxical role of Bcl-2 have been described, showing an 
association between high Bcl-2 expression and improved 
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survival in different cancers [30,31]. Bcl-2 expression and 
prognosis has been correlated for breast cancer patients 
even if treated with chemotherapy [32]. Likewise, Bcl-2 
expression has been associated with improved prognosis 
even among patients at very high risk for distant relapse 
[33]. In melanoma, it has been described that Bcl-2 
expression was significantly higher in the primary tumors 
as compared to metastatic lesions [31]. These findings 
were unexpected since over-expression of Bcl-2 in tumor 
cell results in enhanced resistance to apoptosis in vitro 
[12]. The biological basis for the association between 
high Bcl-2 expression and improved survival is unclear. 
An explanation may be that poorly differentiated tumors 
depend on other prosurvival pathways, and decreased 
Bcl-2 expression merely is a marker of aggressive 
tumor behaviour rather than mechanistically associated 
with aggressive biology [25]. However, it could in 
addition suggest a pivotal role of Bc-2 specific T cells 
in immunosurveillance of cancer. The loss of the Bcl-2 
expression during progression from primary to metastatic 
melanoma in patients suggests an active immune selection 
of the respective melanoma clones by the tumor bearing 
host, e.g. via a specific immune response.

bcl-X(l) 

The bcl-x gene is transcribed into two mRNAs 
through alternative splicing. The anti-apoptotic protein 
Bcl-X(L) is produced from the long isoform, while pro-
apoptotic Bcl-X(S) is derived from the short isoform 
mRNA [34]. The protein product of the larger Bcl-X(L) 
differs from Bcl-X(S) protein by an inserted region (amino 
acids 126-188). The anti-apoptotic protein Bcl-X(L) plays 
an important role in cancer as it has been directly linked 
to resistance to conventional forms of therapies and poor 
prognosis [13]. Increased expression of Bcl-X(L) has been 
reported in a variety of different malignancies including 
AML and multiple myeloma as well as solid cancers 
like bladder cancer, breast cancer, pancreatic cancer and 
melanoma [13]. The functional inhibition of Bcl-X(L) 
restores the apoptotic process and renders neoplastic 
cells sensitive to chemical and radiation therapies, 
whereas manipulation of cancer cell lines to express 
high levels of Bcl-X(L) results in a multi-drug resistance 
phenotype. Thus, the attractiveness of targeting Bcl-X(L) 
in vaccination is based on the fact that downregulation or 
loss of expression of this protein as some form of immune 
escape would impair sustained tumor growth. The 
combination of immunotherapy targeting Bcl-X(L) with 
conventional chemotherapy appears to be particularly 
appealing since expression of this protein is correlated 
with drug resistance [35,36]. It was demonstrated that 
breast cancer patients, melanoma patients and pancreatic 
cancer patients host spontaneous HLA-restricted T-cell 
responses specifically against Bcl-X(L)-derived peptides 
[37]. In contrast, no responses were detected against 

Bcl-X(L) epitopes in healthy controls. Furthermore, Bcl-
X(L) specific T cells not only killed target cells pulsed 
with the antigenic peptide but also recognized tumor 
cells endogenously expressing the Bcl-X(L) protein in an 
antigen specific and HLA-restricted manner [38]. Thus, 
whereas HLA-matched cancer cell lines of different origin 
were very effectively lysed by the Bcl-X(L) specific T 
cells, there was no lysis of the HLA-mismatched breast 
cancer cells. The killing of tumor cells of different origin 
underlines the universal characteristics of Bcl-X(L) as a 
tumor antigen. Importantly, the Bcl-X(L)-specific T cells 
did not only lyse in vitro generated tumor cell lines, but in 
addition lysed ex vivo enriched AML cells demonstrating 
that killing is not restricted to long-term cell lines. Since 
T cells and B cells normally express Bcl-X(L) following 
activation, Bcl-X(L) can not be considered to be a cancer-
specific protein and caution is required when targeting this 
protein in vaccination therapies. However, the Bcl-X(L)-
specific T cells did not kill purified B and T cells, which 
suggest that although non-malignant, B cells and T cells 
express Bcl-X(L), they escape recognition from Bcl-X(L) 
specific T cells. Similar findings have been reported for 
another anti-apoptotic protein, survivin. Thus, although 
activated B and T cells express survivin, survivin-specific 
CTL did not recognize and kill such cells ex vivo [39].

