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Sesamin inhibits IL-1β-stimulated inflammatory response in 
human osteoarthritis chondrocytes by activating Nrf2 signaling 
pathway

Pengyu Kong1, Guanghua Chen1, Anlong Jiang1, Yufu Wang1, Chengchao Song1, 
Jinpeng Zhuang1, Chunyang Xi1, Guangxi Wang1, Ye Ji1, Jinglong Yan1

1Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China

Correspondence to: Jinglong Yan, email: hrbmuyjl@163.com
Ye Ji, email: yejilb@163.com

Keywords: sesamin, osteoarthritis chondrocyte, IL-1β, NF-κB, Nrf2
Received: September 12, 2016    Accepted: October 14, 2016    Published: November 15, 2016

ABSTRACT

Sesamin, a bioactive component extracted from sesame, has been reported to 
exert anti-inflammatory and anti-oxidant effects. In this study, we evaluated the 
anti-inflammatory effects of sesamin on IL-1β-stimulated human osteoarthritis 
chondrocytes and investigated the possible mechanism. Results demonstrated that 
sesamin treatment significantly inhibited PGE2 and NO production induced by IL-
1β. Sesamin inhibited MMP1, MMP3, and MMP13 production in IL-1β-stimulated 
chondrocytes. Sesamin also inhibited IL-1β-induced phosphorylation of NF-κB p65 
and IκBa. Meanwhile, sesamin was found to up-regulate the expression of Nrf2 and 
HO-1. However, Nrf2 siRNA reversed the anti-inflammatory effects of sesamin. In 
conclusion, our results suggested that sesamin showed anti-inflammatory effects in 
IL-1β-stimulated chondrocytes by activating Nrf2 signaling pathway.

INTRODUCTION

Osteoarthritis (OA) is a chronic articular disease 
characterized by degradation and destruction of cartilage 
matrix [1, 2]. It often affects joints and leads to intense 
pain in aged people [3]. Studies showed that inflammation 
are closely integrated processes in OA and may affect 
disease progression and pain [4]. Inflammatory cytokine 
network plays a critical role in the progression of OA [5]. 
IL-1β, an important cytokine in the progression of OA, 
could induce the production of matrix metalloproteinases 
(MMPs) and inflammatory mediator PGE2 and NO 
production in chondrocytes [6, 7]. These inflammatory 
mediators lead to the clinical manifestations of OA [8]. 
Accumulated evidences suggested that inhibition of IL-
1β-induced inflammatory response may represent a useful 
strategy to treat OA [9]. Nrf2 has been reported to play 
important roles in the regulation of oxidative stress. 
Furthermore, activation of Nrf2 signaling pathway could 
inhibit NF-κB activation and inflammatory mediator 
production.

Sesamin, the main component of sesame seed and 
its oil, has been reported to have anti-inflammatory and 
anti-oxidative effects [10]. Sesamin has been reported 
to inhibit LPS-induced inflammation and extracellular 

matrix catabolism in rat intervertebral disc [11]. Sesamin 
has been reported to attenuate LPS-induced acute lung 
injury in mice [12]. Sesamin also has protective effects 
against LPS/D-galactosamine-induced liver injury in mice 
[13]. Furthermore, sesamin has been reported to inhibit 
LPS-induced proliferation and invasion in prostate cancer 
cells [14]. In addition, sesamin has been shown to inhibit 
HMGB1-induced vascular barrier disruptive responses 
[15]. However, there was no study have been reported to 
investigate the anti-inflammatory effects and mechanism 
of sesamin in IL-1β-stimulated chondrocytes. In the 
present study, we investigated the anti-inflammatory effect 
and mechanism of sesamin on IL-1β-stimulated human 
osteoarthritis chondrocytes.

RESULTS

Effects of sesamin on chondrocytes viability

The effects of sesamin on the viability of 
chondrocytes were detected in this study. The results 
showed that IL-1β decreased the cell viability of 
chondrocytes. However, sesamin at concentration of 2.5 
and 5μM reversed the effects of IL-1β on cell viability 
(Figure 1).
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Sesamin inhibits IL-1β-induced NO and PGE2 
production

Studies showed that inflammatory mediators play 
a critical role in inflammation. To investigate the anti-
inflammatory effects of sesamin, the effects of sesamin 
on IL-1β-induced NO and PGE2 production were 
detected in this study. The results showed that IL-1β 
treatment obviously enhanced the levels of NO and PGE2 
production. However, treatment of sesamin significantly 

reduced IL-1β-induced NO and PGE2 production 
(Figure 2).

Sesamin inhibits IL-1β-induced MMP1, MMP3, 
and MMP13 production

In this study, the effects of sesamin on IL-1β-
induced MMP1, MMP3, and MMP13 production were 
detected by ELISA. The results showed that IL-1β 
treatment obviously enhanced the levels of MMP1, 

Figure 1: Effects of sesamin on the cell viability of chondrocytes. The values presented are the means ± S.E.M. of three 
independent experiments. *P < 0.05, **P < 0.01 vs. control group.