Mcl-1

The lower rates of relapse in allogeneic 
transplantation compared with autologous bone marrow 
transplantation, the striking clinical benefit of donor-
lymphocyte infusions as well as the finding that human 
T cells can destroy chemotherapy-resistant cell lines from 
chronic myeloid leukemia and multiple myeloma, have 
prompted development of immunotherapeutic strategies 
against haematological cancers [40]. Among these 
approaches, active specific immunization or vaccination 
is emerging as a valuable tool to boost the adaptive 
immune system against malignant cells. Mcl-1 is an 
apoptosis-inhibiting member of the Bcl-2 family that is 
expressed in early monocyte differentiation. Elevated 
levels of Mcl-1 have been reported for a number of solid 
and hematopoitic cancers, e.g. CLL and in AML and ALL 
upon relapse  [13,15,16]. In CLL patients, higher levels 
of Mcl-1 are strongly correlated with failure to achieve 
complete remission after single-agent therapy. In multiple 
myeloma Mcl-1 plays an important role in the survival of 
malignant cells [41].

Using the IFN-g ELISPOT we demonstrated that both 
hematopoetic and solid cancer patients host spontaneous 
T-cell responses against Mcl-1-derived peptides [42-44]. 
Thus, strong and frequent CTL responses against Mcl-
1 were detected in CLL patients, melanoma patients, 
pancreatic cancer patients and breast cancer patients, 
whereas no responses could be detected in healthy 
individuals. Mcl-1 specific T-cell clones effectively lysed 
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HLA-matched melanoma cells [45]. Moreover, Mcl-1-
specific T cells lyse ex vivo enriched AML cells.

co-tArgetIng of the bcl-2 fAMIly

Many anti-cancer vaccination strategies are already 
focusing on the combination with other immunotherapeutic 
strategies, e.g. the addition of cytokines or immune 
modulating agents. However, so far most peptide based 
vaccination trials have targeted only a single antigen. 
To maximize the impact of immunotherapy, an exciting 
strategy would be to co-target biologically connected 
proteins, e.g. the Bcl-2 family, in a multi-epitope setting. 
In this regard, Tanaka et al described that the co-expression 
of different apoptosis regulators in breast carcinoma was 
strongly associated with reduced apoptotic index (AI) and 
poor overall survival [46]. A similar association has been 
described in other cancers [47-49]. Thus, in most human 
cancers, inhibition of apoptosis is a general feature, and 
expression of anti-apoptosis genes, e.g. survivin and/or 
Bcl-2 family, may cause more pronounced antiapoptotic 
effects, as reflected in reduced AI. Although regulators 
of apoptosis proteins are up regulated in almost all 
cancers there may be significant quantitative divergences 
concerning the amount of each protein in individual 
patients suffering from the same disease. Previously, we 
have generated Bcl-2, Bcl-X(L) and survivin specific 
cytotoxic T cell clones and examined the killing of a 
panel of cancer cell lines [50]. Although all cancer cell 
lines were recognized and lysed by the T-cell clones the 
most effective lysis varied greatly among the cell lines. 
Thus, some target cells were killed most efficiently by 
Bcl-2 specific T cells, some by Survivin specific T cells 
and some by Bcl-X(L) specific T cells. Although this 
notion needs to be substantiated in large scale studies in 
which the clinical and prognostic significance of the CTL 
responses is scrutinized, it could point to a scenario in 
which the targeting of more than one of the targets would 
be beneficial in a clinical setting. 

coMbInAtIon wIth conventIonAl 
therApy

Even few years ago the concept of combining 
chemotherapy – one of the side effects of which is 
suppression of immune function – with active immune 
therapy, was unheard of. However, recent data from the 
clinic suggests a synergistic effect of anti-cancer vaccines 
and chemotherapy. As an example hereof, the combination 
of immunotherapy with high-dose chemotherapy has been 
described to improve the severe immunodeficiency and 
leave to the induction of clinically relevant immunity 
in myeloma patients [51].  Notably, lympho-ablation, 
e.g. induced by chemotherapy, enhances the efficacy of 
adoptive T-cell transfer [52]. Subsequently, it may also 

increase a vaccination induced T-cell response. Because 
cytotoxic chemotherapy is widely used to treat most 

malignancies, integrating tumor vaccines with standard 
chemotherapeutic drugs is highly attractive. Several 
different models have explained how chemotherapy may 
improve subsequent or even concurrent immune therapy. 
Recent investigations have focused on the impact on 
regulatory cells [53,54]. In addition, chemotherapy might 
enhances tumor cell susceptibility to CTL-mediated killing 
[55]. Furthermore, it has been described that Antracyclins 
induce translocation of calreticulin to the cell surface 
leading to immunogenic uptake of tumor antigens [56].

Rational treatment strategies that combine tumor 
vaccines with cytotoxic drugs can be integrated in at least 
three ways as suggested by Emens and Jaffee [51]. First, 
chemotherapeutics can be combined with surgery and 
radiation to achieve a state of minimal residual disease, 
thereby altering the balance of the disease burden and 
the vaccine-induced T-cell response in favour of the T 
cell.  Second, chemotherapy can be used to groom the 
local tumor microenvironment to optimally support a 
productive immune response. Finally, chemotherapy 
can be used to set the stage for a robust vaccine-induced 

immune response by globally altering immunoregulation 
within the host, subsequently permitting a robust vaccine-
induced immune response.

Drug resistance is the major problem that limits the 
effectiveness of chemotherapies used in the treatment of 
cancer [57]. Drug resistance is believed to cause treatment 
failure in more than 90% of patients with metastatic 
cancer. Cancer-associated defects in apoptosis play a vital 
role in resistance to chemotherapy and radiotherapy [58]. 
An important reason for this impaired apoptosis is an over-
expression of the anti-apoptotic regulators of apoptosis 
proteins, i.e. the Bcl-2 family [17]. Consequently, 
the combination of immunotherapy targeting these 
antigens with conventional chemotherapy appears to be 
particularly appealing. In a combinational therapeutic 
setting, conventional therapy would kill the majority of 
the cancer cells, leaving only cells that express high levels 
of antigens. Such high-expressers would be particularly 
vulnerable to killing by vaccination induced T cells. 
Thus, the synergy of these measures could potentially 
give a more effective treatment than the added effect 
of either regime alone; thereby strengthen the already 
described synergistic effect of anti-cancer vaccines and 
chemotherapy. 

conclusIon

It has been have reported that spontanous specific 
T-cell responses against the anti-apoptotic members of 
the Bcl-2 family are frequent in cancer patients and that 
these T cells are highly cytotoxic against cancer cells. 
Hence, Bcl-2 antigens appear to be a very attactrive target 
for anti-cancer immunotherapy both in hematopoetic and 
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solid cancers. To evaluate the efficacy and safety of Bcl-
2 family-based vaccinations the first phase I vaccination 
study have been started (from June 2010) at Herlev 
University Hospital, Denmark and Odense University 
Hospital, Denmark in which multiple myeloma patients 
are being vaccinated with HLA-restricted Bcl-2, Bcl-
X(L) and/or Mcl-1-derived epitopes in connection with 
Montanide adjuvant (www.clinicaltrials.gov). 
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