Figure 2: Sesamin inhibits IL-1β-induced NO and PGE2 production. The data presented are the means ± S.E.M. of three 
independent experiments. #P < 0.05 vs. control group; *P < 0.05, **P < 0.01 vs. IL-1β group.
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MMP3, and MMP13 production. However, treatment 
of sesamin significantly reduced IL-1β-induced MMP1, 
MMP3, and MMP13 production (Figure 3).

Sesamin inhibits IL-1β-induced NF-κB 
activation

NF-κB has been reported to play an important role 
in the regulation of inflammatory mediators production. To 
investigate the anti-inflammatory mechanism of sesamin, 
the effects of sesamin on IL-1β-induced NF-κB activation 

were measured by western blotting. The results showed 
that IL-1β significantly increased NF-κB phosphorylation 
and IκBα degradation. However, treatment of sesamin 
inhibited IL-1β-induced NF-κB activation in a dose-
dependent manner (Figure 4).

Effects of sesamin on Nrf2 and HO-1 expression

Several studies showed that activating of Nrf2 could 
inhibit inflammatory response. To further investigate the 
anti-inflammatory mechanism of sesamin, the effects of 

Figure 3: Sesamin inhibits IL-1β-induced MMP1, MMP3, and MMP13 production. The data presented are the means ± 
S.E.M. of three independent experiments. #P < 0.05 vs. control group; *P < 0.05, **P < 0.01 vs. IL-1β group.

Figure 4: Sesamin inhibits IL-1β-induced NF-κB activation and IκBα degradation. The values presented are the means ± 
S.E.M. of three independent experiments. #P < 0.05 vs. control group; *P < 0.05, **P < 0.01 vs. IL-1β group.
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sesamin on Nrf2 signaling pathway were detected in this 
study. The results showed that IL-1β up-regulated the 
expression of Nrf2 and HO-1. And treatment of sesamin 
significantly up-regulated the expression of Nrf2 and 
HO-1 (Figure 5).

Knockdown Nrf2 reversed the anti-inflammatory 
effects of sesamin

To investigate whether the anti-inflammatory 
mechanism of sesamin was through Nrf2 signaling 
pathway, Nrf2 was knockdown by siRNA. The results 

showed that the expression of Nrf2 was inhibited after 
siRNA-Nrf2 transfection in chondrocytes (Figure 6A). In 
addition, the results showed that the inhibition of sesamin 
on PGE2 and NO production were reserved by Nrf2 
siRNA (Figure 6B).

DISCUSSION

In the present study, the results showed that 
sesamin dose-dependently inhibited IL-1β-induced 
PGE2, NO, MMP1, MMP3, and MMP13 production 
in chondrocytes. The results indicated that the anti-

Figure 5: Effects of sesamin on Nrf2 signaling pathway. The values presented are the means ± S.E.M. of three independent 
experiments. #P < 0.05 vs. control group; *P < 0.05, **P < 0.01 vs. IL-1β group.

Figure 6: A. The effects of siRNA on Nrf2 expression was detected by Western blot analysis. B. Knockdown Nrf2 reversed the anti-
inflammatory effects of sesamin. The values presented are the means ± S.E.M. of three independent experiments. #P < 0.05 vs. control 
group; *P < 0.05, **P < 0.01 vs. IL-1β group.



Oncotarget83724www.impactjournals.com/oncotarget

inflammatory property of sesamin was likely resulted 
from the inhibition of NF-κB activation through an Nrf2 
dependent pathway.

A large number of studies showed that 
inflammation played a critical role in the development 
of OA by releasing a variety of inflammatory cytokines 
[16]. Among these cytokines, TNF-α and IL-1β played 
important roles [17]. Stimulating of chondrocytes 
with IL-1β could induce the production of MMPs and 
inflammatory mediators [18]. MMPs is an important 
risk factor that has the ability to inhibit type II collagen 
synthesis [19]. Among the MMPs, MMP1, MMP3, 
and MMP-13 could induce degradation of ECM in OA 
articular cartilage [20]. Inflammatory mediator PGE2 
and NO also play critical roles in the development of OA 
[21]. PGE2 could attenuate extracellular matrix synthesis 
and NO could induce the release of MMPs and other 
inflammatory mediators [8]. Previous studies showed 
that inhibition the production of inflammatory mediators 
could attenuate the development of OA [21, 22]. In this 
study, our results showed that sesamin significantly 
inhibited IL-1β-induced PGE2 and NO, as well as MMP1, 
MMP3, and MMP13 production. These results indicated 
that sesamin could inhibit IL-1β-induced inflammatory 
response in chondrocytes.

NF-κB is a heterodimeric transcription factor 
composed of p50 and p65 subunits that expressed 
in many cell types [23, 24]. NF-κB can be activated 
by a variety of different stimuli and regulated a lot of 
inflammatory genes expression [25, 26]. In chondrocytes, 
IL-1β could induce NF-κB activation and inflammatory 
mediators, such as PGE2 and NO release [27]. To 
investigate the anti-inflammatory mechanism of 
sesamin, the effects of sesamin on IL-1β-induced NF-
κB activation were detected in this study. Our results 
showed that sesamin significantly inhibited IL-1β-
induced NF-κB activation. Nrf2, a critical transcription 
factor, is important for protecting cells against oxidative 
damage [28–30]. However, recent studies suggested that 
Nrf2 also has anti-inflammatory effect [31]. Activation 
of Nrf2/HO-1 signaling pathway could inhibit LPS-
induced NF-κB activation [32]. To further investigate the 
anti-inflammatory mechanism of sesamin, the effects of 
sesamin on Nrf2 signaling pathway were measured. Our 
results showed that sesamin up-regulated the expression 
of Nrf2 and HO-1. Furthermore, the inhibition of sesamin 
on PGE2 and NO production were reserved by Nrf2 
siRNA. These data suggested that the anti-inflammatory 
effects of sesamin were through activation of Nrf2/HO-1 
signaling pathway.

In summary, our data demonstrate that sesamin 
has anti-inflammatory effects, as indicated by the 
inhibition of PGE2 and NO production. These effects are 
mediated by the inhibition of NF-κB activation through 
an Nrf2 dependent pathway. Sesamin may be a potential 
therapeutic agent for osteoarthritis.

MATERIALS AND METHODS

Chemicals and reagents

Sesamin (purity>98%) and MTT were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Recombinant 
human IL-1β was purchased from R&D systems 
(Minneapolis, MN, USA). Antibodies for Nrf2, HO-
1, IκBα, and NF-κB were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). ELISA kits 
for MMP1, MMP3, MMP13 were purchased from 
R&D systems (Minneapolis, MN, USA). ELISA kit 
for PGE2 was purchased from eBioscience Inc (USA). 
Lipofectamine 2000 reagent was purchased from 
Invitrogen (Carlsbad, CA, USA).

Cell culture

The experiment was in accordance with the 
Declaration of Helsinki and Tokyo. Articular cartilage 
samples were obtained from 12 patients (age: 54±8) 
undergoing total knee replacement surgery. Primary 
chondrocytes were isolated from articular cartilage as 
described previously [33]. The cells were cultured in 
DMEM containing 10% fetal bovine serum (FBS) and 
cultured at 37°C with 5% CO2. Cells between passages 1 
to 3 were used in this study.

MTT assay

Chondrocytes were seeded in a 96-well plate 
(10, 000 cells/well) and cultured overnight. Then, different 
concentrations of sesamin were added to each well and 
the cells were treated with IL-1β (10 ng/ml) for 24 h. 
Subsequently, MTT (5 mg/ml) was added to the cells and 
incubated for 4 h at 37°C. The medium was removed and 
the insoluble formazan product was dissolved in DMSO. 
Then, the optical density was measured at 450 nm on a 
microplate reader (TECAN, Austria).

Inflammatory mediator assay

The levels of MMP1, MMP3, and MMP13 in cell 
culture supernatants were monitored by ELISA kits (R&D 
systems, Minneapolis, MN, USA). The concentration 
of PGE2 in cell culture supernatants was measured by 
an ELISA kit (eBioscience Inc, USA) according to the 
manufacturer’s instructions. The concentration of NO in 
the culture medium was detected using the Griess reagent 
according to the manufacturer’s instructions.

Western blot analysis

Total proteins from chondrocytes were extracted 
using M-PER Mammalian Protein Extraction Reagent 
(Pierce, Rockford, IL). Protein concentration was 
determined using a Nanodrop 1000 spectrophotometer 
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(Thermo, Wilmington, DE). The proteins were 
separated on 12% SDS-PAGE and transferred to PVDF 
membranes. After blocking, the membranes were 
incubated with Nrf2, HO-1, NF-κB p65, IκBα, p-IκBα 
antibodies at 4 °C overnight. After washing three times, 
the membranes were incubated with HRP-conjugated 
IgG and detected by the ECL detection reagents 
(Thermo).

Cells transfection with siRNA

Chondrocytes were seeded in a 6-well plate 
and cultured at 70% confluence. Then the cells were 
transfected with siRNA-Nrf2 and siRNA-scrambled with 
Lipofectamine 2000 according to the manufacturer’s 
instructions. 24 h later, the cells were treated with sesamin 
and stimulated with IL-1β. The effects of siRNA on Nrf2 
expression was detected by western blot analysis.

Statistical analysis

Data are analyzed as the mean ± S.E.M. The 
differences between groups were evaluated by one-way 
analysis of variance followed by Dunnett’s test. SPSS 
11.5 software was used for all analysis. P <0.05 were 
considered to indicate statistical significance.
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